From AGT to knots

A.Morozov ${ }^{2}$

ITEP, Moscow

April 6, 2012

[^0]ITEP

savelTEP.org

THANKS for your support

Motivation for the study of "knots"

From AGT to knots

Knots can well be the next hot topic in mathematical physics

Why?

Interesting

What is most exciting?

There are formulas

Many formulas

Complicated formulas

Mysterious formulas

Strongly interrelated formulas

Intimately related to all what we studied before:

matrix models, integrable systems, topological theories, CFT,

SW theory, LMNS and Nekrasov fns, AGT relations

Related to most different parts of each story:
Unitary rather than Hermitian matrix models, Almost no integral formulas [but: CS models], only AMM/EO topological recursion [R.Dijkgraaf \& H.Fuji]

Deviation from ordinary integrability:
OV pf $\sum_{R} H_{R} \chi_{R}\left\{\bar{p}_{k}\right\}$ never ordinary τ-functions, $\sum_{R} \mathcal{H}_{R}\left\{p_{k}\right\} \chi_{R}\left\{\bar{p}_{k}\right\}$ are, but only sometime
quantum R-matrices and non-trivial reps of Hecke algebras
BPS spectrum, integrality, wall crossing phenomena modular transformations

Universality classes are labeled by integrable systems

$\mathcal{N}=2$ SYM models $\quad \stackrel{\text { AGT }}{\longleftrightarrow}$
$\downarrow \quad$ dictionary [1995-97]
2d CFT conformalblocks
1d integrable systems $\stackrel{?}{\longleftrightarrow}$
DF/Penner matrix model
quantization of integrable systems Shroedinger-like equations (Fourier tr. of Baxter eqs.) insertions of degenerate states
SW description through BS integrals

$$
\begin{gathered}
\Psi(z)=\exp \int^{z} \Omega, \quad \Omega=P d z \\
\partial F / \partial a=\oint_{B} \Omega, \quad a=\oint_{A} \Omega \\
\text { NS limit } \epsilon_{1} \rightarrow 0, \beta \rightarrow \infty
\end{gathered}
$$

AGT relation

open problems reformulations interpretations proofs

- Dotsenko-Fateev matrix model
- Hubbard-Stratanovich duality
- Relation to integrable systems
- Bohr-Sommerfeld integrals

One particular subject:

Beautiful
Conceptually important
Based on achievements in Osaka

DF/Penner/Selberg matrix model

$$
\begin{gathered}
V_{\alpha_{2}}(q) \\
\left\langle e^{\alpha_{1} \phi(0)} e^{\alpha_{2} \phi(q)} e^{\alpha_{3} \phi(1)} e^{\alpha_{4} \phi(\infty)} \prod_{i=1}^{N_{1}} \int_{0}^{q} e^{b \phi\left(x_{i}\right)} \prod_{j=1}^{N_{2}} \int_{0}^{1} e^{b \phi\left(y_{j}\right)}\right\rangle \\
\alpha_{1}+\alpha_{2}+b N_{1}=\alpha \\
\alpha+\alpha_{3}+\alpha_{4}+b N_{2}=0 \\
=\int d x_{i_{i}} \int d y_{j}\left(x_{i}-x_{i^{\prime}}\right)^{2 \beta}\left(y_{j}-y_{j^{\prime}}\right)^{2 \beta} \underline{\left(x_{i}-y_{j}\right)^{2 \beta}\left(x_{i} y_{j}\right)^{2 \alpha_{1} b}\left(\left(q-x_{i}\right)\left(q-y_{j}\right)\right)^{2 \alpha_{2} b}\left(\left(1-x_{i}\right)\left(1-y_{j}\right)\right)^{2 \alpha_{3} b}} \\
=\int_{d \mu(x)} \int_{d \mu(y)}(\operatorname{Mixing} \operatorname{term}(x \mid y))^{2}
\end{gathered}
$$

AGT as Hubbard-Stratanovich duality [1012.3137]

$$
\begin{gathered}
\approx \int_{d \mu(x)} \int_{d \mu(y)} \exp \left(2 \beta \sum_{i, j} \log \left(1-x_{i} y_{j}\right)\right)= \\
=\int_{d \mu(x)} \int_{d \mu(y)} \exp \left(\underline{2} \beta \sum_{k} p_{k} \bar{p}_{k} / k\right) \\
=\int_{d \mu(x)} \int_{d \mu(y)}\left(\sum_{A} \chi_{A}(X) \chi_{A}(Y)\right)\left(\sum_{B} \chi_{B}(X) \chi_{B}(Y)\right) \\
=\sum_{A, B}\left(\int_{d \mu(x)} \chi_{A}(X) \chi_{B}(X)\right)\left(\int_{d \mu(y)} \chi_{A}(Y) \chi_{B}(Y)\right)
\end{gathered}
$$

