# Volume Conjecture: Refined and Categorified 

## Sergei Gukov

based on: hep-th/0306165 (generalized volume conjecture) with T.Dimofte, arXiv:1003.4808 (review/survey) with H.Fuji and P.Sulkowski, arXiv:1203.2182 (new!)

Media Center, Osaka City University, Japan

## Kashaev's observation

knot K
[R. Kashaev, 1996]

labeled by a positive integer $n$

- defined via R-matrix
- very hard to compute

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \langle K\rangle_{n}=\operatorname{Vol}\left(S^{3} \backslash K\right)
$$

("volume conjecture")

## A first step to understanding the Volume Conjecture

$\langle K\rangle_{n}=J_{n}(q)$ colored Jones polynomial with $q=\exp (2 \pi i / n)$


Hitoshi Murakami


Jun Murakami
(1999)

## Colored Jones polynomial

$$
J_{2}(q)=J(q)=\text { Jones polynomial }
$$

- In Chern-Simons gauge theory
[E.Witten]


## Wilson loop operator

$\langle 8\rangle=$ polynomial in $q$

Colored Jones polynomial

$$
J_{2}(q)=J(q)=\text { Jones polynomial }
$$

- Skein relations:

$$
\begin{aligned}
& q^{2} J(天)-q^{-2} J\left(\lambda^{1}\right)=\left(q^{-1}-q\right) \cdot J(J r) \\
& J(\text { unknot })=q^{-1}+q
\end{aligned}
$$

Example:

$$
J(B)=q+q^{3}+q^{5}-q^{9}
$$

## Colored Jones polynomial

knot K

n-colored Jones polynomial:

$$
J_{n}(K ; q) \in \mathbb{Z}\left[q, q^{-1}\right]
$$

$R=n$-dimn'l representation of $S U(2)$

- "Cabling formula":

$$
\begin{aligned}
J_{\oplus_{i} R_{i}}(K ; q) & =\sum_{i} J_{R_{i}}(K ; q) \\
J_{R}\left(K^{n} ; q\right) & =J_{R^{\otimes n}}(K ; q)
\end{aligned}
$$

## Colored Jones polynomial

knot K


$$
J_{n}(K ; q) \in \mathbb{Z}\left[q, q^{-1}\right]
$$

$R=n$-dimn'l representation of $S U(2)$

$$
\begin{aligned}
J_{1}(K ; q) & =1 \\
J_{2}(K ; q) & =J(K ; q), \\
\mathbf{2}^{\otimes 2}=\mathbf{1} \oplus \mathbf{3} \Rightarrow J_{3}(K ; q) & =J\left(K^{2} ; q\right)-1 \\
\mathbf{2}^{\otimes 3}=\mathbf{2} \oplus \mathbf{2} \oplus \mathbf{4} \Rightarrow J_{4}(K ; q) & =J\left(K^{3} ; q\right)-2 J(K ; q)
\end{aligned}
$$

## Volume Conjecture

## Murakami \& Murakami:

$$
\begin{gathered}
\langle\boldsymbol{K}\rangle_{n}=J_{n}\left(K ; q=e^{2 \pi i / n}\right) \\
\lim _{n \rightarrow \infty} \frac{2 \pi \log \left|J_{n}\left(K ; q=e^{2 \pi i / n}\right)\right|}{n}=\operatorname{Vol}(M)
\end{gathered}
$$

quantum group invariants $\longleftrightarrow$ classical hyperbolic (combinatorics, representation theory) geometry

## Physical interpretation of the Volume Conjecture

- analytic continuation of $\operatorname{SU}(2)$ is $\operatorname{SL}(2, \mathbb{C})$

$\lim _{n \rightarrow \infty} \frac{2 \pi \log \left|J_{n}\left(K ; q=e^{2 \pi i / n}\right)\right|}{n}=\operatorname{Vol}(M)$
- classical SL(2,C) Chern-Simons theory = classical 3d gravity (hyperbolic geometry)


## Physical interpretation of the Volume Conjecture

constant negative curvature metric on $M$

$$
R_{i j}=-2 g_{i j}
$$

on $M=S^{3} \backslash K$

$$
d \mathcal{A}+\mathcal{A} \wedge \mathcal{A}=0
$$

- classical SL(2,C) Chern-Simons theory = classical 3d gravity (hyperbolic geometry)



## Physical interpretation of the Volume Conjecture

constant negative curvature metric on $M$

## $\longleftrightarrow$ flat SL (2,C) Connection on $M=S^{3} \backslash K$

$$
R_{i j}=-2 g_{i j}
$$

$$
d \mathcal{A}+\mathcal{A} \wedge \mathcal{A}=0
$$

classical solution in
3D gravity with
negative cosmological
constant ( $\Lambda=-1$ )
classical solution in
CS gauge theory

