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- Introduction




What we want to do

We would like to formulate N=4 SYM nonperturbatively

through a novel large-N reduction and study its strongly
coupled regime

> Motivation

1. Testing the AdS /CFT correspondence

2. Nonperturbative formulation of 4D supersymmetric
gauge theory as an alternative to lattice theory

3. Emergent curved space in matrix model

cf.) Kawai’s talk, Nishimura’s talk



AdS /CFT correspondence
N

Maldacena ('97)
_ Type lIB string theory
\N—4 SU(N) SYM , ~ “on AdSsXS]

PSU(2,2|4) D SO(4,2) x SO(6)
32 supercharges

A= g}Q/MN = 2wgsN = R4/(2a’2)

>y

string loop correction suppressed
gs — 0

planar limit ('t Hooft limit )
N — o0, X = fixed

——>

) o correction suppressed
SUGRA or classical string
tractable ™| approximation is good

large Ay N — 00

\\

important




AdS /CFT correspondence (cont’d)
N

» The conjecture has not been proven, although there is a physical
argument based on near horizon limit and open-closed duality

» In order to test the conjecture, one should study the large 't Hooft
coupling region in the planar limit on the gauge theory side
» Examples of calculations which have been done so far in such a region
vev of half-BPS Wilson loop ~ localization works Pestun
3-pt function of chiral primary operators ~ non-renormalization
Spin chains ~ integrable model interpolating weak and strong couplings
» In order to perform a more direct test for quantities not protected by

SUSY such as vev of non-BPS Wilson loop and 4-pt function of CPOs,
one needs nonperturbative formulation of N=4 SYM like lattice theory



Large-N reduction as an alternative to

lattice reqularization
-_

» It is impossible to realize full supersymmetry on lattice = {Q,Q} =P
One or two supersymmetries can be realized

Sugino, Kaplan-Katz-Unsal, Catterall,.....

m=) fine-tuning of several parameters is required cf.) Sugino’s talk

» Since we are interested in the planar limit, we may well have a
chance to use the idea of the large-N reduction  ggychi-kawai (82)

» Large-N reduction asserts that the planar limit of gauge theory
can be described by matrix model obtained by its dimensional
reduction, where the matrix size plays the role of UV cutoff

~ first example of emergent space-time in matrix model
~ but practically one has to overcome the problem of U(]1 )
symmetry breaking or background instability



Our strategy
] |
Ishii-Ishiki-Shimasaki-A.T. (08)

conformal map

N=4 SYM on R* N — N=4 SYM on RxS3_

2 dimensional dimensional novel large-N
. reduction to R reduction to R reduction
BESS model E—) plane wave matrix model

(DO-brane eff. theory) =~ Moss deformation  (BMN matrix model)
preserving SUSY

SU(2 | 4) symmetry (16 supercharges)

» By expanding PWMM around a particular vacuum which
consists of multi fuzzy spheres , we can retrieve the planar limit of

N=4 SYM on RxS3.

» We can resolve the problem of b.g. instability thanks to SUSY
and massiveness



Our strategy (cont’d)
-

» As a regularization, our formulation respects the gauge symmetry
and the SU(2 | 4) symmetry with 16 supercharges, which is included
in the superconformal PSU(2,2 | 4) symmetry

» Our regularization is optimal from the viewpoint of preserving SUSY,
because any UV regularization breaks the conformal symmetry

» In the large N limit, the SU(2 | 4) symmetry is expected to enhance to
the PSU(2,2 | 4) symmetry. We expect to obtain the planar limit of
N=4 SYM without fine-tuning

» We put this model on a computer and numerically simulate N=4
SYM in the planar limit to test the AdS/CFT correspondence
~ first successful example of numerical simulation for 4D SUSY theory

