β-deformed matrix models and Nekrasov Partition Functions

Takeshi Oota (OCAMI)
Joint Work with
H. Itoyama (Osaka City U. \& OCAMI)

Progress in Quantum Field Theory and String Theory
April 4, $2012 @ O C U$

1. Introduction

(Random) matrix models 0-dim. field theory

$$
Z=\int[d M] \exp \left(\frac{1}{g_{s}} \operatorname{Tr} W(M)\right) .
$$

Various types of matrix models:

- choice of "ensemble" (type of matrix)
- choice of the "action" W
\rightarrow various usage in 2d gravity (non-critical string), IKKT model, Dijkgraaf-Vafa (DV) theory,......
- (Example) Hermitian one-matrix model
- matrix M: an NxN Hermitian matrix
- Large N limit \rightarrow matrix model curve

$$
y^{2}(z)=\frac{1}{4} W^{\prime}(z)^{2}+f(z)
$$

- DV theory('02): gauge theory/matrix model correspondence identify this curve with the Seiberg-Witten curves of the $\mathrm{N}=2$ gauge theories
- Alday-Gaiotto-Tachikawa (AGT) conjecture ([0906.3219]) \rightarrow revisit this gauge theory/matrix model correspondence

AGT conjecture

from the view point of gauge theory/matrix model correspondence

\rightarrow renewed interests in β-deformed matrix models

Itoyama-T.O.-Maruyoshi [0911.4244], Eguchi-Maruyoshi [0911.4797], Sulkowski [0912.5476],
Mironov-Morozov-Shakirov [1001.0563], Itoyama-T.O. [1003.2929], Mironov-Morozov-Morozov [1003.5752],
Awata-Yamada [1004.5122], Eguchi-Maruyoshi [1006.0828], Itoyama-T.O.-Yonezawa [1008.1861], Maruyoshi-Yagi [1009.5553], Mironov-Morozov-Shakirov [1010.1734], Marshakov-Mironov-Morozov [1011.4491],
Mironov-Morozov-Shakirov [1011.5629; 1012.3137], Mironov-Morozov-Popolitov-Shakirov [1103.5470],
Itoyama-Yonezawa [1104.2738], Bonelli-Maruyoshi-Tanzini [1104.4016], Itoyama-T.O. [1106.1539], Nishinaka-Rim [1112.3545], Morozov [1201.4595], Mironov-Morozov-Zakirova [1202.6029],

Many variants of β-deformed matrix models

Here we concentrate on a type which has close connection with the Selberg integral.

4d/2d connection through 0d matrices (DV,[0909.2453])

$$
4 \mathrm{~d} N=2 \mathrm{SU}(2) \text { with } \mathrm{N}_{\mathrm{f}}=4
$$

2d CFT

```
instanton part of Nekrasov part. fn.
```


AGT

four-point conformal block

0d β-deformed matrix model of Selberg type

Mironov-Morozov-Shakirov [1001.0573], Itoyama-T.O [1003.2929]

- Matrix model technology
\checkmark Saddle point evaluation in the large N limit
\checkmark Orthogonal polynomials
\checkmark Recursion relations
$\checkmark \ldots \ldots$
- message:
(a generalization of) the Selberg integral also plays important role in the β-deformed matrix models, which have connection with $\mathrm{N}=2$ gauge theories
\rightarrow Kadell integral (1997) (Macdonald's ex-conjecture (1987))

oEuler beta function

$$
B\left(\alpha_{1}, \alpha_{2}\right)=\int_{0}^{1} t^{\alpha_{1}-1}(1-t)^{\alpha_{2}-1} d t=\frac{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)}{\Gamma\left(\alpha_{1}+\alpha_{2}\right)} .
$$

-Selberg integral (1944)
(multiple generalization of the beta fn .)

$$
\begin{aligned}
S_{N}\left(\alpha_{1}, \alpha_{2}, \beta\right) & =\left(\prod_{I=1}^{N} \int_{0}^{1} d x_{I}\right) \prod_{I=1}^{N} x_{I}^{\alpha_{1}-1}\left(1-x_{I}\right)^{\alpha_{2}-1} \prod_{1 \leq I<J \leq N}\left|x_{I}-x_{J}\right|^{2 \beta} \\
& =\prod_{j=1}^{N} \frac{\Gamma(1+j \beta) \Gamma\left(\alpha_{1}+(j-1) \beta\right) \Gamma\left(\alpha_{2}+(j-1) \beta\right)}{\Gamma(1+\beta) \Gamma\left(\alpha_{1}+\alpha_{2}+(N+j-2) \beta\right)}
\end{aligned}
$$