$$
p_{k}=\operatorname{Tr} X^{k}, \quad \bar{p}_{k}=\operatorname{Tr} Y^{k} \quad[\text { H.Itoyama \& T.Oota 1003.2929] }
$$

$$
\exp \sum_{k} \frac{[\beta]_{q^{k}} p_{k} \bar{p}_{k}}{k}=\sum_{A} \frac{C_{A}}{C_{A^{\prime}}} M_{A}(X) M_{A}(Y)
$$

AGT as Hubbard-Stratanovich duality [1012.3137]

$$
\begin{aligned}
& \sum_{X, Y}\left(\sum_{A} \chi_{A}(X) \chi_{A}(Y)\right)\left(\sum_{B} \chi_{B}(X) \chi_{B}(Y)\right)= \\
&= \sum_{A, B}\left(\sum_{X} \chi_{A}(X) \chi_{B}(X)\right)\left(\sum_{Y} \chi_{A}(Y) \chi_{B}(Y)\right)
\end{aligned}
$$

Conformal block $=\sum_{A, B} N_{A, B}$

Decomposition problem for $\beta \neq 1$

$$
\int_{d \mu(X)} \chi_{A}(X) \chi_{B}(X) \int_{d \mu(Y)} \chi_{A}(Y) \chi_{B}(Y) \stackrel{?}{=} N_{A, B}
$$

TRUE for $\beta=1$
NOT so simple for $\beta \neq 1$

$$
\begin{gathered}
<\chi_{[1]} \chi_{\bullet}><\chi_{[1]} \chi_{\bullet}>+<\chi_{\bullet} \chi_{[1]}><\chi_{\bullet} \chi_{[1]}>= \\
=\frac{1}{(z-\epsilon)} \frac{1}{(z+\epsilon)}+\frac{1}{(z+\epsilon)} \frac{1}{(z-\epsilon)}= \\
=\frac{2}{z^{2}-\epsilon^{2}}=\frac{1}{z(z-\epsilon)}+\frac{1}{z(z+\epsilon)}=N_{[1], \bullet}+N_{\bullet,[1]}
\end{gathered}
$$

For $\epsilon \neq 0(\beta \neq 1)$ particular Nekrasov functions have extra poles (at $z=0$), not present in Kac determinant

Decomposition problem

Instead Nekrasov functions are nicely factorized, while Selberg correlators for $\beta \neq 1$ are not:

$$
\begin{gathered}
<\chi_{[3]} \chi_{\bullet}>_{B G W} \sim z^{2}-\left(5 \epsilon_{1}+8 \epsilon_{2}\right) z+6 \epsilon_{1}^{2}+23 \epsilon_{1} \epsilon_{2}+19 \epsilon_{2}^{2} \\
\stackrel{\epsilon_{2}=-\epsilon_{1}}{\longrightarrow} z^{2}+3 \epsilon_{1} z+2 \epsilon_{1}^{2}=\left(z+\epsilon_{1}\right)\left(z+2 \epsilon_{1}\right)
\end{gathered}
$$

Decomposition problem

Natural quantities, e.g. Selberg correlators
(involved into duality relations) are linear combinations of the nicely factorized functions (Nekrasov functions), which possess extra singularities

AGT: generalizations

more models (quivers, 5d)
Wall crossing
hidden properties:
action of chiral algebra on the moduli spaces
(modular transform and other ingredients of SW theory)
3d AGT

What takes the place of conformal block?

"knot polynomials"

Task

The knot polynomials should be studied and understood at least as well as as conformal blocks

Enormous amount of experimental material katlas.org

Almost no general formulas

Results

Formulas with free parameters,

 which characterize either knots or representations, for:- HOMFLY pols for generic 3, 4, (5)-strand knots in $R=[1]$
- Colored HOMFLY for generic 3-strand braids and knots in

$$
R=[2],[3],[4],[5]
$$

- Torus superpolynomials $\mathcal{B}=[m, n]$ in $R=[1]$

$$
\text { with } n(\bmod m)= \pm 1, \pm 2, \pm 3, \pm 4
$$

(up to $m=9,[9,13]$; the first unavailable is $[11,16]$)
Mysterious hidden tropical structure is revealed in HL expansions

- Superpolynomials for the figure-eight knot 4_{1} in all symmetric and antisymmetric representations $R=[p]$ and $R=\left[1^{p}\right]$

