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1 Introduction

<& | will talk about lattice formulations of SUSY gauge theories.
QFT on lattice:

e UV regularization
e More importantly, nonperturbative construction of QFT

e Nonperturbative study by computer simulation

Lattice cannot keep all the symmetries of the continuum QFT:

Slat — §eont L G (when lattice spacing @ is small)

|

O(a) irrelevant terms at the classical level.

e But, quantum mechanically, some operators in S may become relevant due to

radiative corrections. (They are symmetry-breaking relevant operators.)
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=> In order to obtain the correct continuum theory, we should subtract the
symmetry-breaking relevant operators in advance. (fine-tuning)

Lattice models with no fine-tuning is practically best, (although a few operators

to be fine-tuned are perhaps acceptable).

e We consider the case that lattice actions S'2¢ have “good symmetries’ that
protect from generating symmetry-breaking radiative corrections.

— fine-tuning free

e For some (lower-dimensional) gauge theories with extended SUSY,

“nilpotent” SUSY (not generating translations) can play a role of the “good
symmetries” . [Kaplan et al, Catterall, F. S|

Typical examples)

-2d N = (2,2),(4,4),(8,8) SYM
—2d N = (2, 2) SQCD, gauged linear sigma models



¢ Although such lattice theories have only the “nilpotent” part of SUSY, they
restore the full SUSY in the continuum limit.

e It is analytically shown for all orders in perturbation theory.

e Nonperturbative check by computer simulation for 2d N' = (2,2) SYM
with G = SU(2),SU(3),SU(4), SU (5).

[Kanamori-Suzuki, Hanada-Kanamori]

However, this approach seems not so good to obtain 4d SUSY gauge theories
from the lattice.



& Here, | will explain a method to construct 4d N = 4 SYM with no
fine-tuning:

1. a lattice formulation for 2d N = (8,8) U (IN) SYM by plane-wave like
mass deformation in Sections 2, 3.

2. a procedure to obtain 4d A" = 4 U (k) SYM from fuzzy S? background of
the 2d theory in Sections 4, 5. (k: arbitrary)

c.f.) Maldacena, Sheikh-Jabbari, van Raamsdonk
Fuzzy S? background in BMN Matrix Model (1d) = 3d A/ = 8 SYM

c.f.) Ishii, Ishiki, Shimasaki, Tsuchiya
BMN Matrix Model (1d) = 4d planar (k = co) N =4 SYMon R x S°



2 Mass-deformed 2d N = (8,8) SYM

2d N = (8,8) SYM = BTFT form [Dijkgraaf-Moore, Blau-Thompson,.. ]
A, = A,

X; (2 =3,4)

X; (I=3,---,10) = B, (A=1,2,3)

C =2X5g, o+ = X9 = 1X;

¢+ua P+is X+as T+

v =
w—ua P—is X—as T]—

We take appropriate two supercharges (), (Q_ to write the action of 2d
N = (8,8) SYM in the Q. Q_ exact form:

So = Q1+ Q-Fo,

1, | 1
f() = 2/d x tr —’LBAq)A — 7€ABCBA[BB7 Bc]
924 3
1
— Y1y p — P+iP—i — X4aAX -2 — L=
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with
) = 2(—D1 X3 — D Xy),

(I)Q — 2(—D1X4 —|— D2X3),
(I)g — 2(—F12 —|— ’i[Xg, X4]).



& Q4+ SUSY:
Q+Ay = Viy, -
Q+X; = p+iy + -~
Q+LBy = X4ny -+
Q+C =11, Qini==x[¢+,C], Qn+ = Flo;,d_],
Qi+ =0, Qxd+ = Fn.

= Nilpotency up to gauge transformations

Qi = (infinitesimal gauge transformation by ¢. ),
Q? = (infinitesimal gauge transformation by —¢_),
{Q4,Q_} = (infinitesimal gauge transformation by C').

=> Since JFy is gauge invariant, Sy is manifestly invariant under Q1 and Q) _
SUSYs.



& SU(2)g symmetry (Jo, J oo, J_ ) Jo-charge

R A X +A yn Q-+ 1
Doublets : ¢u) ] (XA) ] ( . ) ] (Q 1
P+ 2
Triplet : C 0
—p_ _9

[Jos J1x] = X245y,  [Jiy, -] = Jo.

Fo: SU(2)g-inv. = S : SU(2)g-inv.



> Mass deformation of 2d N' = (8, 8) SYM
® Mass deformed Q4 SUSY by SU(2)gr [Hanada-Matsuura-F.S ]
Q:tAu — w:I:ua te

Q+X; = ptiy + -~
Q+By = X+a, * -

2M
Q+iC =11, Qint = *x|¢4, C]+3¢ia

M
Q1+ = Flo+, ¢—]:|:307 Qi+ =0, Qo+ = Fn+.

