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Plan

• Dimers on the bipartite graphs on a torus, Poisson quivers;

• Wiring diagrams, (co-extended) affine Weyl groups and

loop groups;

• Integrable systems, Lax maps and spectral curves (Toda

type, more?);

• Mutations and discrete flows, Teichmüller space geometry,

SUSY gauge theories.



Dimers on a bipartite graph Γ on a torus, example: 3× 2

square lattice

16 possible dimer configurations D ∈ DΓ: a maximal set of

marked edges (with certain weights ae, e ∈ D) without com-

mon vertices.



Bipartite: white and black vertices, oriented edges;

∂D =
∑

all V• −
∑

all V◦, ∀D ∈ DΓ.



Face variables: dual graph Γ∨ (red): a Poisson quiver for the
face variables zf =

∏
e	f ae,

{zi, zj} = εijzizj, εij = #arrows(i→ j)
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E.g. here for the face variables (x0x1x2y0y1y2 = 1, blue y’s and
green x’s) one gets {xi, xj} = {yi, yj} = 0 and {yi, xj} = Ĉijyixj,
with the Cartan matrix Ĉ of g = ŝl3.



Dimers and faces: fix any D0 ∈ DΓ, and get a set of

loops, corresponding to D−D0. Since ∂(D−D0) = 0, one has

D = D0 +D1 +D2, D1 ∈ H1, D2 = ∂F (1)



Assign to each loop D −D0 factor λnµk with (n, k) ∈ H1 and

the (oriented) product of all from F face variables, examples:
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Face partition function:

• sum up SΓ(λ, µ|x,y) =
∑

(n,k)∈H1 λnµkSn,k(x,y);

• equation SΓ(λ, µ|x,y) = 0 defines a spectral curve in (λ, µ) ∈
C× × C×, modulo rescaling of λ and µ (choice a represen-

tative in H1) and total normalisation (choice of D0);

• Goncharov-Kenyon integrable system for any bipartite graph

on a torus: invariant ratios of {Sn,k(x,y)} commute w.r.t.

dual Poisson quiver Γ∨.



3× 2 example: the sum is

S(λ, µ|x,y) = 1+
λ

µ
x1x2y2 + λµ2

1

x2y1y2
+ λ2µx1y2y0+

+λ

(
1+ x1 + x1y2 +

1

y1
+ x1x2y2y0 + x1x2y2

)
+

+λµ

(
1+ x1 +

1

x2y1y2
+

1

y1
+ x1y0 +

1

x2y1

) (2)

λ

µ



Casimir ({C, x} = {C, y} = 0) - from boundary points

S1,2S1,−1
S2,1S0,0

=
1

y1y2y0
= x1x2x0 = C (3)

and integrals of motion ({H1,H2} = 0) - internal points

H1 =
S1,0

(S2,1S1,−1S0,0)1/3C1/3

=
1+ y1 + y1x1 + y1x1y2 + y1x1y2x2 + C−1x1x2

(x1y1)2/3(x2y2)1/3
(4)

H2 =
S1,1

(S2,1S1,2S0,0)1/3C1/3

=
1+ y2 + y2x2 + y2x2y1 + y2x2y1x1 + C−1x1x2

(x1y1)1/3(x2y2)2/3
(5)

Why do they Poisson commute?



Wiring diagrams: start with

• A Newton polygon (in (λ, µ)-plane H1) modulo total shift
and action of SL(2,Z);

• get an element of the co-extended double affine Weyl
group (Ŵ × Ŵ )♯, or a (double) wiring diagram on (cut)
torus: examples of the elements of W ⊂ Ŵ ⊂ Ŵ ♯;

s1 ∈ W s2s1s2s0 ∈ Ŵ Λ ∈ Ŵ ♯



Example: from Newton polygon to the (double) wiring dia-

gram in the “fundamental domain”

crossing of the red and blue lines - the elements of (Ŵ × Ŵ )♯.



Resolution of the previous wiring diagram
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gives the element (word) u = s1s1̄s2s2̄s0s0̄ ∈ (Ŵ × Ŵ )♯.

Arising of the co-extended affine Weyl group → Poisson struc-

ture on the co-extended loop group Ĝ♯.



Poisson submanifolds in Ĝ♯:

• Definition of Ĝ♯ (for ̂PGL(N)
♯
): infinite quasiperiodic ma-

trices AJ+N
I+N = zAJ

I , z ∈ C×

AJ
I 7→

∑
K∈Z

AJ+KN
I λKTz = A(λ)Tz, Tz = z∂/∂λ

A1(λ)Tz1 ·A2(λ)Tz2 = A1(λ)A2(z1λ)Tz1z2

(6)

or N×N spectral parameter dependent shift operators (the
Cartan subalgebra is extended by h0 = ∂/∂λ;

• Co-extended Weyl group Ŵ ♯ = Ŵ o Z/NZ: {si|i ∈ Z/NZ},
s2i = 1, sisi+1si = si+1sisi+1 and additional generator Λ

Λsi = si+1Λ, ΛN = 1 (7)



Poisson submanifolds in Ĝ (via the co-extension Ĝ♯): for any
cyclically reduced u = sj1 . . . sjl, sj ∈ (Ŵ×Ŵ )♯ - the “Lax map”

z1, . . . , zl 7→ Ej1Hj1(z1) · · ·EjlHjl(zl)

Ei = Ei = exp(ei), Eī = Etr
i = exp(fi)

Hi(z) = Hi(z)Tz, i ̸= 0

(8)

where Hi(z) = zh
i
, [hi, ej] = [hi, fj] = 0 for i ̸= j, with extra

H0(z) = Tz, E0 =


1 · · · 0
... . . . ...

