# Dimers, wiring diagrams and integrable systems 

Andrei Marshakov<br>Lebedev Institute \& ITEP, Moscow

Progress in quantum field theory and string theory
Osaka, April 6, 2012
Based on joint work with V. Fock

## Plan

- Dimers on the bipartite graphs on a torus, Poisson quivers;
- Wiring diagrams, (co-extended) affine Weyl groups and loop groups;
- Integrable systems, Lax maps and spectral curves (Toda type, more?);
- Mutations and discrete flows, Teichmüller space geometry, SUSY gauge theories.

Dimers on a bipartite graph 「 on a torus, example: $3 \times 2$ square lattice


16 possible dimer configurations $D \in \mathcal{D}_{\Gamma}$ : a maximal set of marked edges (with certain weights $a_{e}, e \in D$ ) without common vertices.


Bipartite: white and black vertices, oriented edges; $\partial D=\sum_{\mathrm{all}} V_{\bullet}-\sum_{\mathrm{all}} V_{\circ}, \forall D \in \mathcal{D}_{\Gamma}$.

Face variables: dual graph $\Gamma^{\vee}$ (red): a Poisson quiver for the face variables $z_{f}=\prod_{e \circlearrowleft f} a_{e}$, $\left\{z_{i}, z_{j}\right\}=\varepsilon_{i j} z_{i} z_{j}, \varepsilon_{i j}=\# \operatorname{arrows}(i \rightarrow j)$

E.g. here for the face variables ( $x_{0} x_{1} x_{2} y_{0} y_{1} y_{2}=1$, blue $y$ 's and green $x$ 's) one gets $\left\{x_{i}, x_{j}\right\}=\left\{y_{i}, y_{j}\right\}=0$ and $\left\{y_{i}, x_{j}\right\}=\widehat{C}_{i j} y_{i} x_{j}$, with the Cartan matrix $\widehat{C}$ of $\mathfrak{g}=s l_{3}$.

Dimers and faces: fix any $D_{0} \in \mathcal{D}_{\Gamma}$, and get a set of

loops, corresponding to $D-D_{0}$. Since $\partial\left(D-D_{0}\right)=0$, one has

$$
\begin{equation*}
D=D_{0}+D_{1}+D_{2}, \quad D_{1} \in H^{1}, \quad D_{2}=\partial F \tag{1}
\end{equation*}
$$

Assign to each loop $D-D_{0}$ factor $\lambda^{n} \mu^{k}$ with $(n, k) \in H^{1}$ and the (oriented) product of all from $F$ face variables, examples:


## Face partition function:

- sum up $S_{\Gamma}(\lambda, \mu \mid \mathbf{x}, \mathbf{y})=\sum_{(n, k) \in H^{1}} \lambda^{n} \mu^{k} S_{n, k}(\mathbf{x}, \mathbf{y})$;
- equation $S_{\Gamma}(\lambda, \mu \mid \mathbf{x}, \mathbf{y})=0$ defines a spectral curve in $(\lambda, \mu) \in$ $\mathbb{C}^{\times} \times \mathbb{C}^{\times}$, modulo rescaling of $\lambda$ and $\mu$ (choice a representative in $H^{1}$ ) and total normalisation (choice of $D_{0}$ );
- Goncharov-Kenyon integrable system for any bipartite graph on a torus: invariant ratios of $\left\{S_{n, k}(\mathbf{x}, \mathrm{y})\right\}$ commute w.r.t. dual Poisson quiver $\Gamma^{\vee}$.
$3 \times 2$ example: the sum is

$$
\begin{align*}
& S(\lambda, \mu \mid \mathbf{x}, \mathbf{y})=1+\frac{\lambda}{\mu} x_{1} x_{2} y_{2}+\lambda \mu^{2} \frac{1}{x_{2} y_{1} y_{2}}+\lambda^{2} \mu x_{1} y_{2} y_{0}+ \\
& +\lambda\left(1+x_{1}+x_{1} y_{2}+\frac{1}{y_{1}}+x_{1} x_{2} y_{2} y_{0}+x_{1} x_{2} y_{2}\right)+  \tag{2}\\
& \quad+\lambda \mu\left(1+x_{1}+\frac{1}{x_{2} y_{1} y_{2}}+\frac{1}{y_{1}}+x_{1} y_{0}+\frac{1}{x_{2} y_{1}}\right)
\end{align*}
$$



