Mass hierarchy in string theory and experimental predictions

I. Antoniadis

CERN

Progress in Quantum Field Theory and String Theory Osaka, Japan, 3-7 April 2012

- Motivations and mass hierarchy
- Low scale strings and extra dimensions (flat and warped)
- Infinitesimal string coupling and linear dilaton background
- Main accelerator signatures and nature of the EWSB sector

LHC Luminosity 2011

ATLAS Higgs search : excess 2.5σ

Exclusion at 99% CL: 130-486 GeV

Exclusion at 95% CL: 110-117.5, 118.5-122.5, 129-539 GeV

95% allowed mass range: $117.5 < m_H < 118.5$ or $122.5 < m_H < 129$ GeV

CMS Higgs search : excess 2.1σ

Exclusion at 99% CL: 129-525 GeV

Exclusion at 95% CL: 127.5-600 GeV

95% allowed mass range: $114.5 < m_H < 127.5$ GeV

ATLAS and CMS excess in good agreement with SM signal

CDF + D0: broad excess 2.2 σ lucky?

The Grand Summary: BSM

SUSY / invisibles: summary

- Analysis of 2011 data still in flow
 - Several analyses with full 5 fb⁻¹, more on the way
- Lower limits* of:
 - squark ~ 1400 GeV
 - gluino ~ 900 GeV
 - sbottom ~ 400 GeV
 - [stop ~ 300 GeV]**
 - [gauginos ~ 200-300 GeV]^{**}

- Also: taus, photons, monojets, disappearing tracks, ... + E_T^{miss}
- Preparations for 2012, 8 TeV in full swing

Beyond the Standard Model of Particle Physics: driven by the mass hierarchy problem

Standard picture: low energy supersymmetry

Advantages:

- natural elementary scalars
- gauge coupling unification
- LSP: natural dark matter candidate
- radiative EWSB

Problems:

- too many parameters: soft breaking terms
- MSSM : already a % ‰ fine-tuning 'little' hierarchy problem

Natural framework: Heterotic (or high-scale) string theory

Alternative answer: Low UV cutoff $\Lambda \sim \text{TeV}$

- low scale gravity \Rightarrow extra dimensions: large flat or warped
- low string scale \Rightarrow low scale gravity, ultra weak string coupling

Experimentally testable framework:

- spectacular model independent predictions
- radical change of high energy physics at the TeV scale

Moreover no little hierarchy problem:

radiative electroweak symmetry breaking with no logs

 $\Lambda \sim$ a few TeV and $m_H^2 =$ a loop factor $imes \Lambda^2$

But unification has to be probably dropped

New Dark Matter candidates e.g. in the extra dims

Framework of type I string theory ⇒ D-brane world I.A.-Arkani-Hamed-Dimopoulos-Dvali '98

- gravity: closed strings propagating in 10 dims
- gauge interactions: open strings with their ends attached on D-branes

Dimensions of finite size: *n* transverse 6 - n parallel calculability $\Rightarrow R_{\parallel} \simeq l_{\text{string}}$; R_{\perp} arbitrary

 $M_P^2 \simeq \frac{1}{g_s^2} \frac{M_s^{2+n} R_{\perp}^n}{N_s^{2+n}}$ $g_s = \alpha$: weak string coupling Planck mass in 4 + *n* dims: M_*^{2+n}

small M_s/M_P : extra-large R_{\perp}

 $M_{s} \sim 1~{
m TeV} \Rightarrow R_{\perp}^{n} = 10^{32}\,l_{s}^{n}$ [23]

 $R_{\perp} \sim .1 - 10^{-13}$ mm for n = 2 - 6

distances $< R_{\perp}$: gravity (4+*n*)-dim \rightarrow strong at 10⁻¹⁶ cm [12]

Adelberger et al. '06

 ${\it R}_{\perp} \lesssim$ 45 $\mu{\rm m}$ at 95% CL

• dark-energy length scale pprox 85 μ m

Gravitational radiation in the bulk \Rightarrow missing energy

Angular distribution \Rightarrow spin of the graviton

Collider bounds on R_{\perp} in mm			
	<i>n</i> = 2	<i>n</i> = 4	<i>n</i> = 6
LEP 2	$4.8 imes10^{-1}$	$1.9 imes10^{-8}$	$6.8 imes10^{-11}$
Tevatron	$5.5 imes10^{-1}$	$1.4 imes10^{-8}$	$4.1 imes10^{-11}$
LHC	$4.5 imes 10^{-3}$	$5.6 imes10^{-10}$	$2.7 imes 10^{-12}$

Origin of EW symmetry breaking?