Main ideas

- Switch from knots to braids
- Introduce extended polynomials, depending on infinitely many time-variables
- Study families of braids
- Derive formulas, not only pictures
- Use matrix model techniques,
(Ward identities, integrability, character expansions, integral formulas)
- Search for universalities
- Search for relations

HOMFLY polynomial

$$
\left.{ }^{*} \mathcal{H}_{R}^{\mathcal{K}}(A \mid q)\right|_{A=q^{N}}=\left\langle\operatorname{Tr}_{R} P \exp \left(\oint_{\mathcal{K}} \mathcal{A}\right)\right\rangle_{C S}
$$

Alternative definitions:

- from skein relations
- from Khovanov-Rozhansky theory as Euler characteristic of the triple-graded complex

$$
\begin{aligned}
P(\mathbf{a}|\mathbf{q}| \mathbf{t}) & =\sum_{I, J, K} N_{I J K} \mathbf{a}^{I} \mathbf{q}^{J} \mathbf{t}^{K} \\
\mathcal{H}(A \mid q) & =P(A|q| \mathbf{t}=-1)
\end{aligned}
$$

- from averages of characters $<\chi_{R}[U]_{B}>^{\mathcal{K}}$

Hierarchy of knot polynomials for the $S L(N)$ family

For a given knot K and representation (Young diagram) R

Superpolynomial $P_{R}(A|q| t)$

$$
\swarrow t=q \quad \searrow A=1
$$

CS \longrightarrow HOMFLY $H_{R}(A \mid q)$

Heegard - Floer $H F_{R}(q \mid t)$

$$
q=1 \swarrow \quad N=2 \searrow N=0
$$

$$
\swarrow t=q
$$

Special $\sigma_{R}(A)$ Jones $J_{R}(q) \quad$ Alexander $\mathcal{A}_{R}(q)$

Representation dependence

$$
\begin{gathered}
\sigma_{R}(A)=\left(\sigma_{[1]}(A)\right)^{|R|} \\
\mathcal{A}_{R}(q)=\mathcal{A}_{[1]}\left(q^{|R|}\right)
\end{gathered}
$$

HOMFLY and superpolynomials satisfy difference equations as functions of the representation-variable

Garoufalidis \& Le, math/0309214
Fuji, Gukov \& Sulkovski, 1203.2182
IMMM, 1203.5978

CS in temporal gauge $A_{0}=0$

$$
\begin{gathered}
\kappa \int \epsilon_{i j k} \operatorname{Tr}\left(A^{i} \partial_{j} A^{k}+\frac{2}{3} A^{i} A^{j} A^{k}\right) d^{3} x \\
\xrightarrow{A_{0}=0} \int \operatorname{Tr}\left(A_{x} \dot{A}_{y} d x d y\right) d t
\end{gathered}
$$

Quadratic theory with the ultralocal propagator

$$
\frac{2 \pi i}{\kappa} \operatorname{sign}(t) \delta(x) \delta(y)
$$

Average of a Wilson line is given by projection onto the xy plane and each intersection contributes

$$
\begin{gathered}
q^{ \pm T^{a} \otimes T^{a}} \\
\text { with } q=e^{2 \pi i /(\kappa+N)}
\end{gathered}
$$

Turaev-Reshetikhin construction

$$
\mathcal{H}_{R}^{\mathcal{B}}=\operatorname{Trace}_{R^{\otimes m}} \mathcal{B}
$$

$$
\mathcal{B}=\prod_{s} \mathcal{R}_{i(s), i(s)+1}^{ \pm}
$$

2-strand braids (torus knots $[2, n]$)

$$
R \otimes R=\oplus Q
$$

In each Q the \mathcal{R}-matrix acts as unity: $\mathcal{R}_{Q}=\lambda_{Q} \cdot I_{Q}$

$$
\mathcal{H}_{R}^{[2, n]}=\sum_{Q} \lambda_{Q}^{n} \operatorname{Tr}_{Q} I_{Q}=\sum_{Q} \lambda_{Q}^{n} D_{Q}
$$

$D_{Q}=$ quantum dimension of irreducible representation Q

Symmetric representations

$$
[p] \otimes[p]=\oplus_{k=0}^{p}[2 p-k, k]
$$

$S L(2):$ spin $p / 2 \otimes \operatorname{spin} p / 2=\oplus_{k=0}^{p} \operatorname{spin}(p-k)$

$$
\mathcal{R}_{Q}=\lambda_{Q} \cdot I_{Q}
$$

$$
\lambda_{k}=(-)^{k} q^{q^{2}[2 p-k, k]}
$$

$$
\varkappa_{[2 p-k, k]}=2 p^{2}-(2 k+1) p+k(k-1)
$$

Universal formula

This is an example of 1-parametric general formulas, describing all the 2 -strand braids at once