Casimir $(\{\mathcal{C}, x\}=\{\mathcal{C}, y\}=0)$ - from boundary points

$$
\begin{equation*}
\frac{S_{1,2} S_{1,-1}}{S_{2,1} S_{0,0}}=\frac{1}{y_{1} y_{2} y_{0}}=x_{1} x_{2} x_{0}=\mathcal{C} \tag{3}
\end{equation*}
$$

and integrals of motion $\left(\left\{\mathcal{H}_{1}, \mathcal{H}_{2}\right\}=0\right)$ - internal points

$$
\begin{align*}
\mathcal{H}_{1}= & \frac{S_{1,0}}{\left(S_{2,1} S_{1,-1} S_{0,0}\right)^{1 / 3} \mathcal{C}^{1 / 3}} \\
& =\frac{1+y_{1}+y_{1} x_{1}+y_{1} x_{1} y_{2}+y_{1} x_{1} y_{2} x_{2}+\mathcal{C}^{-1} x_{1} x_{2}}{\left(x_{1} y_{1}\right)^{2 / 3}\left(x_{2} y_{2}\right)^{1 / 3}}  \tag{4}\\
\mathcal{H}_{2}= & \frac{S_{1,1}}{\left(S_{2,1} S_{1,2} S_{0,0}\right)^{1 / 3} \mathcal{C}^{1 / 3}} \\
& =\frac{1+y_{2}+y_{2} x_{2}+y_{2} x_{2} y_{1}+y_{2} x_{2} y_{1} x_{1}+\mathcal{C}^{-1} x_{1} x_{2}}{\left(x_{1} y_{1}\right)^{1 / 3}\left(x_{2} y_{2}\right)^{2 / 3}} \tag{5}
\end{align*}
$$

Why do they Poisson commute?

## Wiring diagrams: start with

- A Newton polygon (in $(\lambda, \mu)$-plane $H_{1}$ ) modulo total shift and action of $S L(2, \mathbb{Z})$;
- get an element of the co-extended double affine Weyl group $(\widehat{W} \times \widehat{W})^{\sharp}$, or a (double) wiring diagram on (cut) torus: examples of the elements of $W \subset \widehat{W} \subset \widehat{W}^{\sharp}$;

$s_{1} \in W$

$s_{2} s_{1} s_{2} s_{0} \in \widehat{W}$

$\Lambda \in \widehat{W}^{\sharp}$

Example: from Newton polygon to the (double) wiring diagram in the "fundamental domain"


crossing of the red and blue lines - the elements of $(\hat{W} \times \hat{W})^{\sharp}$.

Resolution of the previous wiring diagram

gives the element (word) $u=s_{1} s_{\overline{1}} s_{2} s_{\overline{2}} s_{0} s_{\overline{0}} \in(\hat{W} \times \hat{W})^{\sharp}$.

Arising of the co-extended affine Weyl group $\rightarrow$ Poisson structure on the co-extended loop group $\widehat{G}^{\sharp}$.

## Poisson submanifolds in $\widehat{G}^{\sharp}$ :

- Definition of $\widehat{G}^{\sharp}$ (for $P \widehat{G L(N)}{ }^{\sharp}$ ): infinite quasiperiodic matrices $A_{I+N}^{J+N}=z A_{I}^{J}, z \in \mathbb{C}^{\times}$

$$
\begin{gather*}
A_{I}^{J} \mapsto \sum_{K \in \mathbb{Z}} A_{I}^{J+K N} \lambda^{K} T_{z}=A(\lambda) T_{z}, \quad T_{z}=z^{\partial / \partial \lambda}  \tag{6}\\
A_{1}(\lambda) T_{z_{1}} \cdot A_{2}(\lambda) T_{z_{2}}=A_{1}(\lambda) A_{2}\left(z_{1} \lambda\right) T_{z_{1} z_{2}}
\end{gather*}
$$

or $N \times N$ spectral parameter dependent shift operators (the Cartan subalgebra is extended by $h^{0}=\partial / \partial \lambda$;

- Co-extended Weyl group $\hat{W}^{\sharp}=\widehat{W} \rtimes \mathbb{Z} / N \mathbb{Z}:\left\{s_{i} \mid i \in \mathbb{Z} / N \mathbb{Z}\right\}$, $s_{i}^{2}=1, s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$ and additional generator $\wedge$

$$
\begin{equation*}
\wedge s_{i}=s_{i+1} \wedge, \quad \wedge^{N}=1 \tag{7}
\end{equation*}
$$