» Example of emergent curved space in matrix model

> cf.) 2d lattice+ fuzzy sphere Hanada-Matsuura-Sugino



Plan of the present talk
T

1. Introduction

2. Large-N reduction

3. N=4 SYM on RxS’ from PWMM
4, Testing the AdS/CFT correspondence

5. Summary and discussion



- Large-N reduction




Large N reduction: Example
N

» Consider matrix quantum mechanics

D\ | m? 2
e v

¢(7’) : NxN hermitian matrix
> Introduce a constant matrix

Pi1 P2 ...... DN
P — !
p2
P = AN <> A
5 A/N 5
PN
A : UV cutoff A/N : IR cutoff

» Obtain reduced model
. 2T

d 27 1 2 m> 2 92 4
$(r) > ¢, =il ] [ar 0 mEp Sr= =T D[P G+ —-¢" + 79




Large N reduction: Example (cont’d)
-1

» The reduced model reproduces the planar limit of the original theory

in the limit
N — o0, A= o0, A/JN =0, g°N = X : fixed

UV cutoff IR cutoff 't Hooft coupling

» Feynman rule

Sr = 2—”Tr(——[qu]2 ™9 4 </>)

N\
Il

2 2
_Z(pz p]) |¢z3| Ay
ui i b > > N 2”92
0 > l A 1 ., < < A
J < k 27 (p; — pj)2 +m?2 VI M
momentum of the (i,j) componentis P; — Pj momentum conservation
~matrix product




Large N reduction: Example (cont’d)

]
» Calculation of free energy
planar
O D -5t
J k = 27\ (22
“ <g /\)(QW) i%;k(pi—pj)2+m2(10j—?k)2+m2
o1 o rdkidky 1 1
- N ’\/ 2 2 7.2 2
N 2w 27 ki 4+ m=< k5+m

1 A 2
— 2
= ——— N A— X (27‘(‘N) suppressed

No correspondence between reduced model and original one

F _ F
N2y N22T




Large-N reduction for YM theory

N
» Apply the rule to the field strength
Fuy = Ay — Oy Ay +i[Ay, A)) = [ X, X)]
O — [iPy, | Xuy=Py+ A,
Py is D-dimensional analog of P

» Reduced model of YM theory

D
Sy = — (2:) L Tr[X,, X,]2 dimensional reduction of YM theory to

2 . .
49y 1 zero-dimension

Py is interpreted as a background of Xu

The background is unstable due to zero-dimensional massless fields

EE)  gquenching Pu = UMXMUZL fixed Not compatible with SUSY !
Bhanot-Heller-Neuberger ('82)  Gross-Kitazawa ('82)



- N=4 SYM on RxS’> from PWMM




Dimensional reduction of N=4 SYM on RxS’

1 |
> S’ can be identified with SU(2)
The isometry of S° is SO(4)=SU(2)xSU(2) corresponding to

the left and right translations
E': the right invariant 1-forms

L; = —iE;'dy : Killing vector ~ generator of left translation
. 2
i £5] = ineijiln . cadivs of §°
» Dimensional reduction
Expand the gauge field on S> as A = XiEi
F=dA+4+:1ANA

1 - . : 0 ‘
= E(M@k +i[Xy, XD E A B

N=4 SYM on RxS’ —> PWMM Kim-Klose-Plefka ('03)




Plane wave (BMN) matrix model
N

_1 1 > 1 2 ,“2 2 ,“2 2 .
S _g—Q/dT r lE(DTXM) E[XvaN] 1 7(Xz') + E(X'm) + ipe; i X X X

+ (fermion part) \ /

o X (X X. 2
1<M,N<9, 1<i,4§k<3, 4<m<9 (l’l’e’l]k k+7'[ 1 ]])
D = 0, — z’[AT7 ] Berenstein-Maldacena-Nastase ('02)

> mass deformation of BFSS model mass- ~ curvature of S’
» SU(2|4) symmetry (16 supercharges) C  PSU(2,2]|4)

» Vacua X; = pL;
[L,, Lj] — ieijk:Lk: N-dlmensmr.\al reducible
representation of SU(2) generators
represent multi fuzzy spheres

preserve the SU(2|4) symmetry and are all degenerate



Retrieving N=4 SYM on RxS’

]
Ishii-Ishiki-Shimasaki-A.T. ('08)

3
S is locally Ssz], but globally a nontrivial S'_bundle over S’ S

We construct S° by continuum limit of fuzzy sphere
and construct S' by large-N reduction s?