possible answer: radiative breaking I.A.-Benakli-Quiros '00 $V = \mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$ $\mu^2 = 0$ at tree but becomes < 0 at one loop non-susy vacuum simplest case: one scalar doublet from the same brane \Rightarrow tree-level V same as susy: $\lambda = \frac{1}{8}(g_2^2 + g'^2)$ D-terms $\mu^2 = -g^2 \varepsilon^2 M_s^2 \leftarrow \text{effective UV cutoff}$ $e^{2}(R) = \frac{R^{3}}{2\pi^{2}} \int_{0}^{\infty} dll^{3/2} \frac{\theta_{2}^{4}}{16l^{4}\eta^{12}} \left(il + \frac{1}{2}\right) \sum n^{2} e^{-2\pi n^{2}R^{2}l}$

Quartic coupling \Rightarrow mass prediction:

- tree level : $M_H = M_Z$
- low-energy SM radiative corrections (from top quark) : $M_H \sim 120$ GeV Casas-Espinosa-Quiros-Riotto, Carena-Espinosa-Quiros-Wagner '95

Also M_s or $1/R \sim$ a few or several TeV

Increasing $\lambda \rightarrow g^2/4 \sim 1/8 \quad \Rightarrow \quad M_H \simeq v/2 = 125 \text{ GeV}$

Randal Sundrum models

spacetime = slice of AdS₅ : $ds^2 = e^{-2k|y|}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + dy^2$ $k^2 \sim \Lambda/M_5^3$

• exponential hierarchy: $M_W = M_P e^{-2kr_c}$ $M_P^2 \sim M_5^3/k$ $M_5 \sim M_{GUT}$

• 4d gravity localized on the UV-brane, but KK gravitons on the IR $m_n = c_n \ k \ e^{-2kr_c} \sim \text{TeV}$ $c_n \simeq (n + 1/4)$ for large n \Rightarrow spin-2 TeV resonances in di-lepton or di-jet channels [26] [27] • weakly coupled for $m_n < M_5 e^{-2kr_c} \Rightarrow k < M_5$

viable models: SM gauge bosons in the bulk
 EWSB sector on the IR-brane

• AdS/CFT duals to strongly coupled 4d field theories composite Higgs models, technicolor-type $g_{YM} = M_5/k > 1$ String-size black hole energy threshold : $M_{
m BH}\simeq M_s/g_s^2$

Horowitz-Polchinski '96, Meade-Randall '07

- string size black hole: $r_H \sim l_s = M_s^{-1}$
- black hole mass: $M_{\rm BH} \sim r_H^{d-3}/G_N$ $G_N \sim l_s^{d-2}g_s^2$

weakly coupled theory \Rightarrow strong gravity effects occur much above M_s , M_* $g_s \sim 0.1$ (gauge coupling) $\Rightarrow M_{\rm BH} \sim 100 M_s$

Comparison with Regge excitations : $M_j = M_s \sqrt{j} \Rightarrow$

production of $j \sim 1/g_s^4 \sim 10^4$ string states before reach $M_{\rm BH}$

Other accelerator signatures

• string physics and possible strong gravity effects

Massive string vibrations \Rightarrow e.g. resonances in dijet distribution

$$M_j^2 = M_0^2 + M_s^2 j$$
; maximal spin: $j + 1$

higher spin excitations of quarks and gluons with strong interactions Anchordoqui-Goldberg-Lüst-Nawata-Taylor-Stieberger '08

• Large TeV dimensions seen by SM gauge interactions

 \Rightarrow KK resonances of SM gauge bosons I.A. '90

$$M_k^2 = M_0^2 + \frac{k^2}{R^2}$$
; $k = \pm 1, \pm 2, \dots$

• extra U(1)'s and anomaly induced terms

masses suppressed by a loop factor from M_s [20]

Extra U(1)'s and anomaly induced terms

masses suppressed by a loop factor

usually associated to known global symmetries of the SM (anomalous or not) such as (combinations of) Baryon and Lepton number, or PQ symmetry

Two kinds of massive U(1)'s: I.A.-Kiritsis-Rizos '02

- 4d anomalous U(1)'s: $M_A \simeq g_A M_s$
- 4d non-anomalous U(1)'s: (but masses related to 6d anomalies) $M_{NA} \simeq g_A M_s V_2 \leftarrow (6d \rightarrow 4d)$ internal space $\Rightarrow M_{NA} \ge M_A$

Standard Model on D-branes

global symmetries

- B and L become massive due to anomalies Green-Schwarz terms
- the global symmetries remain in perturbation
 - Barvon number \Rightarrow proton stability
 - Lepton number \Rightarrow protect small neutrino masses

- Lepton number \Rightarrow protect ... no Lepton number $\Rightarrow \frac{1}{M_s}LLHH \rightarrow$ Majorana mass: $\frac{\langle H \rangle^2}{M_s}LL$ \sim GeV

• $B, L \Rightarrow$ extra Z's (B lighter than 4d anomaly free B - L)

with possible leptophobic couplings leading to CDF-type W_{ij} events [10] Anchordoqui-I.A.-Goldberg-Huang-Lüst-Taylor '11