## Example: unknot = BTZ black hole

$K=$ unknot $\Rightarrow M=$ solid torus

Euclidean BTZ black hole:


$$
d s^{2}=N^{2} d \tau^{2}+N^{-2} d r^{2}+r^{2}\left(d \phi^{2}+N^{\phi} d \tau\right)^{2}
$$

$$
N=\sqrt{r^{2}-M-\frac{J^{2}}{4 r^{2}}} \quad, \quad N^{\phi}=-\frac{J}{2 r^{2}}
$$

$$
r_{ \pm}^{2}=\frac{M}{2}\left[1 \pm \sqrt{1+\left(\frac{J}{M}\right)^{2}}\right]
$$



## Physical interpretation of the Volume Conjecture

## Moral:

- leads to many generalizations:



## Physical interpretation of the Volume Conjecture

Generalization 1: $\quad \dagger$ Hooft limit:

$$
\begin{equation*}
q=e^{\hbar} \rightarrow 1, \quad n \rightarrow \infty, \quad q^{n}=e^{u} \equiv x \tag{fixed}
\end{equation*}
$$

$$
J_{n}\left(K ; q=e^{\hbar}\right) \stackrel{\substack{n \rightarrow \infty \\ \hbar \rightarrow 0}}{\sim} \exp \left(\frac{1}{\hbar} S_{0}(u)+\ldots\right)
$$


partition function of
SL(2,C) Chern-Simons theory

## Generalized Volume Conjecture

$S_{0}(u)=$ classical action of SL (2,C) Chern-Simons theory
$\mathcal{M}_{\text {flat }}\left(G_{\mathbb{C}}, M\right)$ : space of solutions

$$
d \mathcal{A}+\mathcal{A} \wedge \mathcal{A}=0 \text { on } s^{3} \backslash K
$$



A-polynomial of a knot $K$

$$
\mathcal{C}:\left\{(x, y) \in \mathbb{C}^{*} \times \mathbb{C}^{*} \mid \underline{A(x, y)=0}\right\}
$$

## Algebraic curves and knots

$$
S_{0}(u)=\int v d u=\int \log y \frac{d x}{x}
$$

$$
x=e^{u} \quad y=e^{v}
$$



## Physical interpretation of the Volume Conjecture

Generalization 2:

n-colored Jones polynomial:

$$
J_{n}(K ; q)
$$

knot K
recursion relation:
$\alpha\left(q^{n}, q\right) J_{n-1}+\beta\left(q^{n}, q\right) J_{n}+\gamma\left(q^{n}, q\right) J_{n+1}=0$
₹
rational functions

## Quantum Volume Conjecture

using $\quad x \equiv e^{u}=q^{n}=$ fixed
[S.G., 2003]
we can write this recursion relation as:

$$
\widehat{A} J_{*}(K ; q) \simeq 0
$$

where $\widehat{A}(\widehat{x}, \widehat{y} ; q)=\alpha \widehat{y}^{-1}+\beta+\gamma \widehat{y}$

$$
\begin{array}{ll}
\widehat{x} J_{n}=q^{n} J_{n} & \text { so that } \\
\widehat{y} J_{n}=J_{n+1} & \widehat{y} \widehat{x}=q \widehat{x} \widehat{y}
\end{array}
$$

## Quantum Volume Conjecture

[S.G., 2003]

- In the classical limit $q \rightarrow 1$ the operator $\widehat{A}(\widehat{x}, \widehat{y} ; q)$ becomes $A(x, y)$ and the way it comes about is that

$$
\begin{aligned}
x, y & \leadsto \widehat{x}, \widehat{y} \\
A(x, y)=0 & \rightsquigarrow \widehat{A}(\widehat{x}, \widehat{y}) Z_{\mathrm{CS}}(M)=0
\end{aligned}
$$

- in the mathematical literature was independently proposed around the same time, and is know as the AJ-conjecture


## Quantization and B-model

$$
\log T(u)=\lim _{u_{1} \rightarrow u_{2}=u} \int\left(\frac{d u_{1} d u_{2}}{\left(u_{1}-u_{2}\right)^{2}}-\underset{ }{B}\left(u_{1}, u_{2}\right)\right)
$$

- simple formula that turns classical curves $A(x, y)=0$ intoBquentankernedtors

$$
x, y \leadsto \widehat{x}, \widehat{y} \quad \text { [S.G., P.Sulkowski] }
$$

$$
A(x, y)=0 \leadsto \widehat{A}(\widehat{x}, \widehat{y}) Z_{\mathrm{CS}}(M)=0
$$

$$
\widehat{A}(\widehat{x}, \widehat{y} ; q)=\sum_{m, n} a_{m, n} \underbrace{2 m, \widehat{x}^{m}} \widehat{y}^{n}
$$