We pick up the following vacuum and expand the model around it

Vs3

V. UV cutoff on S'
T . UV cutoff on S°

N R

irre. reps. of >
SU(2) generator

N R




Retrieving N=4 SYM on RxS> (cont'd)

I
> (1,J) block of the fluctuation around the background

/ 2j5+1

- /

» Action of SU(2) on the (I,]) block
irreducible decomposition

Lj1] 7] -
) D = [ T

& (L 2

tensor product of spin jr=(n+1-1)/2

and spin j, = (n 4+ J — 1)/2 representations



Retrieving N=4 SYM on RxS> (cont'd)
—

» KK expansion along the fiber S yields KK modes on 32, whose KK
momentum takes integer or half-integer

» The KK mode with the KK momentum q behaves as in the situation
where a monopole with monopole charge g exists at the center of S°

Pi — Pj

= s =
i = l

» The angular momentum for the KK mode with the momentum q is gl < J

r—J . T¥J Magnetic field has angular momentum q
>_z sjsnt 2 — 1 = the (1,J) block

= the KK mode with the momentum (I-J)/2
> t—g == —;‘ =) the cutoff for KK momentum = v/2

» n plays the role of the cutoff for the angular momentum on s?

INA




Retrieving N=4 SYM on RxS> (cont'd)

1 |
» These two cutoffs preserve the gauge symmetry and SU(2 | 4) symmetry

» One must extract the planar diqgr3qms in s2uch a way that
1)the large-N reduction between S and S holds
2)fuzziness on fuzzy spheres is removed

» For this purpose, the kK — oo limit should be taken because IR cutoff
along the S' direction is finite
cf.)A/N = 0 in the matrix quantum mechanics

» The model is a massive theory , which has no flat direction.
The background is classically stable. Furthermore, the background is
stable against quantum fluctuations thanks to the SU(2 | 4) symmetry
» Tunneling to the other vacua through the instanton effects (vi,...) is
suppressed in the k — oo limit

> The reduced model reproduces the planar limit of N=4 SYM on RxS®



- Testing the AdS/CFT correspondence




Deconfinement transition at finite T

Ishiki-Kim-Nishimura-A.T. ('08)
In the weak coupling limit at finite temperature, we can integrate out

all the massive modes except holonomy around time direction

and s’rudyo’rhe

/

== = 5>
>
<
(O]
S -001F}
(0]
©
©
(0]
N
T -0.02
£
2
SYM ——
PWMM &
-0.03 L |
0.068 0.071

1** order phase transition

~Hawking-Page transition

0.074 0.077

©exp(—pu/2T)

0.08

effective theory for the holonomy

_ known results

for N=4 SYM

on RxS’ in the weak
coupling limit

Aharony-Marsano-Minwalla-

Papadodimas-
Van Raamsdonk (’03))



Track-shaped Wilson loop

Honda-Ishiki-Nishimura-A.T., work in progress

<€
C
K \ > non-BPS except T'=0

1. T =0 circular Wilson loop ~ half-BPS
(W(C)) = \Eh(x/ﬁ)

Erickson-Semenoff-Zarembo ('00)
Pestun ('07)

@\ agrees with the
prediction from

(w/2)1/2(2X)3/4

large A the gravity side

) Prediction from gravity
2. T — oo quark (W-boson) potential

side for Iqrgg A
. —1 C 4o/ 2
VL) = [fim - InW(C) = -7 © T TA(L/4)

conformal inv. Maldacena, Rey-Yee



Circular Wilson loop in the reduced model
-

4 AR
4 |L g RxS’

/\ > _ """"""" grand circle
\/ conformal

mapping

1. By summing up all the planar ladder diagrams, we reproduce
the exact result, as Erickson-Semenoff-Zarembo did in the
continuum theory Ishiki-Shimasaki-A.T. ('11)

—

M%
N7




Circular Wilson loop

in the reduced model ‘con’r’dt
-

2. Full Monte Carlo simulation
Honda-Ishiki-Nishimura-A.T.

1 |
n=3/2 <InW> ’
vr=1 VASY M .""®
k = oo 0.8
Method 06 @,/.@"’
Anagnostopoulos-Hanada- @‘ ,,,,,