More general framework: large number of species

N particle species \Rightarrow lower quantum gravity scale : $M_*^2 = M_p^2/N$

Dvali '07, Dvali, Redi, Brustein, Veneziano, Gomez, Lüst '07-'10 derivation from: black hole evaporation or quantum information storage $M_* \simeq 1 \text{ TeV} \Rightarrow N \sim 10^{32} \text{ particle species }!$

- 2 ways to realize it lowering the string scale
 - Large extra dimensions SM on D-branes [10]

 $N = R_{\perp}^{n} I_{s}^{n}$: number of KK modes up to energies of order $M_{*} \simeq M_{s}$

Effective number of string modes contributing to the BH bound

 $N = \frac{1}{g_s^2}$ with $g_s \simeq 10^{-16}$ SM on NS5-branes

I.A.-Pioline '99, I.A.-Dimopoulos-Giveon '01

Decouple gravity from NS5-branes \Rightarrow Little Strings

Analogy from D3-branes : decouple gravity \Rightarrow $M_s \rightarrow \infty, \, g_s$ fixed

 \rightarrow (conformal) Field Theory (CFT)

simplest case: 4d $\mathcal{N} = 4$ super Yang Mills SU(N)

parameters: number of branes N, gauge coupling g_{YM}

NS-5 branes: M_s finite, $g_s \rightarrow 0 \rightarrow$ (Little) String Theory without gravity

simplest case: 6d LST (chiral IIA or non-chiral IIB)

massless sector: 6d SU(N) of tensors (IIA) or vectors (IIB)

at a non-trivial fixed point

parameters: number of branes N, string scale M_s

How to study LST ? Using gauge/gravity duality

Gravity background : near horizon geometry (holography) Maldacena '98 Analogy from D3-branes : $AdS_5 \times S^5$

parameters: AdS radius $r_{AdS}M_s, g_s \leftrightarrow N, g_{YM}$

supergravity validity: $r_{AdS}M_s >> 1$, $g_s << 1 \Rightarrow$ large N, g_{YM}^2N

 \rightarrow model independent part : AdS_5

NS-5 branes : $(\mathcal{M}_6 \otimes R_+) \times SU(2) \equiv S^3$

linear dilaton background in 7d flat string-frame metric $|\Phi|=-lpha|y|$

Aharony-Berkooz-Kutasov-Seiberg '98

parameters: M_s , α (or S^3 radius) $\leftrightarrow N$

sugra validity: small $\alpha \Rightarrow \text{large } N$

compactify to $d = 4 \left(\mathcal{M}_6 \to \mathcal{M}_4 \right) \Rightarrow g_{YM} \sim 2 \mathsf{d}$ volume

 \rightarrow model independent part : linear dilaton

Put gravity back \Rightarrow toy 5d bulk model

"cut" the space of the extra dimension \Rightarrow gravity on the brane but weakly coupled

Analogy from D-branes \Rightarrow slice of AdS_5

RS, H. Verlinde '99

NS-5 branes : linear dilaton on an interval $y \in [0, r_c]$

$$S_{bulk} = \int d^4 x \, dy \sqrt{-g} \, e^{-\Phi} \left(M_5^3 R + M_5^3 (\nabla \Phi)^2 - \Lambda \right)$$
$$S_{vis(hid)} = \int d^4 x \sqrt{-g} \left(e^{-\Phi} \right) \left(L_{SM(hid)} - T_{vis(hid)} \right)$$

Tuning conditions: $T_{vis} = -T_{hid} \leftrightarrow \Lambda < 0$ [16]

Linear dilaton background IA-Arvanitaki-Dimopoulos-Giveon '11

• exponential hierarchy: $g_s^2 = e^{-\alpha|y|}$ $M_P^2 \sim \frac{M_5^3}{\alpha} e^{\alpha r_c}$ $\alpha \equiv k_{RS}$

• 4d graviton flat, KK gravitons localized near SM

LST KK graviton phenomenology

• KK spectrum :
$$m_n^2 = \left(\frac{n\pi}{r_c}\right)^2 + \frac{\alpha^2}{4}$$
; $n = 1, 2, \dots$

 \Rightarrow mass gap + dense KK modes $\alpha \sim 1$ TeV $r_c^{-1} \sim 30$ GeV

• couplings :
$$\frac{1}{\Lambda_n} \sim \frac{1}{(\alpha r_c)M_5}$$

 \Rightarrow extra suppression by a factor $(\alpha r_c) \simeq 30$

• width :
$$1/(\alpha r_c)^2$$
 suppression $\sim 1 \text{ GeV}$

 \Rightarrow narrow resonant peaks in di-lepton or di-jet channels

• extrapolates between RS and flat extra dims (n = 1)

 \Rightarrow distinct experimental signals

Conclusions

Mass hierarchy \Rightarrow testing strings at the TeV scale?

- Well motivated theoretical framework with many testable experimental predictions new resonances, missing energy
- Several realizations with different signatures flat large extra dimensions, exp warped metrics, tiny string coupling and linear dilaton background
- Stimulus for micro-gravity experiments and accelerator searches