= Nilpotency up to gauge and SU (2) i transformations

Qi = (infinitesimal gauge transformation by q§+)—|—3J++,

Q? = (infinitesimal gauge transformation by —¢_)—3J__,

{Q+7 Q—}

(infinitesimal gauge transformation by C’)—BJO.
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=> Mass deformed action

M
Sym = (Q+Q——) Fms

3
Fu = Fo+ AF,
1 i
AF = [dztr|y 2B2+ s ZX7
g%d' A=1 2 i=3 2
Note
e Spris Qi-invariant: Q1S = Q_Syr = 0, and SU (2) g-invariant.
T

[J+4,Q+] =0, [J14, Q=] = Q+

e When a,, c; € (—23/[, O), scalars B,, X; have positive mass terms.
AM

For convenience, we take a; = as = ag = —23/‘[, C3 = Cq4 = o -
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e Explicit form of the action

SM:SO‘|‘A57

where
) 2M? . M?(C?
AS——/daztr (B4 + X)) + + o1
g2d 9 4
_7C[¢+a ¢—]
M 2M 4M M
+*¢+u¢ + —prip—i + g XHAX-4 = M7
473M

Bs (Fi2 + 1 [X37 X4])| -

Flat directions are stabilized by the mass M.
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e Fuzzy S? configurations satisfying

M 2M
[¢+7 ¢—] — 307 [Ca d):lz] — :|:3¢:i:9

BA:Xz:O

give Q+-SUSY preserving minima (Sjp; = 0).
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3 Lattice formulation of mass-deformed 2d A/ = (8,8) SYM

Key aspects: [Hanada-Matsuura-F.S ]

e Lattice gauge fields are on links: A, (x) = U,(x) = elaAu(z)
All the other fields are on sites.

QiAu — ’i,bi,u s = QiUu(iﬂ) — i¢iu(w)Uu($), cee

“Nilpotent” mass-deformed Q4 SUSY are realized on lattice.

e Gauge configurations are smoothly restricted those satisfying the
admissibility condition ||1 — Uya(x)|| < € by

1(Ur2(x) — Uai(x))
1 — e ?||1 — Urz2(z)||?

with ||A|| = /tr(AA"), 0 < e < 2 for G = U(N).

Fiy =

— The admissibility condition is necessary to kill unphysical flux vacua.

— Minimizing the action singles out the gauge configuration Ujs(x) = 1.
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e Same as in the continuum theory, flat directions are stabilized,
and fuzzy S? configurations give Q-SUSY preserving minima.

e The lattice theory is shown to be free from fine-tuning (at least to the all
order in the perturbation theory).

e After taking the continuum limit, M — 0 limit yields the undeformed
theory (= DVV matrix string theory).
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4 4d N = 4 SYM from 2d lattice [Hanada-Matsuura-F.S.]

Consider the lattice theory around the minimum of k-coincident fuzzy S?:

My :
— L3, P+ = 3(Ll + ZL2)

with L, = L™ ® 1y, and N = nk.

T
SU(2)-generators of spin-j irre. repre. (n = 235 + 1)

First, we take continuum limit of the 2d lattice

= Mass-deformed N' = 4 U (k) SYM on R? X (Fuzzy S?)
e 16 SUSYs broken to Q4 by M

o Fuzzy S?2: radius R = ]\3/[

fuzziness ® = A}Sn = UV cutoff A = J\?f" - 29

¢ gid — ZW@ggd
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Next, we take the two limits:

e Step 1:
Decompactify fuzzy S? to the Moyal plane R%)
M — 0andn = 275 + 1 — oo with ® and k fixed

= A x n'/? — oo (“continuum limit")

We expect that M is soft.
=>The theory becomes N' = 4 U (k) SYM on R? x R with 16 SUSYs

restored.
e Step 2:
Commutative limit ® — 0 with g4q fixed
The limit is considered to be smooth. [Matusis-Susskind-Toumbas]
Finally, we obtain 4d N' = 4 U (k) SYM on R*. k: general

In particular, 4d rotational symmetry is restored.
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5 1-loop check of the procedure [Hanada-Matsuura-F.S.-Suzuki]

As a concrete check of the procedure, we carry out 1-loop computation of
N =4 U (k) SYM on R? x (Fuzzy S?) and take the limits of Steps 1 and 2.

> The final expression of the kinetic terms of X; (¢ = 3,4) and B,
(A = 1, 2) is consistent to the standard 1-loop result of N = 4 SYM on R*:
e The overall U (1) part receives no radiative correction (free).
e The SU (k) part: (q is a 4-momentum, q* = ¢} + q5 + (]\?f’.])z)
1  d*q

/ try, [£5 0 D (—q)@ " ) (q)
QZd (27r)4 l ]
2 2
2 g4dk 1 q 4 ~
X 1 ——In— +1 O f for b
q” |1+ A2 { 5 nu%z + }-I— (g44)| + (same form for by)

after the wave function renormalization (pp: renormalization point)

2 k A 1/2
ijfU(k) () (C1) = (1 + itiz In L ) ijfU(k) (q)a e
R
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— 4d rotational symmetry is restored!

— Singular behavior due to UV/IR mixing does not survive in the limits.

—> The procedure seems to work well.
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6 Discussions

> We presented a lattice formulation of mass-deformed 2d N/ = (8, 8)
U (IN) SYM preserving two supercharges Q+,
and discussed a procedure to obtain 4d N/ = 4 U (k) SYM from the 2d theory.

{> We can construct a similar mass-deformed lattice model for 2d N' = (4, 4)
U(N) SYM. [Hanada-Matsuura-F.S ]

e Mass-deformed 2d continuum theory preserves full 8 SUSYs
e4d N =2 U (k) SYM on R?x NC R? is obtained.

> Coupled to matter fields, N' = 1*, 2* models.
In particular, 4d N/ = 2 superconformal theories would be interesting.
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