Atle Selberg, "Bemerkinger om et multipelt integral (Remarks on a multiple integral)",
Norsk Matematisk Tidsskrift 26 (1944), 71-78 (in Norwegian)

- Macdonald-Kadell formula (Kadell integral)

$$
\begin{aligned}
& \prod_{I=1}^{N}\left(\int_{0}^{1} d x_{I}\right) P_{\lambda}^{(1 / \beta)}(x) \prod_{I=1}^{N} x_{I}^{\alpha_{1}-1}\left(1-x_{I}\right)^{\alpha_{2}-1} \prod_{I<J}\left|x_{I}-x_{J}\right|^{2 \beta} \\
= & \frac{\left[\alpha_{1}+(N-1) \beta\right]_{\lambda}^{(\beta)}}{\left[\alpha_{1}+\alpha_{2}+2(N-1) \beta\right]_{\lambda}^{(\gamma)}} P_{\lambda}^{(1 / \beta)}\left(1^{N}\right) S_{N}\left(\alpha_{1}, \alpha_{2}, \beta\right) .
\end{aligned}
$$

$$
\begin{array}{ll}
\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots\right) \quad \text { :a partition } & \lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0 \\
{[\alpha]_{\lambda}^{(\beta)}=\prod_{i=1}^{\infty} \frac{\Gamma\left(\alpha+\lambda_{i}+(1-i) \beta\right)}{\Gamma(\alpha+(1-i) \beta)} .} & P_{\lambda}^{(1 / \beta)}(x): \text { the Jack symmetric polynomial }
\end{array}
$$

Plan of this talk

1. Introduction
2. $\quad \beta$-deformed matrix model
3. $\mathrm{AGT}(4 \mathrm{~d} / 2 \mathrm{~d}$ connection) through 0 d matrices
4. On a basis of q-expansion
5. Summary

2. β-deformed matrix model

- Hermitian One Matrix Model:
$M: N \times N$ Hermitian matrix, λ_{I} : eigenvalue of M

$$
\begin{aligned}
Z & =\int[\mathrm{d} M] \exp \left(\frac{1}{g_{s}} \operatorname{Tr} W(M)\right) \\
& =\int_{-\infty}^{\infty} \mathrm{d}^{N} \lambda \prod_{I=1}^{N} \exp \left(\frac{1}{g_{s}} W\left(\lambda_{I}\right)\right) \prod_{1 \leq I<J \leq N}\left|\lambda_{I}-\lambda_{J}\right|^{2} .
\end{aligned}
$$

- β-deformed $\mathrm{MM}(\beta$-ensemble)

$$
Z=\int_{-\infty}^{\infty} \mathrm{d}^{N} \lambda \prod_{I=1}^{N} \exp \left(\frac{\sqrt{\beta}}{g_{s}} W\left(\lambda_{I}\right)\right) \prod_{1 \leq I<J \leq N}\left|\lambda_{I}-\lambda_{J}\right|^{2 \beta} .
$$

$$
\beta= \begin{cases}1 / 2 & \text { Orthogonal matrix } \\ 1 & \text { Hermitian matrix } \\ 2 & \text { Symplectic matrix }\end{cases}
$$

- (generalized) β-deformed MM

$$
\begin{aligned}
Z= & \int_{C} d^{N} x \prod_{I=1}^{N} \exp \left(\sqrt{\beta} W\left(x_{I}\right)\right) \prod_{1 \leq I<J \leq N}\left|x_{I}-x_{J}\right|^{2 \beta}, \\
& \text { (for some contour } C \text {) }
\end{aligned}
$$

- β-deformed MM of Selberg Type

Take $C=[0,1]$

$$
\exp (\sqrt{\beta} W(x))=x^{\alpha_{1}-1}(1-x)^{\alpha_{2}-1} \exp (\sqrt{\beta} \tilde{W}(x)) .
$$