Nishimura-Takeuchi ('07) 0.4 . et
0’&' \J
S
0.2 & exact =======-
1_|Oop .........
. strongI ------------------
0
2 3 4




Track-shaped Wilson loop on the gravity side
I

We calculate vev of track-shaped Wilson loop on the gravity side by

calculating the area of minimal surface numerically

In(W)
V2Asy M

2

1.8

1.6

1.4

1.2

14

[ [ [ [ [ [ [
const.+r\~1aldacena

circular ©) )

L LAET
A
AL
A
AA
L
B PN |
N o
X
265
.A_\AA
2
P
2%
— /_\.A —
25
Ai
PV

AL a5

cf.) Satoh’ talk

We are now
calculating it on the
gauge theory side
using Monte Carlo
simulation



Chiral primary operator

I S
» chiral primary operator (half-BPS)

Op = Ty V"2 Bt (pmydmy - - dm,p) LI+ traceless symmetric
scaling dimension A
> ratio to the result in free theory
cn, = (O (21)01,(22)) /(O (1) O, (%2)) free
cr 1,13 = (O, (21) O, (22)O1,(23)) /(O (21) O, (22) O1;(23)) free

» non-renormalization theorem Eden-Howe-West (99),
cn, =1, cnp=1

» prediction from the gravity side Lee-Minwalla-Rangamani-Seiberg ('98)

GKP-Witten # ‘L3 =1 consistent with
o C C C
relation VEALCACAS | N_y00 2 gy py—o0 non-renormalization theorem
» 4-pt function
renormalized =) nontrivial test for AdS/CFT

prediction from the gravity side Arutyunov-Frolov (°00)



CPO in reduced model

» correspondence

_ dS23
Or(t) = 2—7T2T}”1m2 AL (Pmq Py - Bmp)

1
OIPW(t) — _Tm1m2--'mATr(Xm1Xm2 oo XmA)
n

» 2-pt function of CPOs in free theory
SYM

dQ5 dY. )\2 , A= dY 1
/ ; S (tr((XaXy) (8 23Nt (X X)) (¢, 23))ym = - u(t+t)/ 3d823

272 272 67r4e 272 272 | — 2!|4
>\2M4 e—h(t—t")
reduced model T 162741 — o—n(t—t)
+HrEP=t
1 2 . 1 —p(2i41)(—t)
——(tr((XaXp) ENtr(XaXp) () pw = —5— e
n2v “ ¢ 4n2vp? IZ, 2 2 (5 + 3)2

j=LI-J| m=—J
>\2M4 e—1(t—t")
162741 — e—n(t—t')

Honda-Ishiki-Kim-Nishimura-A.T., to appear



Numerical simulation of correlation

function of CPOs
I

> 2_p1. function for A =2 Honda-Ishiki-Kim-Nishimura-A.T.,, to appear
n=3/2, v=1, k=2

Simulation

Free

1

0.8

0.6

0.4

0.2

a0

0eePeeeee

@

- .-
= =
=l [
[]I

%Aééééééééééééé

| A’SYM =0.55 |—@—¢ _
}\'SYM =4.39 }—E’—f
| ] ] ] ] | ]
0 2 4 6 8 10 12 14

16

» extract co



Numerical simulation of correlation

function of CPOs ‘con’r’dt
-

> 3-pt function for A =2 o0 = ()l (xixs) r (455600 1 (355000

2
9pw N

Simulation 1 I T I

Free P 1@3
(c222) o | q@mﬁ) _
..I...II.II , prediction
1 - 3
0 6[% (c2)2 | from the
A A A A A s A A A A A gravity S|de3
0.4 4 A1 copp = (€2)2
_ Agym =0.55 —S— | consistent
02 }\’SYM =4.39 }—E)—<
O | | | |
0 5 10 p 15 20



- Summary and discussion




Summary

» We proposed a non-perturbative formulation of planar N=4 SYM
through a novel large-N reduction on S°.

