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1 Introduction

♦ I will talk about lattice formulations of SUSY gauge theories.

QFT on lattice:

• UV regularization

• More importantly, nonperturbative construction of QFT

• Nonperturbative study by computer simulation

Lattice cannot keep all the symmetries of the continuum QFT:

Slat = Scont + S̃ (when lattice spacing a is small)

↑
O(a) irrelevant terms at the classical level.

• But, quantum mechanically, some operators in S̃ may become relevant due to

radiative corrections. (They are symmetry-breaking relevant operators.)
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⇒ In order to obtain the correct continuum theory, we should subtract the

symmetry-breaking relevant operators in advance. (fine-tuning)

Lattice models with no fine-tuning is practically best, (although a few operators

to be fine-tuned are perhaps acceptable).

• We consider the case that lattice actions Slat have “good symmetries” that

protect from generating symmetry-breaking radiative corrections.

→ fine-tuning free

• For some (lower-dimensional) gauge theories with extended SUSY,

“nilpotent” SUSY (not generating translations) can play a role of the “good

symmetries”. [Kaplan et al, Catterall, F. S.]

Typical examples)

– 2d N = (2, 2), (4, 4), (8, 8) SYM

– 2d N = (2, 2) SQCD, gauged linear sigma models
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♦ Although such lattice theories have only the “nilpotent” part of SUSY, they

restore the full SUSY in the continuum limit.

• It is analytically shown for all orders in perturbation theory.

• Nonperturbative check by computer simulation for 2d N = (2, 2) SYM

with G = SU(2), SU(3), SU(4), SU(5).

[Kanamori-Suzuki, Hanada-Kanamori]

However, this approach seems not so good to obtain 4d SUSY gauge theories

from the lattice.
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♦ Here, I will explain a method to construct 4d N = 4 SYM with no

fine-tuning:

1. a lattice formulation for 2d N = (8, 8) U(N) SYM by plane-wave like

mass deformation in Sections 2, 3.

2. a procedure to obtain 4d N = 4 U(k) SYM from fuzzy S2 background of

the 2d theory in Sections 4, 5. (k: arbitrary)

c.f.) Maldacena, Sheikh-Jabbari, van Raamsdonk

Fuzzy S2 background in BMN Matrix Model (1d) ⇒ 3d N = 8 SYM

c.f.) Ishii, Ishiki, Shimasaki, Tsuchiya

BMN Matrix Model (1d) ⇒ 4d planar (k = ∞) N = 4 SYM on R × S3
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2 Mass-deformed 2d N = (8, 8) SYM

2d N = (8, 8) SYM ⇒ BTFT form [Dijkgraaf-Moore, Blau-Thompson,...]

Aµ ⇒ Aµ

XI (I = 3, · · · , 10) ⇒





Xi (i = 3, 4)

BA (A = 1, 2, 3)

C = 2X8, φ± = X9 ± iX10

Ψ ⇒




ψ+µ, ρ+i, χ+A, η+

ψ−µ, ρ−i, χ−A, η−

We take appropriate two supercharges Q+, Q− to write the action of 2d

N = (8, 8) SYM in the Q+Q− exact form:

S0 = Q+Q−F0,

F0 =
1

g2
2d

∫
d2x tr


−iBAΦA − 1

3
εABCBA[BB, BC]

−ψ+µψ−µ − ρ+iρ−i − χ+Aχ−A − 1

4
η+η−



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with

Φ1 = 2(−D1X3 − D2X4),

Φ2 = 2(−D1X4 + D2X3),

Φ3 = 2(−F12 + i[X3, X4]).
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♦ Q± SUSY:

Q±Aµ = ψ±µ, · · ·
Q±Xi = ρ±i, · · ·
Q±BA = χ±A, · · ·
Q±C = η±, Q±η± = ±[φ±, C], Q∓η± = ∓[φ+, φ−],

Q±φ± = 0, Q∓φ± = ∓η±.