If $\tilde{W}(x)=0 \Rightarrow$ Selberg integral

- MM of Selberg Type:

$$
\begin{aligned}
& Z\left(\alpha_{1}, \alpha_{2}, \beta ;\left\{g_{i}\right\}\right) \\
& =\int_{0}^{1} d^{N} x_{I} \prod_{I=1}^{N} x_{I}^{\alpha_{1}-1}\left(1-x_{I}\right)^{\alpha_{2}-1} \prod_{I<J}\left(x_{I}-x_{J}\right)^{2 \beta} \exp \left(\sum_{I=1}^{N} W\left(x_{I} ; g\right)\right) \\
& =S_{N}\left(\alpha_{1}, \alpha_{2}, \beta\right)\left\langle\left\langle\exp \left(\sum_{I=1}^{N} W\left(x_{I} ; g\right)\right)\right\rangle\right\rangle_{N} \\
& W(r \cdot a)-\sum_{\text {average w.r.t. the Selberg integral }}^{\infty}
\end{aligned}
$$

- Exactly calculable: Itoyama-T.o. [1003.2929] expansion in Jack polynomial basis and by using Kadell integral
- the expansion into the Jack polynomials

$$
\exp \left(\sum_{I=1}^{N} W\left(x_{I} ;\left\{g_{i}\right\}\right)\right)=\sum_{\lambda} C_{\lambda}^{(\beta)}(g) P_{\lambda}^{(1 / \beta)}(x) .
$$

Here $P_{\lambda}^{(1 / \beta)}(x)$ is a polynomial of $x=\left(x_{1}, \cdots, x_{N}\right)$ and $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots\right)$ is a partition: $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0$.

- Jack polynomials are the eigenstates of

$$
\sum_{I=1}^{N}\left(x_{I} \frac{\partial}{\partial x_{I}}\right)^{2}+\beta \sum_{1 \leq I<J \leq N}\left(\frac{x_{I}+x_{J}}{x_{I}-x_{J}}\right)\left(x_{I} \frac{\partial}{\partial x_{I}}-x_{J} \frac{\partial}{\partial x_{J}}\right)
$$

with homogeneous degree $|\lambda|=\lambda_{1}+\lambda_{2}+\cdots$

- normalization

$$
P_{\lambda}^{(1 / \beta)}(x)=m_{\lambda}(x)+\sum_{\mu<\lambda} a_{\lambda \mu} m_{\mu}(x)
$$

Here $m_{\lambda}(x)$ is the monomial symmetric polynomial. $"<"$ is dominance ordering.

- Explicit forms of the Jack polynomials for $|\lambda| \leq 2$

$$
\begin{aligned}
& P_{(1)}^{(1 / \beta)}(x)=m_{(1)}(x)=\sum_{I=1}^{N} x_{I}, \\
& P_{(2)}^{(1 / \beta)}(x)=m_{(2)}(x)+\frac{2 \beta}{1+\beta} m_{(12)}(x)=\sum_{I=1}^{N} x_{I}^{2}+\frac{2 \beta}{1+\beta} \sum_{1 \leq I<J \leq N} x_{I} x_{J}, \\
& P_{(12)}^{(1, \beta)}(x)=m_{(12)}(x)=\sum_{1 \leq I<J \leq N} x_{I} x_{J} .
\end{aligned}
$$

- The Macdonald-Kadell formula:

$$
\begin{aligned}
& \left\langle\left\langle P_{\lambda}^{(1 / \beta)}(x)\right\rangle\right\rangle_{N} \\
& =\prod_{s \in \lambda} \frac{\left\{a(s)+\alpha_{1}+\left(N-1-l^{\prime}(s)\right) \beta\right\}}{\left\{a(s)+\alpha_{1}+\alpha_{2}+\left(2 N-2-l^{\prime}(s)\right) \beta\right\}} \frac{\left\{a(s)+\left(N-l^{\prime}(s)\right) \beta\right\}}{\{a(s)+(l(s)+1) \beta\}} .
\end{aligned}
$$

where λ^{\prime} is the conjugate partition of λ,

$$
a(s)=\lambda_{i}-j, \quad l(s)=\lambda_{j}^{\prime}-i, \quad a^{\prime}(s)=j-1, \quad l^{\prime}(s)=i-1
$$

arm length
leg length
coarm length
coleg length

$$
s=(i, j) \in \lambda
$$

3. $\mathrm{AGT}(4 \mathrm{~d} / 2 \mathrm{~d}$ connection) through 0 d matrices

2d: conformal block

$$
\widehat{M}(x, y ; q)=\prod_{I=1}^{N_{L}}\left(1-q x_{I}\right)^{\sqrt{\beta} \alpha_{3}} \prod_{J=1}^{N_{R}}\left(1-q y_{J}\right)^{\sqrt{\beta} \alpha_{2}} \prod_{I=1}^{N_{L}} \prod_{J=1}^{N_{R}}\left(1-q x_{I} y_{J}\right)^{2 \beta} .
$$