Poisson submanifolds in $\widehat{G}$ (via the co-extension $\widehat{G}^{\sharp}$ ): for any cyclically reduced $u=s_{j_{1}} \ldots s_{j_{l}}, s_{j} \in(\hat{W} \times \hat{W})^{\sharp}$ - the "Lax map"

$$
\begin{gather*}
z_{1}, \ldots, z_{l} \mapsto \mathbf{E}_{j_{1}} \mathbf{H}_{j_{1}}\left(z_{1}\right) \cdots \mathbf{E}_{j_{l}} \mathbf{H}_{j_{l}}\left(z_{l}\right) \\
\mathbf{E}_{i}=E_{i}=\exp \left(e_{i}\right), \quad \mathbf{E}_{\bar{i}}=E_{i}^{\operatorname{tr}}=\exp \left(f_{i}\right)  \tag{8}\\
\mathbf{H}_{i}(z)=H_{i}(z) T_{z}, \quad i \neq 0
\end{gather*}
$$

where $H_{i}(z)=z^{h^{i}},\left[h^{i}, e_{j}\right]=\left[h^{i}, f_{j}\right]=0$ for $i \neq j$, with extra

$$
\mathbf{H}_{0}(z)=T_{z}, \quad \mathbf{E}_{0}=\left(\begin{array}{ccc}
1 & \cdots & 0  \tag{9}\\
\vdots & \ddots & \vdots \\
\lambda & \cdots & 1
\end{array}\right), \quad \mathbf{E}_{\overline{0}}=\left(\begin{array}{ccc}
1 & \cdots & \lambda^{-1} \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1
\end{array}\right)
$$

and the final projection $\widehat{G}^{\sharp} \rightarrow \widehat{G}$

$$
\begin{equation*}
\prod_{j} z_{j}=1, \quad \prod_{j} T_{z_{j}}=T_{\prod_{j} z_{j}}=\mathrm{Id} \tag{10}
\end{equation*}
$$

Two promised explanations of the Poisson-commutativity:

- wiring diagram $\rightarrow$ bipartite graph $\Gamma \rightarrow$ face dimer partition function $\widehat{G} \rightarrow$ integrable system ("Teichmüller formulation");
- wiring diagram $\rightarrow$ element $u \in(\widehat{W} \times \widehat{W})^{\sharp} \rightarrow$ Poisson $\Gamma^{\vee}$ submanifold in $\widehat{G} \rightarrow$ "Lax map" $\rightarrow$ spectral curve $\rightarrow$ integrable system. Non-unique choice for the Weyl group $\widehat{W}$, loop group $\widehat{G}$ and Lax map (dependently on cutting the torus), but always with the same $\Gamma \vee$;
- the second way allows to consider the "degenerate" Newton polygons: the boundary points give rise to the integrals of motion instead of the Casimir functions by selfintersection of the wires.

Example with degenerate polygons:


Integer points on the boundary become nontrivial integrals of motion after self-twisting the corresponding wires!

Back to the old example: consider maximal self-twisting of the totally degenerate polygon


- can be closed, using just $\Lambda \in \widehat{W}^{\sharp}$ as on left picture - a "torus knot";
- can be closed with $N-1$ self-intersections, all by the elements $s_{i} \in W \subset \widehat{W} \subset \widehat{W}^{\sharp}$, and corresponds to the Poisson submanifold in a simple Lie group $G \subset \widehat{G}^{\sharp}$.

The corresponding Poisson quiver

$$
\Gamma^{\vee}={ }_{x_{1}}^{y_{1}} \Downarrow \stackrel{\leftarrow}{\rightarrow}{ }_{y_{2}}^{x_{2}} \rightleftarrows \Downarrow_{x_{3}}^{y_{3}} \leftrightarrows \ldots \vec{\rightarrow} \ldots \Downarrow_{x_{N-1}}^{y_{N-1}}
$$

induces the Poisson bracket on symplectic leaf in $G=S L(N)$ : $\{x, x\}=0,\{y, y\}=0$, and

$$
\begin{gather*}
\left\{y_{i}, x_{j}\right\}=C_{i j} y_{i} x_{j}  \tag{11}\\
C_{i j}=2 \delta_{i j}-\delta_{i+1, j}-\delta_{i, j+1}, \quad i, j=1, \ldots, N-1
\end{gather*}
$$

with the $s l_{N}$-Cartan matrix. The Lax map for the product $u=s_{1} s_{\overline{1}} \ldots s_{N-1} s_{\overline{N-1}} \in W \times W$

$$
\prod_{j=1}^{N-1} E_{j} H_{j}\left(x_{j}\right) E_{\bar{j}} H_{j}\left(y_{j}\right) \sim g_{N}(\mathbf{x}, \mathbf{y}) \in S L(N)
$$

gives integrals of motion $\left\{\mathcal{H}_{i}, \mathcal{H}_{j}\right\}=0$ via degenerate spectral curve equation

$$
\begin{equation*}
\operatorname{det}\left(g_{N}(\mathbf{x}, \mathbf{y})+\mu \cdot \mathbf{1}\right)=\sum_{j=0}^{N} \mathcal{H}_{j}(\mathbf{x}, \mathbf{y}) \mu^{j} \tag{13}
\end{equation*}
$$

