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Goal:

Study the spectrum of BPS states in N=4
supersymmetric SU(N) Yang-Mills theories on the
Coulomb branch where the gauge group is broken to
U(1)n−1.

1. Introduce appropriate indices which are protected
from changes under deformations of the moduli and
coupling constants except at the walls of marginal
stability.

2. Compute these indices.

Review + arXiv:1203.4889



Helicity trace index / helicity supertrace Bachas, Kiritsis

Suppose we have a BPS state that breaks 4n
supersymmetries.

→ there will be 4n fermion zero modes (goldstino) on
the world-line of the state.

Consider a pair of fermion zero modes ψ0, ψ†0 carrying
J3 = ±1/2 and satisfying

{ψ0, ψ
†
0} = 1

If |0〉 is the state annihilated by ψ0 then

|0〉, ψ†0|0〉
give a degenerate pair of states with J3 = ±1/4.

⇒ (−1)F = (−1)2J3 = (−1)±1/2 = ±i

⇒ Tr(−1)F = 0, Tr(−1)F(2J3) = i



Lesson: Quantization of the fermion zero modes
produces Bose-Fermi degenerate states and makes
Tr(−1)F vanish.

Remedy: Define

B2n =
(−1)n

(2n)!
Tr(−1)F(2J3)2n =

(−1)n

(2n)!
Tr(−1)2J3(2J3)2n

Since there are 2n pairs of zero modes,

B2n =
(−1)n

(2n)!
TrrestTrzero(−1)2J(1)

3 +···2J(2n)
3 +2Jrest

3

×
(

2J(1)
3 + · · · 2J(2n)

3 + 2Jrest
3

)2n

= (−1)nTrrestTrzero(−1)2J(1)
3 +···2J(2n)

3 +2Jrest
3 × 2J(1)

3 × · · ·2J(2n)
3

= (−1)n(i)2n × Trrest(−1)2Jrest
3



B2n = Trrest(−1)2Jrest
3

Thus B2n effectively counts Trrest(−1)F, with the trace
taken over modes other than the 4n fermion zero
modes associated with broken supersymmetry.

Note: B2n does not receive any contribution from
non-BPS states which break more than 4n
supersymmetries and hence have more than 4n
fermion zero modes.

Due to this property B2n is protected from quantum
corrections.



Examples

N=4 SYM in D=4 has 16 supersymmetries.

1/2 BPS states break 8 supersymmetries.

⇒ the relevant index is B4.

1/4 BPS states break 12 supersymmetries.

Thus the relevant index is B6.



Twisted index

Suppose the theory has a global symmetry g that
commutes with some of the unbroken
supersymmetries of the BPS state.

Suppose further that there are 4n broken g-invariant
supersymmetries.

In that case

Bg
2n =

(−1)n

(2n)!
Tr
[
(−1)2J3(2J3)2ng

]
is a protected index that carries information about g
quantum number.



We shall mostly focus on SU(N) SYM theories

– can be geometrically realized on the world-volume
of N D3-branes.

Leaving out the 3+1 world-volume directions each
D3-brane can be located at any point in the 6
transverse directions.

⇒ 6N dimensional moduli space⇔ adjoint scalar vev

Of these 6 are associated with the center of mass U(1)
SYM and are irrelevant for our problem.

Complex coupling constant:

τ =
θ

2π
+ i

4π
g2

YM



In this description, BPS states are conveniently
represented as string networks ending on D3-branes.

Bergman; Bergman, Kol
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(p2,q2)

(p3,q3)
(p5,q5)

(p1,q1)

(p4,q4)

(1,0): D-string, (0,1): fundamental string

If gcd(p,q) = r then (p,q) ≡ r copies of (p/r, q/r).
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(p2,q2)

(p3,q3)
(p5,q5)

(p1,q1)

(p4,q4)

– carries charges Q = (q1, · · ·q5), P = (p1, · · ·p5).

Note:
∑

i qi = 0 =
∑

i pi ⇒ no U(1) charge



Rules for string network

1. The network must be planar.

2. A (p,q) string should lie along eiα(pτ̄ + q) (class A)
or eiα(pτ + q) (class B).

α: a constant for a given network.
Schwarz; Aharony, Hanany, Kol; Dasgupta, Mukhi; A.S.



Half BPS states correspond to single (p,q) strings
stretched between two D3-branes.
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(p,q)i

Q = (q,−q,0,0,0), P = (p,−p,0,0,0)

Note: Q and P are always parallel.

For these states B4 = 1 if gcd(q,p)=1 and 0 otherwise.