- 4d: Instanton part of Nekrasov partition function for $\mathrm{N}=2$ $\mathrm{SU}(2)$ gauge theory with $\mathrm{N}_{\mathrm{f}}=4$ (antifundamental matters)

$$
\begin{aligned}
& Z_{\text {inst }}(q)=\sum_{\lambda_{1}, \lambda_{2}} q^{\left|\lambda_{1}\right|+\left|\lambda_{2}\right|} Z_{\lambda_{1}, \lambda_{2}} . \\
& q=\exp \left(2 \pi i \tau_{\mathrm{UV}}\right), \quad \tau_{\mathrm{UV}}=\frac{4 \pi i}{g_{\mathrm{UV}}^{2}}+\frac{\theta_{\mathrm{UV}}}{2 \pi} . \\
& Z_{(1),(0)}=-\frac{1}{\epsilon_{1} \epsilon_{2}} \frac{\prod_{r=1}^{4}\left(a+m_{r}\right)}{2 a(2 a+\epsilon)}, \\
& Z_{(0),(1)}=-\frac{1}{\epsilon_{1} \epsilon_{2}} \frac{\prod_{r=1}^{4}\left(a-m_{r}\right)}{2 a(2 a-\epsilon)}, \\
& \begin{aligned}
Z_{(2),(0)} & =\frac{1}{2!\epsilon_{1} \epsilon_{2}^{2}\left(\epsilon_{1}-\epsilon_{2}\right)} \frac{\prod_{r=1}^{4}\left(a+m_{r}\right)\left(a+m_{r}+\epsilon_{2}\right)}{2 a\left(2 a+\epsilon_{2}\right)\left(2 a+\epsilon+\epsilon_{2}\right)}, \\
Z_{(0),(2)} & =\frac{1}{2!\epsilon_{1} \epsilon_{2}^{2}\left(\epsilon_{1}-\epsilon_{2}\right)} \frac{\prod_{r=1}^{4}\left(a-m_{r}\right)\left(a-m_{r}-\epsilon_{2}\right)}{2 a\left(2 a-\epsilon_{2}\right)(2 a-\epsilon)\left(2 a-\epsilon-\epsilon_{2}\right)}, \\
Z_{(11),(0)} & =-\frac{1}{2!\epsilon_{1}^{2} \epsilon_{2}\left(\epsilon_{1}-\epsilon_{2}\right)} \frac{\prod_{r=1}^{4}\left(a+m_{r}\right)\left(a+m_{r}+\epsilon_{1}\right)}{2 a\left(2 a+\epsilon_{1}\right)(2 a+\epsilon)\left(2 a+\epsilon+\epsilon_{1}\right)}, \\
Z_{(0),(11)} & =-\frac{1}{2!\epsilon_{1}^{2} \epsilon_{2}\left(\epsilon_{1}-\epsilon_{2}\right)} \frac{\prod_{r=1}^{4}\left(a-m_{r}\right)\left(a-m_{r}+\epsilon_{1}\right)}{2 a\left(2 a-\epsilon_{1}\right)(2 a-\epsilon)\left(2 a-\epsilon-\epsilon_{1}\right)}, \\
Z_{(1),(1)} & =\frac{1}{\epsilon_{1}^{2} \epsilon_{2}^{2}} \frac{\prod_{r=1}^{4}\left(a+m_{r}\right)\left(a-m_{r}\right)}{\left(4 a^{2}-\epsilon_{1}^{2}\right)\left(4 a^{2}-\epsilon_{2}^{2}\right)} .
\end{aligned}
\end{aligned}
$$

