The gravity duals of SO/USp superconformal quivers

Takahiro Nishinaka (CQUeST)

arXiv: 1202.6613

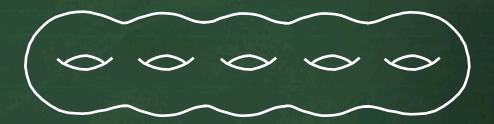
4 April 2012

2

M5 on Σ_g

M5 wrapping a Riemann surface [Gaiotto '09]

N M5-branes on Σ_g x R⁴
 d=4, N=2 SCFT

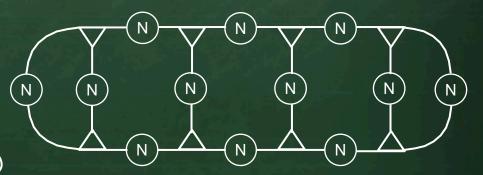


 Σ_{g}

• SU(N) generalized quivers

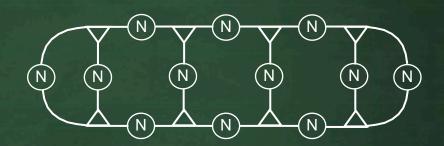
 \mathbb{N} : SU(N) gauge group

SU(N) : T_N theory SU(N) SU(N) (SU(N)³ flavor sym)



Gravity duals [Gaiotto-Maldacena '09]

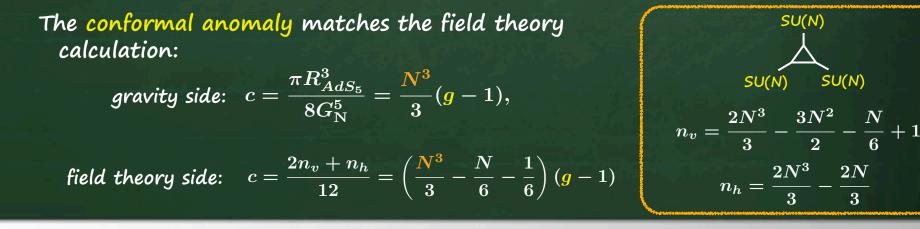
The near horizon geometry of M5 on Σ_g :