– follows from S-duality invariance and known
spectrum of (0,q) states. Olive, Witten; Osborn; A.S.; Segal, Selby



Quarter BPS states

The relevant index is B6.

A configuration with strings ending on four or more
D-branes is non-planar at a generic point in the
moduli space and hence non-supersymmetric.
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⇒ has B6 = 0.



Thus B6 receives contribution only from 3-string
junctions. Bergman
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We would like to compute B6 for an arbitrary 3-string
junction.



Although the string junction picture is useful in
determining the region of existence of 1/4 BPS states,
it is not very useful in finding the index B6.

This can be done in special cases by representing
them as bound states of multiple monopoles in gauge
theories and solving the associated supersymmetric
quantum mechanics problem. Bak, Lee, Yi; Gauntlett, Kim, Park, Yi; Stern, Yi

(0,s)

(1,k)
(−1,−k− s)

For this configuration B6 = (−1)s+1s



A three string junction exists in a certain region of the
moduli space bounded by walls of marginal stability.

?

Along each wall the 3-string junction becomes
marginally unstable against decay into a pair of half
BPS states.

Beyond these walls the state stops existing.

⇒ B6 = ∆B6 across the wall



Relevant decays are to a pair of half BPS states.
A.S.; Mukherjee, Mukhi, Nigam; Dabholkar, Guica, Murthy, Nampuri

Across a wall along which (Q,P) decays into a pair of
half BPS states with primitive charges (Q1,P1) and
(Q2,P2) the jump in the index B6 is

(−1)Q1.P2−P1.Q2+1|Q1.P2 −Q2.P1|B4(Q1,P1)B4(Q2,P2)

Denef; Denef, Moore; A.S.; Dabholkar, Gaiotto, Nampuri; Cheng, Verinde



(0,s)

(1,k)
(−1,−k− s)

Consider the wall along which the (0,s) string shrinks
to zero-size.

– decays to (1,k) string connecting a pair of
D3-branes and a (−1,−k− s) string connecting a pair
of D3-branes, each with B4 = 1.

The jump in B6 across this wall is given by (−1)s+1s in
agreement with direct index computation.

Dabholkar, Nampuri, Narayan



Can we calculate the B6 of a general 3-string
junction?

(p1,q1)

(p2,q2)

(p3,q3)

In general the decays are not primitive, e.g. for
(2,0)

(3,15)

(−5,−15)

none of the decays are primitive.



We need to use general wall crossing formula for
non-primitive decays in N=4 supersymmetric string /
field theories.

For the decay

(Q,P)→ (Q1,P1) + (Q2,P2)

∆B6 = (−1)Q1·P2−Q2·P1+1|Q1 · P2 −Q2 · P1|
×

∑
r1|Q1,P1

B4(Q1/r1,P1/r1)
∑

r2|Q2,P2

B4(Q2/r2,P2/r2)

Banerjee, Srivastava, A.S; A.S.

For SYM theories,∑
r|Q,P

B4(Q/r,P/r) = 1

⇒ simple formula for B6.



For

(p1,q1)

(p2,q2)

(p3,q3)

B6 = (−1)p1q2−p2q1+1|p1q2 − p2q1|

– symmetric in the three strings.

This solves completely the problem of computing B6
for N=4 supersymmetric SU(N) theories.



For other gauge groups we can compute B6 by
identifying various SU(3) subgroups and computing
B6 for different chage vectors in each SU(3).



We shall now return to more general planar string
network (possibly with internal loops).
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(p2,q2)

(p3,q3)
(p5,q5)

(p1,q1)

(p4,q4)

As argued before, B6 and any other index that is
defined everywhere in the moduli space vanish for
this configuration.



Strategy

Introduce an index that can be defined only in special
subspace of the moduli space where all the
D3-branes lie in a plane.

⇔ only two of the six adjoint Higgs fields take vev.

Make use of the SO(4)≡ SU(2)L × SU(2)R rotational
symmetry in the four directions transverse to the
plane of the 3-branes to introduce a twisted index.



SU(2)L × SU(2)R × SU(2)rotation transformation laws of
various supersymmetries:

State unbroken susy broken susy

Half BPS (1,2,2) + (2,1,2) (1,2,2) + (2,1,2)

Class A quarter BPS (1,2,2) (1,2,2) + 2 (2,1,2)

Class B quarter BPS (2,1,2) 2(1,2,2) + (2,1,2)

Class A states and half BPS states have four broken
and four unbroken SU(2)L invariant SUSY

Of these two of each are invariant under I3R + J3

(I3L, I3R,J3): Cartan gen. of SU(2)L × SU(2)R × SU(2)rotation



Following earlier logic we can now introduce
protected index

B2(z) = − 1
2!