For example, $R=[1],[1] \otimes[1]=[2]+[11]$:

$$
\mathcal{H}_{[1]}^{[2, n]}=q^{n} D_{[2]}+(-)^{n} q^{-n} D_{[11]}
$$

Two series n odd (knots) and n even (links):

$$
\begin{aligned}
& q^{n} D_{[2]}-q^{-n} D_{[11]} \\
& q^{n} D_{[2]}+q^{-n} D_{[11]}
\end{aligned}
$$

Also possible for other representations (multiparametric formula)

W-eigenvalues

This $\varkappa_{[2 p-k, k]}$ is an eigenvalue of the cut-and-join operator

$$
\hat{W}[2]=\frac{1}{m} \sum_{a, b \geq 1}\left((a+b) p_{a} p_{b} \frac{\partial}{\partial p_{a+b}}+a b p_{a+b} \frac{\partial^{2}}{\partial p_{a} \partial p_{b}}\right)
$$

$$
\hat{W}[2] S_{Q}\{p\}=\varkappa_{Q} S_{Q}\{p\}, \quad \lambda_{Q}=q^{\varkappa_{Q}}
$$

$$
\begin{gathered}
S_{1}\{p\}=p_{1}, \quad S_{2}\{p\}=\frac{1}{2}\left(p_{2}+p_{1}^{2}\right), \quad S_{11}\{p\}=\frac{1}{2}\left(-p_{2}+p_{1}^{2}\right), \ldots \\
\varkappa_{Q}=\sum_{i} q_{i}\left(q_{i}-2 i+1\right)=\nu_{Q}-\nu_{Q^{\prime}} \\
\nu_{Q}=\sum_{i}(i-1) q_{i}
\end{gathered}
$$

W-operators

$$
S L(N) \text { characters (Shur fns) } S_{Q}\{p\}
$$

are eigenfunctions of cut-and-join operators $\hat{W}(\Delta)$,

$$
\begin{gathered}
\hat{W}(\Delta) S_{Q}=\varphi_{Q}(\Delta) S_{Q} \\
\hat{W}(\Delta)=: \prod_{i} \operatorname{tr}\left(X \frac{\partial}{\partial X}\right)^{\delta_{i}}: \\
p_{k}=\operatorname{tr} X^{k}=k t_{k}
\end{gathered}
$$

These operators form a commutative algebra, which has a non-trivial non-commutative extension
For general theory of cut-and-join operators see [0904.4227]

W-representation of HOMFLY for the torus knot $[2, n]$

$$
\mathcal{H}_{R}^{[2, n]}=\sum_{Q} \lambda_{Q}^{n} \operatorname{Tr}_{Q} \prime_{Q}=\sum_{Q} \lambda_{Q}^{n} D_{Q}
$$

Extended HOMFLY polynomial:

$$
\mathcal{H}_{R}^{[2, n]}\left\{p_{k}\right\}=\sum_{Q} \lambda_{Q}^{n} S_{Q}\left\{p_{k}\right\}=q^{n \hat{W}} \sum_{Q} \epsilon_{Q}^{n} S_{Q}\left\{p_{k}\right\}
$$

For given series (n odd or even)
$=q^{n \hat{W}} \sum_{Q} \epsilon_{Q} S_{Q}\left\{p_{k}\right\}=q^{n \hat{W}} S_{R}\left\{p_{2 k}\right\}$

$$
=q^{n \hat{W}} \sum_{Q} S_{Q}\left\{p_{k}\right\}=q^{n \hat{W}} S_{R}^{2}\left\{p_{k}\right\}
$$

W-representation

W-representations

Partition functions can be considered as

 a result of "evolution", driven by cut-and-join (W) operators from very simple "initial conditions" [0902.2627]$$
Z\{p\}=e^{g \hat{W}} \tau_{0}\{p\}
$$

If $W \in U G L(\infty)$, then KP/Toda-integrability is preserved

$$
\hat{W}_{n}=\frac{1}{2} \sum_{a, b}\left((a+b+n) p_{a} p_{b} \frac{\partial}{\partial p_{a+b+n}}+a b p_{a+b-n} \frac{\partial^{2}}{\partial p_{a} \partial p_{b}}\right)
$$