⇒ Nilpotency up to gauge transformations

Q2
+ = (infinitesimal gauge transformation by φ+),

Q2
− = (infinitesimal gauge transformation by −φ−),

{Q+, Q−} = (infinitesimal gauge transformation by C).

⇒ Since F0 is gauge invariant, S0 is manifestly invariant under Q+ and Q−
SUSYs.
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♦ SU(2)R symmetry (J0, J++, J−−) J0-charge

Doublets :




ψ+µ

ψ−µ


 ,




χ+A

χ−A


 ,




η+

−η−


 ,




Q+

Q−




1

−1

Triplet :




φ+

C

−φ−




2

0

−2

[J0, J±±] = ±2J±±, [J++, J−−] = J0.

F0 : SU(2)R-inv. ⇒ S0 : SU(2)R-inv.
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♦ Mass deformation of 2d N = (8, 8) SYM

• Mass deformed Q± SUSY by SU(2)R [Hanada-Matsuura-F.S.]

Q±Aµ = ψ±µ, · · ·
Q±Xi = ρ±i, · · ·
Q±BA = χ±A, · · ·
Q±C = η±, Q±η± = ±[φ±, C]+

2M

3
φ±,

Q∓η± = ∓[φ+, φ−]±M

3
C, Q±φ± = 0, Q∓φ± = ∓η±.

⇒ Nilpotency up to gauge and SU(2)R transformations

Q2
+ = (infinitesimal gauge transformation by φ+)+

M

3
J++,

Q2
− = (infinitesimal gauge transformation by −φ−)−M

3
J−−,

{Q+, Q−} = (infinitesimal gauge transformation by C)−M

3
J0.
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⇒ Mass deformed action

SM =


Q+Q−−M

3


 FM ,

FM = F0 + ∆F ,

∆F =
1

g2
2d

∫
d2x tr




3∑

A=1

aA

2
B2

A +
4∑

i=3

ci

2
X2

i


.

Note

• SM is Q±-invariant: Q+SM = Q−SM = 0, and SU(2)R-invariant.

↑
[J±±, Q±] = 0, [J±±, Q∓] = Q±

• When aA, ci ∈
(
−2M

3
, 0

)
, scalars BA, Xi have positive mass terms.

For convenience, we take a1 = a2 = a3 = −2M
9

, c3 = c4 = −4M
9

.
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• Explicit form of the action

SM = S0 + ∆S,

where

∆S =
1

g2
2d

∫
d2x tr



2M2

81

(
B2

A + X2
i

)
+

M2

9



C2

4
+ φ+φ−




−M

2
C[φ+, φ−]

+
2M

3
ψ+µψ−µ +

2M

9
ρ+iρ−i +

4M

9
χ+Aχ−A − M

6
η+η−

−4iM

9
B3 (F12 + i[X3, X4])


 .

Flat directions are stabilized by the mass M .
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• Fuzzy S2 configurations satisfying

[φ+, φ−] =
M

3
C, [C, φ±] = ±2M

3
φ±,

BA = Xi = 0

give Q±-SUSY preserving minima (SM = 0).
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3 Lattice formulation of mass-deformed 2d N = (8, 8) SYM

Key aspects: [Hanada-Matsuura-F.S.]

• Lattice gauge fields are on links: Aµ(x) ⇒ Uµ(x) = eiaAµ(x)

All the other fields are on sites.

Q±Aµ = ψ±µ, · · · ⇒ Q±Uµ(x) = iψ±µ(x)Uµ(x), · · ·
“Nilpotent” mass-deformed Q± SUSY are realized on lattice.

• Gauge configurations are smoothly restricted those satisfying the

admissibility condition ||1 − U12(x)|| < ε by

F12 ⇒ i(U12(x) − U21(x))

1 − ε−2||1 − U12(x)||2
with ||A|| =

√
tr(AA†), 0 < ε < 2 for G = U(N).