Tr{(−1)2J3z2I3L(2J3)2}

B1(y, z) = − 1
y− y−1 Tr

{
e2iπJ3z2I3L y2I3R+2J3 (2J3)

}
Similar index for N=2 SUSY theories are known.

Gaiotto, Moore, Neitzke

One can show that for class A states

B2(z) = limy→1B1(y, z)

B6 = limz→1(z + z−1 − 2)−2B2(z)

Thus B1(y, z) is the most general index.



Can we compute B1(y, z) for a general string network?

1. For half BPS states we have all the information and
B1(y, z) is straightforward to compute.

B1(y, z) = (z + z−1 − y− y−1)(y− y−1)

for each primitive half BPS state.

2. For collinear configuration of D3-branes only half
BPS states contribute to B1(y, z).

Strategy: Start from this collinear configuration and
apply wall crossing formula to find the result
elsewhere in the moduli space.

Caution: The structure of marginal stability walls is
more complicated than before.



B1(y, z) follows a wall crossing formula similar to the
motivic KS formula. Kontsevich, Soibelman

There are many physical ‘derivations’ of this formula
by now.

Cecotti, Vafa; Gaiotto, Moore, Neitzke; Dimofte, Gukov; Andriyash, Denef, Jafferis, Moore; Lee, Yi; Kim,

Park, Wang, Yi; Manschot, Pioline, A.S · · ·

We can derive the wall crossing formula for B1(y, z)
using any of these approaches.



1. Given α = (Q,P) and α′ = (Q′,P′), define

〈α, α′〉 = Q.P′ −Q′.P

2. Define

B̄1(α; y, z) ≡
∑
m|α

m−1 y− y−1

ym − y−m B1(α/m; ym, zm)

3. Introduce the algebra:

[eα,eα′] =
(−y)〈α,α

′〉 − (−y)−〈α,α
′〉

y− y−1 eα+α′

Then wall crossing formula tells us that:

P

(∏
α

exp
[
B̄1(α; y, z)eα

])
is unchanged across a wall.

P: ordering according to Arg(central charge).



Using the wall crossing formula and the result for half
BPS states we can compute B1(y, z) for any class A
quarter BPS states in any chamber in the moduli
space.

The corresponding index for class B states can be
defined and computed in a similar way by exchanging

SU(2)L ⇔ SU(2)R



Example 1: Consider the network Stern, Yi

(−1,k)

(0,s1)

(0,s2)

(1, m)

(0,sn)

We can shrink the (0,si) strings one by one and apply
the primitive wall crossing formula.

Final result for B1(y, z):

(−1)
∑
|si|+n {z + z−1 − y− y−1}n+1 ∏

i

y|si| − y−|si|

y− y−1

We get the same result by shrinking the (−1,k) string
and applying semi-primitive wall crossing formula.



B1(y, z) = (−1)
∑
|si|+n {z + z−1 − y− y−1}n+1 ∏

i

y|si| − y−|si|

y− y−1

Consistency check:

1. For y = 1, z = −1 we get −4
∏

i(−1)si(4si)

– agrees with an appropriate index computed in
supersymmetric quantum mechanics of multiple
monopoles. Stern, Yi

This has also been derived by applying primitive wall
crossing formula. Dabholkar, Nampuri, Narayan

2. y-dependence agrees with quiver quantum
mechanics analysis. Denef



Example 2:

6

	 R 	 R

6

�

U�

(−3,−2) (−3,−2)

(2,0) (1,2) (2,0) (1,2)

(−2,−1) (1,1)

(0,-1)

1 1

2 3 2 3

We can try to compute the index by shrinking any of
the external strings to zero size.



(a) (b)

(-3,-2)

(2,0)
(1,2)

(-3,-2)

(2,0)

(1,2)

Result for B1(y, z) for cases (a) and (b):{
z + z−1 − y− y−1}2

{
−y3 − 1

y3 − y− 1
y

}
{

z + z−1 − y− y−1}2
{
−y3 − 1

y3 − 2y− 2
y

+ z +
1
z

}

⇒ there must be marginal stability wall separating (a)
and (b).



�

^�

~

(-2,-1) (1,1)

(0, -1)
(1,2)

(-3,-2)

(2,0)

– can break apart into the (-2,-1) string and the rest.

The jump in B1(y, z) across this wall precisely
accounts for the previous difference.



Conclusion

The protected information about the spectrum of BPS
states in N = 4 supersymmetric Yang-Mills theories is
encoded in the index B1(y, z).

We now have a complete algorithm for computing this
index for any charge vector at any point in the moduli
space.