W-representation. Examples

- Hermitian matrix model $Z_{N}=\int d X^{\sum_{k} \frac{p_{k}}{k} \operatorname{Tr} X^{k}}$

$$
Z_{N}=e^{\hat{W}_{-2}} e^{N p_{0}}
$$

- Kontsevich model $Z=\int d X e^{\operatorname{Tr}\left(\frac{1}{3} X^{3}-L^{2} X\right)}, p_{k}=\operatorname{Tr} L^{-k}$

$$
\begin{gathered}
Z=e^{\hat{W}_{-1}^{K}} \cdot 1 \\
\hat{W}_{-1}^{K}=\frac{2}{3} \sum\left(k+\frac{1}{2}\right) \tau_{k} L_{k-1}^{K} \quad[\text { A.Alexandrov, 1009.4887] }
\end{gathered}
$$

- Hurwitz model [V.Bouchard \& M.Marino, 0708.1458]

$$
Z=e^{t \hat{W}_{0}} e^{p_{1}}
$$

- Torus knots and links

$$
Z=q^{\frac{2 n}{m}} \hat{W}_{0} \prod_{\text {link comps }} \tilde{\chi}_{R}
$$

Back from braids to knots

Topological invariance (homotopical equivalence)
is restored on the topological locus in the space of time variables:

$$
p_{k}=p_{k}^{*}=\frac{A^{k}-A^{-k}}{q^{k}-q^{-k}}
$$

topological invariants \longleftarrow braid invariants

$$
\begin{gathered}
D_{Q} \longleftarrow S_{Q}\left\{p_{k}\right\}:\left.\quad S_{Q}\left\{p_{k}^{*}\right\}\right|_{A=q^{N}}=D_{Q} \\
D_{[1]}=[N]_{q}=\frac{q^{N}-q^{-N}}{q-q^{-1}}, D_{[2]}=\frac{[N][N+1]}{[2]}, D_{[11]}=\frac{[N][N-1]}{[2]}, \ldots
\end{gathered}
$$

From HOMFLY to superpolynomials

$$
\begin{gathered}
\mathcal{H}_{[1]}^{[2, n]}=q^{n *} S_{[2]} \pm q^{-n *} S_{[11]} \\
\mathcal{P}_{[1]}^{[2, n]}=q^{n *} M_{[2]} \pm\left(C_{[11]} \gamma_{[11]}\right) t^{-n *} M_{[11]} \\
M_{[1]}\left\{p_{2 k}\right\}=p_{2}=M_{[2]}\left\{p_{k}\right\}-C_{[11]} M_{[11]}\left\{p_{k}\right\} \\
\gamma_{[11]}=\frac{1+q^{2}}{1+t^{2}}
\end{gathered}
$$

HL expansions

$$
\begin{gathered}
\mathcal{H}_{[1, \ldots, 1]}^{[m, n]}\left\{q \mid p_{k}\right\} \sim L_{[m, \ldots, m]}\left\{q^{n} \mid p_{k}\right\} \\
{[1203.0667]}
\end{gathered}
$$

$$
L_{Q}(t)=\left.M_{Q}(q, t)\right|_{q=0}
$$

$$
\mathcal{P}_{[1]}^{[m, r]} \sim \sum_{\substack{Q \vdash m \\ \prime(Q) \leq r}} h_{Q}^{(m, r)} L_{Q}(t)
$$

$$
r=1,2: \quad h_{Q}=1
$$

$$
r=3: \quad h_{Q}=1+t+(q-t)\left[\min \left(Q_{1}-Q_{2}, Q_{2}-Q_{3}\right)\right]_{q}
$$ [1201.3339]

3-strand knots

$$
\mathcal{H}_{R}^{\left(a_{1}, b_{1}\left|a_{2}, b_{2}\right| a_{3}, \ldots\right)}=\operatorname{Tr}_{R{ }^{\otimes 3}}\left(\mathcal{R}_{12}^{a_{1}} \mathcal{R}_{23}^{b_{1}} \mathcal{R}_{12}^{a_{2}} \mathcal{R}_{23}^{b_{2}} \mathcal{R}_{12}^{a_{3}} \ldots\right)
$$

$$
R \otimes R \otimes R=\oplus Q
$$

Reduction to the space of intertwiners [1112.2654]