λ · · · 1

 , E0̄ =


1 · · · λ−1

... . . . ...

0 · · · 1


(9)

and the final projection Ĝ♯ → Ĝ∏
j

zj = 1,
∏
j

Tzj = T∏
j zj

= Id (10)



Two promised explanations of the Poisson-commutativity:

• wiring diagram → bipartite graph Γ → face dimer partition
function Ĝ → integrable system (“Teichmüller formula-
tion”);

• wiring diagram → element u ∈ (Ŵ × Ŵ )♯ → Poisson Γ∨-
submanifold in Ĝ → “Lax map” → spectral curve → inte-
grable system. Non-unique choice for the Weyl group Ŵ ,
loop group Ĝ and Lax map (dependently on cutting the
torus), but always with the same Γ∨;

• the second way allows to consider the “degenerate” New-
ton polygons: the boundary points give rise to the inte-
grals of motion instead of the Casimir functions by self-
intersection of the wires.



Example with degenerate polygons:

λλ

µ

λ

µµ

Integer points on the boundary become nontrivial integrals of

motion after self-twisting the corresponding wires!



Back to the old example: consider maximal self-twisting of
the totally degenerate polygon

s

2

1

s

• can be closed, using just Λ ∈ Ŵ ♯ as on left picture - a
“torus knot”;

• can be closed with N − 1 self-intersections, all by the ele-
ments si ∈ W ⊂ Ŵ ⊂ Ŵ ♯, and corresponds to the Poisson
submanifold in a simple Lie group G ⊂ Ĝ♯.



The corresponding Poisson quiver

Γ∨ = y1
x1 ⇓

←
→⇑

x2 →
y2 ← ⇓

y3 ←
x3 → . . .→← ⇓

yN−1
xN−1

induces the Poisson bracket on symplectic leaf in G = SL(N):

{x, x} = 0, {y, y} = 0, and

{yi, xj} = Cijyixj,

Cij = 2δij − δi+1,j − δi,j+1, i, j = 1, . . . , N − 1
(11)

with the slN-Cartan matrix. The Lax map for the product

u = s1s1̄ . . . sN−1sN−1 ∈W ×W

N−1∏
j=1

EjHj(xj)Ej̄Hj(yj) ∼ gN(x,y) ∈ SL(N) (12)



gives integrals of motion {Hi,Hj} = 0 via degenerate spectral

curve equation

det (gN(x,y) + µ · 1) =
N∑

j=0

Hj(x,y)µ
j (13)

Well-known integrable model: in Darboux co-ordinates

xi = exp(−αi · q), yi = exp(αi · (P + q))

P = p+
∂

∂q

1
2

N−1∑
k=1

Li2 (− exp(αk · q))

 (14)

so that

H = H1 +HN−1 =

=
N∑

i=1

(
epi + e−pi

)√
1+ eqi−qi+1

√
1+ eqi−1−qi

(15)



Some achievements of this approach:

(A) New explicit formulas for Hj =
∏
k (xkyk)

−C−1jk · Sj and

Laurent polynomials

Sj(x,y) =

mj≥mj±1≥mj±2≥...∑
0≤mi≤ϵi

∑
mi−1≤ni≤mi

∏
i

y
mi
i x

ni
i (16)

with ϵi = 1,2 (number of edges entering the i-th vertex of the

Dynkin diagram) are related to face dimer partition functions.

Examples: Toda, pentagram map, more?

Computation of dimer partition functions via the Lax maps!



(B) Poisson quiver Γ∨ defines a structure of a cluster vari-

ety on the phase space of integrable system. The discrete

flows (bilinear Hirota equations) are generated by the cluster

mutations (the simplest Y -systems).
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Diamond move - mutation (for the graph Γ).



(C) Back to geometry: Γ ⊂ Σ0 = torus induces (e.g. from

flat connections) a bracket {aγ1, aγ2}0 = ⟨γ1, γ2⟩0aγ1aγ2, where

⟨γ1, γ2⟩0 - intersection in H1(Σ0).

Γ ↪→ Σ0 by gluing the faces by discs; dual (Goncharov-Kenyon)

Σ: Γ ↪→ Σ by gluing discs along the zig-zag paths on Γ.

The dual bracket {aγ1, aγ2} = ⟨γ1, γ2⟩aγ1aγ2 is given by the

Poisson quiver Γ∨.
Σ topologically coincides with the spectral curve of integrable

system, and

⟨γ1, γ2⟩0 ↔
dλ

λ
∧

dµ

µ
(17)

i.e. the Seiberg-Witten form, while ⟨γ1, γ2⟩ - the BPS charge

pairing (intersection form in H1(Σ)).

Towards understanding of the wall-crossing formula!



THANK YOU!