Well-known integrable model: in Darboux co-ordinates

$$
\begin{gather*}
x_{i}=\exp \left(-\alpha_{i} \cdot q\right), \quad y_{i}=\exp \left(\alpha_{i} \cdot(P+q)\right) \\
P=p+\frac{\partial}{\partial q}\left(\frac{1}{2} \sum_{k=1}^{N-1} \operatorname{Li}_{2}\left(-\exp \left(\alpha_{k} \cdot q\right)\right)\right) \tag{14}
\end{gather*}
$$

so that

$$
\begin{gather*}
\mathcal{H}=\mathcal{H}_{1}+\mathcal{H}_{N-1}= \\
=\sum_{i=1}^{N}\left(e^{p_{i}}+e^{-p_{i}}\right) \sqrt{1+e^{q_{i}-q_{i+1}}} \sqrt{1+e^{q_{i-1}-q_{i}}} \tag{15}
\end{gather*}
$$

Some achievements of this approach:
(A) New explicit formulas for $\mathcal{H}_{j}=\Pi_{k}\left(x_{k} y_{k}\right)^{-C_{j k}^{-1}} \cdot S_{j}$ and Laurent polynomials

$$
\begin{equation*}
S_{j}(\mathbf{x}, \mathbf{y})=\sum_{0 \leq m_{i} \leq \epsilon_{i}}^{m_{j} \geq m_{j \pm 1} \geq m_{j \pm 2} \geq \ldots} \sum_{m_{i}-1 \leq n_{i} \leq m_{i}} \prod_{i} y_{i}^{m_{i}} x_{i}^{n_{i}} \tag{16}
\end{equation*}
$$

with $\epsilon_{i}=1,2$ (number of edges entering the $i$-th vertex of the Dynkin diagram) are related to face dimer partition functions. Examples: Toda, pentagram map, more?

Computation of dimer partition functions via the Lax maps!
(B) Poisson quiver $\Gamma^{\vee}$ defines a structure of a cluster variety on the phase space of integrable system. The discrete flows (bilinear Hirota equations) are generated by the cluster mutations (the simplest $Y$-systems).


Diamond move - mutation (for the graph $\Gamma$ ).
(C) Back to geometry: $\Gamma \subset \Sigma_{0}=$ torus induces (e.g. from flat connections) a bracket $\left\{a_{\gamma_{1}}, a_{\gamma_{2}}\right\}_{0}=\left\langle\gamma_{1}, \gamma_{2}\right\rangle_{0} a_{\gamma_{1}} a_{\gamma_{2}}$, where $\left\langle\gamma_{1}, \gamma_{2}\right\rangle_{0}$ - intersection in $H^{1}\left(\Sigma_{0}\right)$.
$\Gamma \hookrightarrow \Sigma_{0}$ by gluing the faces by discs; dual (Goncharov-Kenyon) $\Sigma: \Gamma \hookrightarrow \Sigma$ by gluing discs along the zig-zag paths on $\Gamma$. The dual bracket $\left\{a_{\gamma_{1}}, a_{\gamma_{2}}\right\}=\left\langle\gamma_{1}, \gamma_{2}\right\rangle a_{\gamma_{1}} a_{\gamma_{2}}$ is given by the Poisson quiver $\Gamma^{\vee}$.
$\Sigma$ topologically coincides with the spectral curve of integrable system, and

$$
\begin{equation*}
\left\langle\gamma_{1}, \gamma_{2}\right\rangle_{0} \leftrightarrow \frac{d \lambda}{\lambda} \wedge \frac{d \mu}{\mu} \tag{17}
\end{equation*}
$$

i.e. the Seiberg-Witten form, while $\left\langle\gamma_{1}, \gamma_{2}\right\rangle$ - the BPS charge pairing (intersection form in $H^{1}(\Sigma)$ ).

Towards understanding of the wall-crossing formula!

## THANK YOU!