$$
\begin{gathered}
{[1] \otimes[1] \otimes[1]=([2]+[11]) \otimes[1]=[3]+[21]+[21]+[111]} \\
{[1] \otimes[1] \otimes[1]=[1] \otimes([2]+[11])=[3]+[21]+[21]+[111]} \\
\mathcal{H}_{[1]}^{\left(a_{1}, b_{1}\left|a_{2}, b_{2}\right| a a_{3}, \ldots\right)}=q^{a_{1}+b_{1}+a_{2}+b_{2}+\ldots} S_{[3]}+(-q)^{a_{1}+b_{1}+a_{2}+b_{2}+\ldots} S_{[111]}+ \\
+\operatorname{tr}_{2 \times 2}\left(\hat{\mathcal{R}}^{a_{1}} U \hat{\mathcal{R}}^{b_{1}} U^{\dagger} \hat{\mathcal{R}}^{a_{2}} U \hat{\mathcal{R}}^{b_{2}} U^{\dagger} \ldots\right) S_{[21]} \\
\hat{\mathcal{R}}=\left(\begin{array}{ll}
q & -q^{-1}
\end{array}\right), \quad U=\left(\begin{array}{cc}
\frac{1}{[2]} & \frac{\sqrt{[3]}}{[2]} \\
-\frac{\sqrt{[3]}}{[2]} & \frac{1}{21]}
\end{array}\right)
\end{gathered}
$$

Mixing matrices

Evaluation of HOMFLY pols is reduced to the study of the mixing matrices

Can they be found in general form?

Fundamental representation $R=[1]$, many strands m

$$
\begin{gathered}
m=3: \quad[1]^{\otimes 3}=[3]+\underline{2} \cdot[21]+[111] \\
\hat{\mathcal{R}}_{2}=\left(\begin{array}{cc}
q & \\
& -\frac{1}{q}
\end{array}\right) \quad U_{2}=\left(\begin{array}{cc}
c_{2} & s_{2} \\
-s_{2} & c_{2}
\end{array}\right) \\
m=4: \quad[1]^{\otimes 4}=[4]+? ? ? \\
\hat{\mathcal{R}}_{3}=\left(\begin{array}{ccc}
q & & \\
& q & \\
& & -\frac{1}{q}
\end{array}\right) \quad U_{3}=\left(\begin{array}{ccc}
1 & c_{2} & s_{2} \\
& -s_{2} & c_{2}
\end{array}\right) \quad V_{3}=\left(\begin{array}{ccc}
c_{3} & s_{3} & \\
-s_{3} & c_{3} & \\
& & 1
\end{array}\right) \\
c_{k}=\frac{1}{[k]}, \quad s_{k}=\sqrt{1-c_{k}^{2}}=\frac{\sqrt{[k-1][k+1]}}{[k]}
\end{gathered}
$$

$m=3$ strands, symmetric representations $R=[p]$

$$
\begin{aligned}
& \left(\begin{array}{cc}
\frac{\sqrt{\lambda \mu}}{\lambda+\mu} & \frac{\sqrt{\lambda^{2}+\lambda \mu+\mu^{2}}}{\lambda+\mu} \\
-\frac{\sqrt{\lambda^{2}+\lambda \mu+\mu^{2}}}{\lambda+\mu} & \frac{\sqrt{\lambda \mu}}{\lambda+\mu}
\end{array}\right) \\
& -\frac{\lambda_{1}\left(\lambda_{2}-\mu\right)}{\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}+\mu\right)} \quad \frac{\sqrt{\left(\lambda_{1} \lambda_{2}+\mu^{2}\right)\left(\lambda_{1}^{2}-\mu \lambda_{2}\right)}}{\sqrt{\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{2}+\mu\right)}\left(\lambda_{1}+\mu\right)} \quad-\frac{1}{\lambda_{1}-\lambda_{2}} \sqrt{\frac{\left(\mu \lambda_{1}-\lambda_{2}^{2}\right)\left(\lambda_{1}^{2}-\mu \lambda_{2}\right)}{\left(\lambda_{1}+\mu\right)\left(\lambda_{2}+\mu\right)}} \\
& -\frac{\sqrt{\left(\lambda_{1} \lambda_{2}+\mu^{2}\right)\left(\lambda_{1}^{2}-\mu \lambda_{2}\right)}}{\sqrt{\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{2}+\mu\right)}\left(\lambda_{1}+\mu\right)} \quad-\frac{\left(\lambda_{1}+\lambda_{2}\right) \mu}{\left(\lambda_{1}+\mu\right)\left(\lambda_{2}+\mu\right)} \quad-\frac{\sqrt{\left(\lambda_{1} \lambda_{2}+\mu^{2}\right)\left(\mu \lambda_{1}-\lambda_{2}^{2}\right)}}{\sqrt{\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}+\mu\right)}\left(\lambda_{2}+\mu\right)} \\
& -\frac{1}{\lambda_{1}-\lambda_{2}} \sqrt{\frac{\left(\mu \lambda_{1}-\lambda_{2}^{2}\right)\left(\lambda_{1}^{2}-\mu \lambda_{2}\right)}{\left(\lambda_{1}+\mu\right)\left(\lambda_{2}+\mu\right)}} \quad \frac{\sqrt{\left(\lambda_{1} \lambda_{2}+\mu^{2}\right)\left(\mu \lambda_{1}-\lambda_{2}^{2}\right)}}{\sqrt{\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}+\mu\right)}\left(\lambda_{2}+\mu\right)} \\
& \frac{\lambda_{2}\left(\lambda_{1}-\mu\right)}{\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{2}+\mu\right)}
\end{aligned}
$$