2d: conformal block \leftarrow model independent (representation theoretic) quantity

$$
\phi(z) \phi(w) \sim(1 / 2) \log (z-w)
$$

Free field representation of the conformal block

$$
\mathcal{B}(q) \sim\langle 0| \mathrm{e}^{\alpha_{1} \phi(0)} \mathrm{e}^{\alpha_{2} \phi(q)} \mathrm{e}^{\alpha_{3} \phi(1)} \mathrm{e}^{\alpha_{4} \phi(\infty)}
$$

$$
\times \underbrace{\left(\int_{0}^{q} \mathrm{~d} z \mathrm{e}^{2 \sqrt{\beta} \phi(z)}\right)^{N_{L}}} \underbrace{\left(\int_{1}^{\infty} \mathrm{d} w \mathrm{e}^{2 \sqrt{\beta} \phi(w)}\right)^{N_{R}}|0\rangle}
$$

screening charges

$$
\Delta_{i}=\frac{1}{4} \alpha_{i}\left(\alpha_{i}-2 Q_{E}\right), \quad \Delta_{I}=\frac{1}{4} \alpha_{I}\left(\alpha_{I}-2 Q_{E}\right)
$$

$$
\alpha_{I}=\alpha_{1}+\alpha_{2}+2 \sqrt{\beta} N_{L}=-\alpha_{4}-\alpha_{4}-2 \sqrt{\beta} N_{R}+2 Q_{E}
$$

$$
\begin{gathered}
Q_{E}=\sqrt{\beta}-\frac{1}{\sqrt{\beta}} \\
c=1-6\left(\sqrt{\beta}-\frac{1}{\sqrt{\beta}}\right)^{2}
\end{gathered}
$$

- 0d: β-deformed matrix model of Selberg type

$$
\begin{aligned}
& \langle\langle\mathcal{O}\rangle\rangle \\
& =\frac{1}{\mathcal{N}} \int_{0}^{1} d^{N_{L}} x \prod_{I=1}^{N_{L}} x_{I}^{\sqrt{\beta} \alpha_{1}}\left(1-x_{I}\right)^{\sqrt{\beta} \alpha_{2}} \prod_{1 \leq I<J \leq N_{L}}\left|x_{I}-x_{J}\right|^{2 \beta} \\
& \times \int_{0}^{1} d^{N_{R}} y \prod_{J=1}^{N_{R}} y_{J}^{\sqrt{\beta} \alpha_{4}}\left(1-y_{J}\right)^{\sqrt{\beta} \alpha_{3}} \prod_{1 \leq I<J \leq N_{R}}\left|y_{I}-y_{J}\right|^{2 \beta} \mathcal{O}
\end{aligned}
$$

$$
\widehat{M}(x, y ; q)=\prod_{I=1}^{N_{L}}\left(1-q x_{I}\right)^{\sqrt{\beta} \alpha_{3}} \prod_{J=1}^{N_{R}}\left(1-q y_{J}\right)^{\sqrt{\beta} \alpha_{2}} \prod_{I=1}^{N_{L}} \prod_{J=1}^{N_{R}}\left(1-q x_{I} y_{J}\right)^{2 \beta}
$$

$$
\langle\langle 1\rangle\rangle=1 .
$$

$$
\begin{aligned}
& \mathcal{N}=2, S U(2), N_{f}=4: \text { six parameters } \\
& \frac{\epsilon_{1}}{g_{s}}, \frac{a}{g_{s}}, \frac{m_{1}}{g_{s}}, \frac{m_{2}}{g_{s}}, \frac{m_{3}}{g_{s}}, \frac{m_{4}}{g_{s}}
\end{aligned}
$$

By examining the explicit form of the first order q-expansion coefficients, we get

0d-4d relation

$$
\begin{array}{rlrl}
\sqrt{\beta} N_{L} & =\frac{a-m_{2}}{g_{s}}, & \sqrt{\beta} N_{R} & =-\frac{a+m_{3}}{g_{s}}, \\
\alpha_{1} & =\frac{1}{g_{s}}\left(m_{2}-m_{1}+\epsilon\right), & \alpha_{2} & =\frac{1}{g_{s}}\left(m_{2}+m_{1}\right), \\
\alpha_{3} & =\frac{1}{g_{s}}\left(m_{3}+m_{4}\right), & \alpha_{4} & =\frac{1}{g_{s}}\left(m_{3}-m_{4}+\epsilon\right), \\
& \epsilon=\epsilon_{1}+\epsilon_{2} \quad \frac{\epsilon_{1}}{g_{s}}=\sqrt{\beta}, & \frac{\epsilon_{2}}{g_{s}}=-\frac{1}{\sqrt{\beta}} .
\end{array}
$$