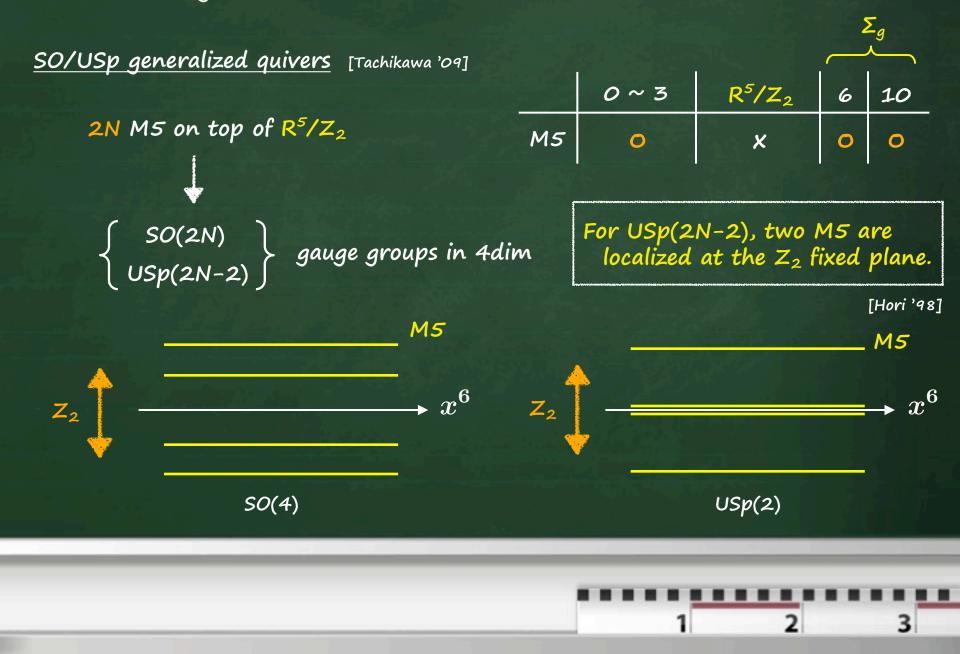
з

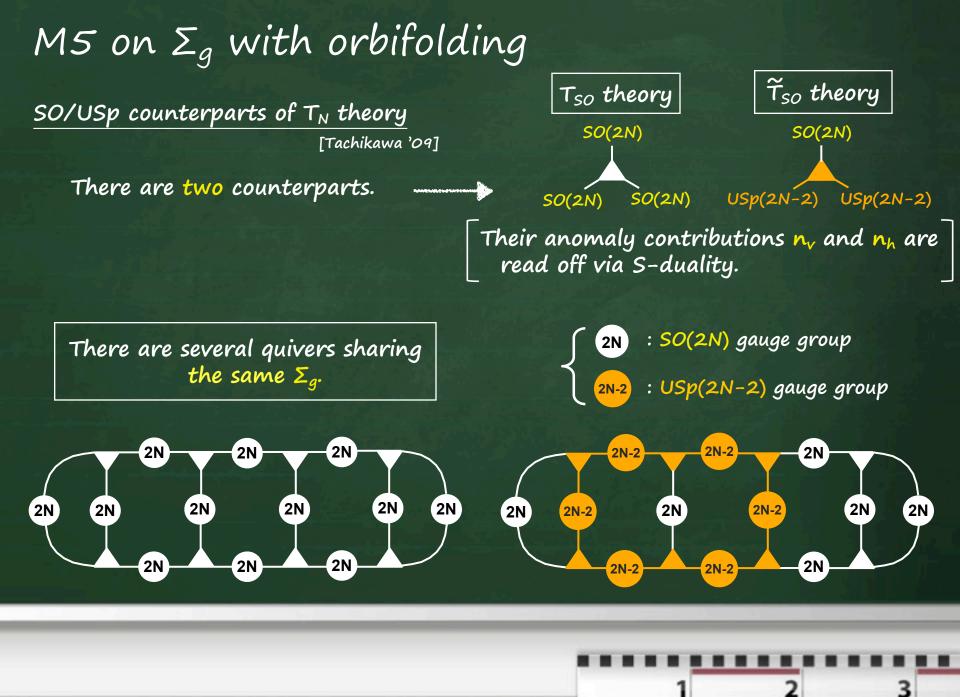
 $AdS_5 \times \Sigma_g \times S^4$

Here S⁴ is non-trivially fibered over Σ_g , and the geometry has the symmetrySU(2) imes U(1)



Q: What is its SO/USp counterpart?





M5 on Σ_g with orbifolding <u>Gravity duals</u>

The difference between SO and USp is subleading in large N.

The dual geometry is determined by Σ_g as

 $AdS_5 \times \Sigma_g \times RP^4$

(In comparison with SU-quivers, S^4 is replaced by RP^4)

2

M5 on Σ_g with orbifolding <u>Gravity duals</u>

The difference between SO and USp is subleading in large N.

The dual geometry is determined by Σ_g as

 $AdS_5 \times \Sigma_g \times RP^4$

(In comparison with SU-quivers, S^4 is replaced by RP^4)

The holographic conformal anomaly

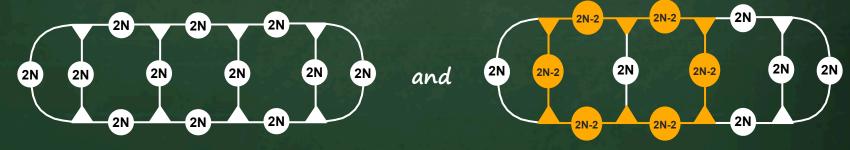
$$c=rac{\pi R_{AdS_5}^3}{8G_{
m N}^5}=rac{4N^3}{3}(g-1)$$

is determined by the genus g of Σ_g and independent of the choice of SO or USp.

In fact, in the field theory side, we can show that n_v and n_h are equal between theories with the same Σ_g , by using the facts that

$$\begin{array}{ccc} & \text{SO(2N)} & n_v = \frac{8N^3}{3} - 7N^2 + \frac{10N}{3} & \text{SO(2N)} & n_v = \frac{8N^3}{3} - 7N^2 + \frac{16N}{3} - 1000 & \text{SO(2N)} & n_h = \frac{8N^3}{3} - 7N^2 + \frac{16N}{3} - 1000 & \text{SO(2N)} & n_h = \frac{8N^3}{3} - 4N^2 + \frac{4N}{3} & \text{USp(2N-2)} & \text{USp(2N-2)} & n_h = \frac{8N^3}{3} - 4N^2 + \frac{4N}{3} & \text{USp(2N-2)} & \text{USp(2N-2)} & n_h = \frac{8N^3}{3} - 4N^2 + \frac{4N}{3} & \text{USp(2N-2)} & \text{USp(2N-2)} & n_h = \frac{8N^3}{3} - 4N^2 + \frac{4N}{3} & \text{USp(2N-2)} & \text{USp(2N-2)} & n_h = \frac{8N^3}{3} - 4N^2 + \frac{4N}{3} & \text{USp(2N-2)} & \text{USp(2N-2)} & n_h = \frac{8N^3}{3} - 4N^2 + \frac{4N}{3} & \text{USp(2N-2)} & \text{USp(2N-2)} & n_h = \frac{8N^3}{3} - 4N^2 + \frac{4N}{3} & \text{USp(2N-2)} & \text{USp(2N-2)} & n_h = \frac{8N^3}{3} - 4N^2 + \frac{4N}{3} & \text{USp(2N-2)} & \text{USp(2N-2)} & n_h = \frac{8N^3}{3} - 4N^2 + \frac{4N}{3} & \text{USp(2N-2)} & \text{USp(2N-2)} & n_h = \frac{8N^3}{3} - 4N^2 + \frac{4N}{3} & \text{USp(2N-2)} & \text{USp(2N-2)} & n_h = \frac{8N^3}{3} - 4N^2 + \frac{4N}{3} & \text{USp(2N-2)} & \text{USp(2N-2)} & n_h = \frac{8N^3}{3} - 4N^2 + \frac{4N}{3} & \text{USp(2N-2)} & \text{USp(2N-2)} & n_h = \frac{8N^3}{3} - 4N^2 + \frac{4N}{3} & \text{USp(2N-2)} & \text{USp(2N-2)}$$