Trefoil and the figure eight knot

$$
\begin{gathered}
\text { trefoil: } 3_{1}=[2,3]=[3,2]=(1,1 \mid 1,1) \\
\mathcal{H}_{[1]}^{3_{1}}=q^{3} S_{[2]}-q^{-3} S_{[11]} \\
\mathcal{H}_{[1]}^{3_{1}}=q^{4} S_{[3]}+q^{-4} S_{[111]}+\operatorname{tr}_{2 \times 2}\left(\hat{\mathcal{R}} \cup \hat{\mathcal{R}}^{ \pm 1} U^{\dagger} \hat{\mathcal{R}} \cup \hat{\mathcal{R}}^{ \pm 1} U^{\dagger} \ldots\right) S_{[21]}= \\
=\underbrace{\frac{A-A^{-1}}{q-q^{-1}}}_{{ }^{*}[1](A \mid q)}\left(q^{4} A-\left(q^{2}+q^{-2}\right)+q^{-4} A^{-4}\right)
\end{gathered}
$$

figure eight knot: $\quad 4_{1}=(1,-1 \mid 1,-1)$

$$
\mathcal{H}_{[1]}^{4_{1}}=S_{[3]}+S_{[111]}+\operatorname{tr}_{2 \times 2}\left(\hat{\mathcal{R}} U \hat{\mathcal{R}}^{-1} U^{\dagger} \hat{\mathcal{R}} U \hat{\mathcal{R}}^{-1} U^{\dagger} \ldots\right) S_{[21]}
$$

Application to the figure eight knot [1203.5978]

$$
\begin{gathered}
\frac{{ }^{*} \mathcal{H}_{[1]}^{4_{1}}(A \mid q)}{{ }^{*} S_{[1]}(A \mid q)}=A^{2}-\left(q^{2}-1+q^{-2}\right)+A^{-2}= \\
=1+\left(A q-(A q)^{-1}\right)\left(A q^{-1}-A^{-1} q^{-1}\right)=1+\{A q\}\left\{A q^{-1}\right\} \\
\{x\}=x-x^{-1} \\
{[1] \times[1] \times[1]=[3]+2 \cdot[21]+[111]} \\
{[2] \times[2] \times[2]=[6]+2 \cdot[51]+3 \cdot[42]+[411]+[33]+2 \cdot[321]+[222]} \\
{ }^{*} \mathcal{H}_{[2]}^{4_{1}}(A \mid q) \\
{ }^{{ }^{*} S_{[2]}(A \mid q)}=1+[2]_{q}\{A q\}\left\{A q^{-1}\right\}+\left\{A q^{3}\right\}\left\{A q^{2}\right\}\{A\}\left\{A q^{-1}\right\} \\
{[\text { P.Ramadevi and T.Sarkar, hep-th/0009188]}}
\end{gathered}
$$

Classical $(q=1)$ case

$$
\begin{gathered}
\sigma_{R}(A)=\lim _{q=1} \frac{{ }^{*} \mathcal{H}_{R}^{4_{1}}(A \mid q)}{{ }^{*} S_{R}(A \mid q)}=\left(\sigma_{[1]}(A)\right)^{|R|} \\
\sigma_{[1]}(A)^{4_{1}}=1+\left.\{A q\}\left\{A q^{-1}\right\}\right|_{q=1}=1+\{A\}^{2}=1+\left(A-A^{-1}\right)^{2} \\
\sigma_{R}^{4_{1}}(A)=(1+\{A\})^{|R|}=\sum_{k=0}^{|R|} C_{k}^{|R|}\{A\}^{2 k}
\end{gathered}
$$

Quantization

$$
\left.\begin{array}{c}
\sigma_{R}^{4_{1}}(A)=(1+\{A\})^{|R|}=\sum_{k=0}^{|R|} \frac{|R|!}{k!(|R|-k)!}\{A\}^{2 k} \\
\\
{ }^{*} \mathcal{H}_{[1]}^{4_{1}}(A \mid q) \\
{ }^{*} S_{[1]}(A \mid q)
\end{array}=1+\{A q\}\left\{A q^{-1}\right\}\right)
$$