4. On a basis of q-expansion

$$
\widehat{M}(x, y ; q)=\prod_{I=1}^{N_{L}}\left(1-q x_{I}\right)^{\sqrt{\beta} \alpha_{3}} \prod_{J=1}^{N_{R}}\left(1-q y_{J}\right)^{\sqrt{\beta} \alpha_{2}} \prod_{I=1}^{N_{L}} \prod_{J=1}^{N_{R}}\left(1-q x_{I} y_{J}\right)^{2 \beta} .
$$

-There is a bais of q -expansion
such that

$$
\widehat{M}(x, y ; q)=\sum_{\lambda_{1}, \lambda_{2}} q^{\left|\lambda_{1}\right|+\left|\lambda_{2}\right|} \widehat{M}_{\lambda_{1}, \lambda_{2}}(x, y) .
$$

$$
Z_{\lambda_{1}, \lambda_{2}}=\left\langle\left\langle\widehat{M}_{\lambda_{1}, \lambda_{2}}(x, y)\right\rangle\right\rangle .
$$

oFactorization (conjecture)

$$
\widehat{M}_{\lambda_{1}, \lambda_{2}}(x, y)=M_{\lambda_{1}, \lambda_{2}}(x) \widetilde{M}_{\lambda_{1}, \lambda_{2}}(y) .
$$

-Explicit forms

$$
\begin{array}{rlr}
M_{(1),(0)}(x) & =-\alpha_{2}-\left(\frac{\alpha_{I}-2 Q_{E}}{\alpha_{I}-Q_{E}}\right) \sqrt{\beta} p_{1}(x), & p_{k}(x)=\sum_{I=1}^{N_{L}} x_{I}^{k}, \\
\widetilde{M}_{(1),(0)}(y) & =\sqrt{\beta} p_{1}(y), & p_{k}(y)=\sum_{J=1}^{N_{R}} y_{J}^{k} . \\
M_{(0),(1)}(x) & =\sqrt{\beta} p_{1}(x), \\
\widetilde{M}_{(0),(1)}(y) & =-\alpha_{3}-\left(\frac{\alpha_{I}}{\alpha_{I}-Q_{E}}\right) \sqrt{\beta} p_{1}(y), \\
& \\
& -\frac{2\left(2 a-\epsilon-\epsilon_{2}\right)}{\epsilon_{2}\left(\epsilon_{1}-\epsilon_{2}\right)\left(2 a+\epsilon_{2}\right)} \beta P_{\left(1^{2}\right)}^{(1 / \beta)}(x) \\
& +\frac{\left(\epsilon_{1}+\epsilon_{2}\right)\left(2 a-\epsilon_{1}+\epsilon_{2}\right)\left(2 a-\epsilon-\epsilon_{2}\right)}{4 a g_{s}\left(2 a+\epsilon_{2}\right)} \sqrt{\beta} P_{(2)}^{(1 / \beta)} \\
\widetilde{M}_{(2),(0)}(y) & =\beta P_{(2)}^{(1 / \beta)}(y) .
\end{array}
$$

OSome properties of M

(1) In general, they are inhomogeneous polynomials
(2)

$$
\widetilde{M}_{\lambda_{1},(0)}(y)=\text { const } \times P_{\lambda_{1}}^{(1 / \beta)}(y) .
$$