– The admissibility condition is necessary to kill unphysical flux vacua.

– Minimizing the action singles out the gauge configuration U12(x) = 1.
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• Same as in the continuum theory, flat directions are stabilized,

and fuzzy S2 configurations give Q±-SUSY preserving minima.

• The lattice theory is shown to be free from fine-tuning (at least to the all

order in the perturbation theory).

• After taking the continuum limit, M → 0 limit yields the undeformed

theory (⇒ DVV matrix string theory).
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4 4d N = 4 SYM from 2d lattice [Hanada-Matsuura-F.S.]

Consider the lattice theory around the minimum of k-coincident fuzzy S2:

C =
2M0

3
L3, φ± =

M0

3
(L1 ± iL2)

with La = L(n)
a ⊗ 11k and N = nk.

↑
SU(2)-generators of spin-j irre. repre. (n = 2j + 1)

First, we take continuum limit of the 2d lattice

⇒ Mass-deformed N = 4 U(k) SYM on R2 × (Fuzzy S2)

• 16 SUSYs broken to Q± by M

• Fuzzy S2: radius R = 3
M

,

fuzziness Θ = 18
M2n

⇒ UV cutoff Λ = M
3

· 2j

• g2
4d = 2πΘg2

2d
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Next, we take the two limits:

• Step 1:

Decompactify fuzzy S2 to the Moyal plane R2
Θ

M → 0 and n = 2j + 1 → ∞ with Θ and k fixed

⇒ Λ ∝ n1/2 → ∞ (“continuum limit”)

We expect that M is soft.

⇒The theory becomes N = 4 U(k) SYM on R2 × R2
Θ with 16 SUSYs

restored.

• Step 2:

Commutative limit Θ → 0 with g4d fixed

The limit is considered to be smooth. [Matusis-Susskind-Toumbas]

Finally, we obtain 4d N = 4 U(k) SYM on R4. k: general

In particular, 4d rotational symmetry is restored.
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5 1-loop check of the procedure [Hanada-Matsuura-F.S.-Suzuki]

As a concrete check of the procedure, we carry out 1-loop computation of

N = 4 U(k) SYM on R2 × (Fuzzy S2) and take the limits of Steps 1 and 2.

♦ The final expression of the kinetic terms of Xi (i = 3, 4) and BA

(A = 1, 2) is consistent to the standard 1-loop result of N = 4 SYM on R4:

• The overall U(1) part receives no radiative correction (free).

• The SU(k) part: (q is a 4-momentum, q2 = q2
1 + q2

2 + (M
3

J)2.)

1

g2
4d

∫ d4q

(2π)4
trk

[
x̃

SU(k) (R)
i (−q)x̃

SU(k) (R)
i (q)

]

×q2


1 +

g2
4dk

4π2




−1

2
ln

q2

µ2
R

+ 1




+ O(g4

4d)


 + (same form for b̃A)

after the wave function renormalization (µR: renormalization point)

x̃
SU(k) (R)
i (q) ≡


1 +

g2
4dk

4π2
ln

Λ

µR




1/2

x̃
SU(k)
i (q), · · ·
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– 4d rotational symmetry is restored!

– Singular behavior due to UV/IR mixing does not survive in the limits.

⇒ The procedure seems to work well.
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6 Discussions

♦ We presented a lattice formulation of mass-deformed 2d N = (8, 8)

U(N) SYM preserving two supercharges Q±,

and discussed a procedure to obtain 4d N = 4 U(k) SYM from the 2d theory.

♦ We can construct a similar mass-deformed lattice model for 2d N = (4, 4)

U(N) SYM. [Hanada-Matsuura-F.S.]

• Mass-deformed 2d continuum theory preserves full 8 SUSYs

• 4d N = 2 U(k) SYM on R2× NC R2 is obtained.

♦ Coupled to matter fields, N = 1∗, 2∗ models.

In particular, 4d N = 2 superconformal theories would be interesting.
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