For example, both



have

$$c=rac{2n_v+n_h}{12}=\left(rac{4N^3}{3}-2N^2+rac{5N}{6}
ight)(g-1)$$

з

Torsion part of G-flux [Hori '98]

The topology of the 3-form potential is measured by

 $H^4(\mathrm{RP}^4 imes S^1, \widetilde{\mathbf{Z}}) \simeq \mathbf{Z} \oplus \mathbf{Z_2}$

($\widetilde{\mathbf{Z}}$: integers twisted by the orientation bundle)

```
\begin{array}{l} \hline \text{Torsion part} \\ \mathbf{Z_2} \ni \vartheta \equiv \int_{S^1 \times \mathbf{RP}^3} [G_4/2\pi] \\ &= \left\{ \begin{array}{l} o \cdots SO(2N) \\ \mathfrak{1} \cdots USp(2N-2) \end{array} \right. \end{array} \right. \end{array}
```

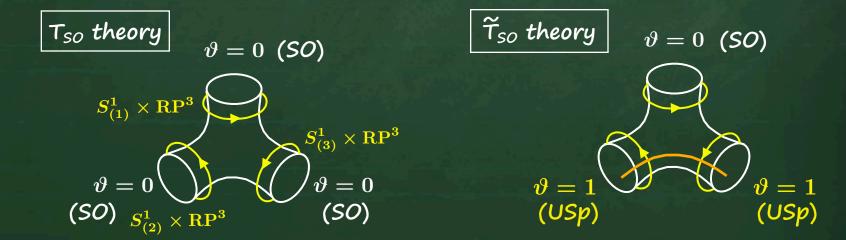
з

Torsion part of G-flux [Hori '98]

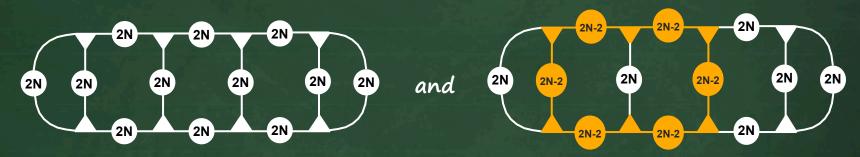
The topology of the 3-form potential is measured by

 $H^4(\mathrm{RP}^4 imes S^1, \widetilde{\mathbf{Z}}) \simeq \mathbf{Z} \oplus \mathbf{Z_2}$

($\widetilde{\mathbf{Z}}$: integers twisted by the orientation bundle)



For example, for



the dual gravities are distinguished by the torsion part of G-flux along the "B-cycles" of Σ_g :

Summary

- We studied the gravity duals of SO/USp superconformal quivers, which are constructed by wrapped M5-brane on a Riemann surface together with the Z₂ orbifold.
- For a Riemann surface Σ_g without punctures, the gravity duals are characterized by the genus g of Σ_g and the torsion part of the four-form flux.
- The conformal anomalies of the theory is determined by the genus g of Σ_g .
- In the paper, we also studied the gravity duals of SO/USp tails. So, if you could take a look at it, I would be very happy!!

That's all for my presentation. Thank you very much.

M5 on Σ_g

<u>Gravity dual</u>

[Gaiotto-Maldacena]

$$egin{aligned} ds^2 &= (\pi oldsymbol{N} l_p^3)^rac{2}{3} rac{W^rac{1}{3}}{2} iggl\{ 4 ds^2_{AdS_5} + 2 \left[4 rac{dr^2 + r^2 deta^2}{(1-r^2)^2}
ight] + 2 d heta^2 \ &+ rac{2}{W} \cos^2 heta (d\psi^2 + \sin^2 \psi d\phi^2) + rac{4}{W} \sin^2 heta \left(d\chi + rac{2r^2 deta}{1-r^2}
ight)^2 iggr\} \end{aligned}$$

 $W \equiv 1 + \cos^2 heta$

1

2