(3) They are greatly simplified at $\beta=1$

- Cauchy identity

$$
\begin{aligned}
\prod_{I} \prod_{J} \frac{1}{1-q x_{I} y_{J}} & =\exp \left(\sum_{k=1}^{\infty} \frac{q^{k}}{k} p_{k}(x) p_{k}(y)\right) \\
& =\sum_{\lambda} q^{|\lambda|} s_{\lambda}(x) s_{\lambda}(y) \\
& =\sum_{\lambda} q^{|\lambda|} s_{\lambda}\left(\left\{p_{k}(x)\right\}\right) s_{\lambda}\left(\left\{p_{k}(y)\right\}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \widehat{M}(x, y ; q)=\prod_{I=1}^{N_{L}}\left(1-q x_{I}\right)^{\sqrt{\beta} \alpha_{3}} \prod_{J=1}^{N_{R}}\left(1-q y_{J}\right)^{\sqrt{\beta} \alpha_{2}} \prod_{I=1}^{N_{L}} \prod_{J=1}^{N_{R}}\left(1-q x_{I} y_{J}\right)^{2 \beta} \\
& \quad=\exp \left(-\sum_{k=1}^{\infty} \frac{q^{k}}{k}\left(\alpha_{2}+\sqrt{\beta} p_{k}(x)\right) \sqrt{\beta} p_{k}(y)\right) \exp \left(-\sum_{k=1}^{\infty} \frac{q^{k}}{k} \sqrt{\beta} p_{k}(x)\left(\alpha_{3}+\sqrt{\beta} p_{k}(y)\right) .\right. \\
& \exp \left(-\sum_{k=1}^{\infty} \frac{q^{k}}{k}\left(\alpha_{2}+\sqrt{\beta} p_{k}(x)\right) \sqrt{\beta} p_{k}(y)\right)=\sum_{\lambda_{1}} q^{\lambda_{1} \mid} s_{\lambda_{1}}\left(\left\{-\alpha_{2}-\sqrt{\beta} p_{k}(x)\right\}\right) s_{\lambda_{1}}\left(\left\{\sqrt{\beta} p_{k}(y)\right),\right. \\
& \exp \left(-\sum_{k=1}^{\infty} \frac{q^{k}}{k} \sqrt{\beta} p_{k}(x)\left(\alpha_{3}+\sqrt{\beta} p_{k}(y)\right)=\sum_{\lambda_{2}} q^{\left|\lambda_{2}\right|} s_{\lambda_{2}}\left(\left\{\sqrt{\beta} p_{k}(x)\right) s_{\lambda_{2}}\left(\left\{-\alpha_{3}-\sqrt{\beta} p_{k}(y)\right\}\right) .\right.\right.
\end{aligned}
$$

Oq-expansion in Schur polynomial basis

$$
\begin{aligned}
& \widehat{M}(x, y ; q) \\
& =\sum_{\lambda_{1}, \lambda_{2}} q^{\left|\lambda_{1}\right|+\left|\lambda_{2}\right|} s_{\lambda_{1}}\left(\left\{-\alpha_{2}-\sqrt{\beta} p_{k}(x)\right\}\right) s_{\lambda_{2}}\left(\left\{\sqrt{\beta} p_{k}(x)\right\}\right) s_{\lambda_{1}}\left(\left\{\sqrt{\beta} p_{k}(y)\right\}\right) s_{\lambda_{2}}\left(\left\{-\alpha_{3}-\sqrt{\beta} p_{k}(y)\right\}\right) .
\end{aligned}
$$

But for generic β,

$$
\begin{aligned}
& M_{\lambda_{1}, \lambda_{2}}(x) \neq s_{\lambda_{1}}\left(\left\{-\alpha_{2}-\sqrt{\beta} p_{k}(x)\right\}\right) s_{\lambda_{2}}\left(\left\{\sqrt{\beta} p_{k}(x)\right\}\right), \\
& \widetilde{M}_{\lambda_{1}, \lambda_{2}}(y) \neq s_{\lambda_{1}}\left(\left\{\sqrt{\beta} p_{k}(y)\right\}\right) s_{\lambda_{2}}\left(\left\{-\alpha_{3}-\sqrt{\beta} p_{k}(y)\right\}\right) .
\end{aligned}
$$

Only for $\beta=1$, Mironov-Morozov-Shakirov [1012.3137]

$$
\begin{aligned}
& M_{\lambda_{1}, \lambda_{2}}(x)=s_{\lambda_{1}}\left(\left\{-\alpha_{2}-p_{k}(x)\right\}\right) s_{\lambda_{2}}\left(\left\{p_{k}(x)\right\}\right), \\
& \widetilde{M}_{\lambda_{1}, \lambda_{2}}(y)=s_{\lambda_{1}}\left(\left\{p_{k}(y)\right\}\right) s_{\lambda_{2}}\left(\left\{-\alpha_{3}-p_{k}(y)\right\}\right) .
\end{aligned}
$$

5. Summary

$\checkmark \beta$-deformed matrix model of Selberg type
\checkmark calculation method by using the Jack polynomials and Kadell integral
\checkmark Application to q-expansion of the Nekrasov partition function

- Characterization of $M_{\lambda_{1}, \lambda_{2}}(x)$ and $\widetilde{M}_{\lambda_{1}, \lambda_{2}}(y)$ for generic β ?
- generalization to other gauge theories?