» Our formulation preserves 16 SUSY and the gauge symmetry so
that it overcomes difficulties in lattice SUSY and requires no fine-
tuning.

» We extended the large-N reduction to general compact semi-
simple group manifolds and their coset spaces.

(no time to discuss) Kawai-Shimasaki-A.T. ('09)

» We provided some consistency check of our formulation at weak
t’ Hooft coupling:
vanishing beta fn. (no time to discuss)
confinine-deconfinement transition at finite temperature
vev of Wilson loops (all orders)
correlation fns of chiral primary operators (CPO:s).



Summary (cont’d)
-

» We calculated vev of track-shaped Wilson loops on the gravity
side, which can be used for a nontrivial test of the AdS/CFT
correspondence

» We showed the result of the numerical simulation for vev of the
circular Wilson loop, which is consistent with the exact result

» We showed the result of the numerical simulation for 2-pt and 3-pt
fns of CPOs, which is consistent with the AdS/CFT correspondence

» We have done the numerical simulation for 4-pt function of CPO:s.
We are now analyzing the prediction from the gravity side

» We formulated Chern-Simon theory on S° through the novel large-
N reduction. We showed that it reproduces the known exact results
(no time to discuss) Ishii-Ishiki-Ohta-Shimasaki-A.T.



Discussion
I

» Numerical simulation should be continued.

first successful example of numerical simulation of 4D SUSY theory
» Develop analytic method. Derive integrable structure of N=4 SYM
» N=1 SYM on RxS>. Gluino condensation.
> ABJM theory

Hanada-Mannelli-Matsuo Asano-Ishiki-Okada-Shimasaki Honda-Yoshida
Asano’s poster

» Large-N reduction on general curved space-time.
Description of curved space-time in matrix models



Conformal mapping
N

d3%4 == dtr2 _I_ ,,,,2dg2§

2
2 _ < _ut/2

2 r— —e
= ek | dt* + (—) d§22\ 0

s /
— ut 3.2
=e dstS3 ,

— : radius of S°
scalar field ¢R4 — e—uT/2¢RxS3

4 3
gauge field 1-form ART — pBRXS

4 3
fermion field ¢R = e—3ut/4¢RxS

N=4 SYM on R* at a conformal point === | N=4 SYM on RxS®




Calculation of beta function

fermion self-energy

-pﬁ»-

scalar self-energy

-»&»- -FQ»-

/ \
— _
AN - _ /
(S-1) (S-2) (5-3)
(S —4) (S —6)

J

(Y -3)

Ishiki-Shimasaki-A.T. ('11)
42
Z¢ =1- g—k log v

p3n

!

no mass renormalization

~conformal inv.

l

1692k
p3n

Z¢:1 log v

18g2k

Zg=1
g M3n

log v

1]
g = Z¢Z(§ beta function

vanishes !




Calculation of beta function D=

example
ig + k1wl i(p— @) + row?
dg *q 1wy, “p—4 2%Jy  aJomoko(julit) #=J1—m1k1(Jujs)

2k Y ¥ / Jt) F (7 y
2 27 J1— uljs) J s J: U, J s
TimiR1 Jomiaa 272 (ngl)2 (p— )2 — (wy¥) 1—m1k1(Juds) Im(Jsjt)” Jomoka(jujt) Jm(jtjs)

. . js"‘ju jt+ju
=32pkn(—1)m"Usmit) Y7 > (27+1)(2R1 +1)(2Ry +1)

R1=|js—ju| Ro=|jt—Jul

1 1
(Rl + 1)(R2 + 1)(R1 + R + %) R, ‘l‘? R4 ?
2 2 3y2 R2+§ R> 5
p* + pu*(R1 + Ry + 5) B el
1 1
Ry Ro(Ry + Ra + 3) gl glii 1 {R2 Ry J}
A CE S I N | RO

nu/2 n—14u/2
T, e )




Another choice of L;
I

Kawai-Shimasaki-A.T. ('09)
/Lo N
Li

A g1,

L

o) .

\ L, ®1K/ N=kY d®>=k

d=1
regularized regular
limit

N representation
K — 00, k—0 with g°k = — fixed
V53