Checks

We have seven pieces of evidence:
Our answer

- Reproduces particular examples at $R=$ [2], [3], [4], [5]
- For $q \rightarrow 1$ reproduces the conjectured special polynomials
- Consistent with the interesting formula, describing the value of ${ }^{*} \mathcal{H}_{[p]}^{4_{1}}(A \mid q)$ at the one-dimensional locus $q=e^{\frac{i \pi}{N+p-1}}, A=q^{N}=-e^{\frac{i \pi(1-p)}{N+p-1}}$
- For $A=q^{2}$ reproduces the known answers for the Jones polynomials - For $A=1$ reproduces the Alexander polynomial
- Related antisymmetric HOMFLY polynomial ${ }^{*} \mathcal{H}_{\left[1^{p}\right]}^{4_{1}}(A \mid q)$ vanishes for $A=q^{N}$ with $N<p$, i.e. whenever p exceeds the rank of the group by two, and turns its ratio to the unknot turns into unity for $N=p$.
- Consistent with the Ooguri-Vafa conjecture

Superpolynomial for 4_{1}

$$
\begin{gathered}
\sum_{k=0}^{p} \frac{[|R|]!}{[k]![|R|-k]!} \prod_{i=1}^{k} Z_{i}(A)=\sum_{k=0}^{p} \prod_{i_{1} \leq \ldots \leq i_{k}} \mathbb{Z}_{i_{1}}(A) Z_{i_{2}}(A q) Z_{i_{3}}\left(A q^{2}\right) \ldots Z_{i_{k}}\left(A q^{k-1}\right) \\
Z_{i}(A)=\left\{A q^{2(p-i)+1}\right\}\left\{A q^{-1}\right\} \quad \longrightarrow \quad \mathfrak{Z}_{i}(A)=\left\{A q^{2(p-i)+1}\right\}\left\{A t^{-1}\right\} \\
\frac{{ }^{*} \mathcal{P}_{[p]}^{41}(A \mid q, t)}{{ }^{*} M_{[p]}(A \mid q, t)}=\sum_{k=0}^{p} \prod_{1 \leq i_{1} \leq \ldots \leq i_{k} \leq p} \mathfrak{Z}_{i_{1}}(A) \mathfrak{Z}_{i_{2}}(A q) \mathfrak{Z}_{i_{3}}\left(A q^{2}\right) \ldots \mathfrak{Z}_{i_{k}}\left(A q^{k-1}\right) \\
t=\mathbf{q}, \quad A=\mathbf{a} \sqrt{-\mathbf{t}} \\
\mathfrak{Z}_{i}\left(A q^{s}\right)=\frac{\left(1+\mathbf{q} \mathbf{t}, \quad \mathbf{a}^{2} \mathbf{t}(\mathbf{q t})^{4(p-i)+2+2 s}\right)\left(\mathbf{q}^{2}+\mathbf{a}^{2} \mathbf{t}(\mathbf{q} \mathbf{t})^{2 s}\right)}{\mathbf{a}^{2} \cdot(\mathbf{q t})^{2(p-i+s+1)}}
\end{gathered}
$$

Difference equation

$$
\begin{gathered}
P_{[p+1]}(A)-P_{[p]}(A)=\left\{A q^{2 p+1}\right\}\left\{A t^{-1}\right\} P_{[p]}(q A) \\
P_{[p]}=\frac{{ }^{*} \mathcal{P}_{[p]}^{4_{1}}(A \mid q, t)}{{ }^{{ }^{4} M_{[p]}(A \mid q, t)}}
\end{gathered}
$$

Generalizations

- from $R=[p]$ to arbitrary R (arbitrary Young diagram

$$
\left.R=\left\{p_{1} \geq p_{2} \geq \ldots \geq 0\right\}\right)
$$

- from $\mathcal{K}=(1,-1 \mid 1,-1)$ to entire series of 3 -strand knots $\mathcal{K}=(1,-1)^{n}=(1,-1|1,-1| \ldots \mid 1,-1)$, a simple generalization of the torus knot family $\mathcal{K}=[3, n]=(1,1)^{n}$ (these are knots for n, indivisible by $m=3$ and 3-component links otherwise)

MANY THANKS FOR YOUR ATTENTION!

THANKS TO THE ORGANIZERS!!!

[^0]: ${ }^{2}$ P.Dunin-Barkovsky, D.Galakhov, H.Itoyama, A.Mironov, And.Morozov, Sh.Shakirov, A.Sleptsov, A.Smirnov