## Quantization and B-model

$$
\log T(u)=\lim _{u_{1} \rightarrow u_{2}=u} \int\left(\frac{d u_{1} d u_{2}}{\left(u_{1}-u_{2}\right)^{2}}-B\left(u_{1}, u_{2}\right)\right)
$$

$$
\sum_{m, n} a_{m, n} c_{m, n} x^{m} y^{n}=\frac{1}{2}\left(\frac{\partial_{u} A}{\partial_{v} A} \partial_{v}^{2}+\frac{\partial_{u} T}{T} \partial_{v}\right) A
$$

$$
x, y \leadsto \widehat{x}, \widehat{y} \quad \text { [s.G., P.Sulkowski] }
$$

$$
A(x, y)=0 \leadsto \widehat{A}(\widehat{x}, \widehat{y}) Z_{\mathrm{CS}}(M)=0
$$

$$
\widehat{A}(\widehat{x}, \widehat{y} ; q)=\sum_{m, n} a_{m, n} \xlongequal\left[\left(c_{m, n} \widehat{x}^{m}\right]{\widehat{y}^{n}}\right.
$$

## Quantization and B-model

[B.Eynard, N.Orantin]
[V.Bouchard, A.Klemm, M.Marino, S.Pasquetti] [A.S.Alexandrov, A.Mironov, A.Morozov] [R.Dijkgraaf, H.Fuji, M.Manabe]

$x(p)$ and $y(p)$


( recall: $\hat{A}(\hat{x}, \hat{y}) Z(M)=0$ )

## Refinement / Categorification

|  | Algebraic curve | Refinement |
| :--- | :--- | :--- |
| Knots / SL( $2, C$ CS | A-polynomial | Homological <br> invariants <br> $P_{n}(q, t)$ |
| Matrix models | spectral curve | $\beta$-deformation |
| 4d gauge theories <br> 3d superconformal <br> indices | Seiberg-Witten curve <br> A-polynomial | refinement <br> $t=-\frac{q_{1}}{q_{2}}$ |
| Topological strings <br> (B-model) | mirror Calabi-Yau <br> geometry $A(x, y)=z w$ |  |

## Deformation vs Quantization



Knot Homologies

- Khovanov homology: $H_{i, j}^{k h}(K)$

$$
J(q)=\sum_{i, j}(-1)^{i} q^{j} \operatorname{dim} H_{i, j}^{k h}(K)
$$

Example:

$$
J(B)=q+q^{3}+q^{5}-q^{9}
$$

## (Large) Color Behavior of Knot Homologies

- similarly, $\mathcal{H}^{s l(2), V_{n}}(K)$ is the $n$-colored $s \mid(2)$ knot homology:

$$
P_{n}(K ; q, t)=\sum_{i, j} q^{i} t^{j} \operatorname{dim} \mathcal{H}_{i, j}^{s l(2), V_{n}}(K)
$$

- categorify n-colored Jones polynomials:

$$
J_{n}(K ; q)=P_{n}(K ; q, t=-1)
$$

## (Large) Color Behavior of Knot Homologies

- similarly, $\mathcal{H}^{s l(2), V_{n}}(K)$ is the $n$-colored sl(2) knot homology:

$$
P_{n}(K ; q, t)=\sum_{i, j} q^{i} t^{j} \operatorname{dim} \mathcal{H}_{i, j}^{s l(2), V_{n}}(K)
$$

- satisfy recursion relations
- exhibit beautiful large-n asymptotic behavior Both controlled by a "refined" algebraic curve


## Refinement / Categorification

Generalized Volume Conjecture: [S.G., H.Fuji, P.Sulkowski]

$$
q=e^{\hbar} \rightarrow 1, \quad t=\text { fixed }, \quad x \equiv e^{u}=q^{n}=\text { fixed }
$$

$$
P_{n} \simeq \exp \left(\frac{1}{\hbar} S_{0}(u, t)+\sum_{n=0}^{\infty} S_{n+1}(u, t) \hbar^{n}\right)
$$



## Refined Algebraic Curves

Example: $\quad A(x, y)=(y-1)\left(y+x^{3}\right)$

## refinement:

$$
A^{\mathrm{ref}}(x, y ; t)=y^{2}-\frac{1-x t^{2}+x^{3} t^{5}+x^{4} t^{6}+2 x^{2} t^{2}(t+1)}{1+x t^{3}} y+\frac{(x-1) x^{3} t^{4}}{1+x t^{3}}
$$



## Refinement / Categorification

## Quantum Volume Conjecture:

[S.G., H.Fuji, P.Sulkowski]

$$
\widehat{A}^{\mathrm{ref}}(\widehat{x}, \widehat{y} ; q, t) P_{*}(K ; q, t) \simeq 0
$$

Example: $\quad \alpha P_{n-1}+\beta P_{n}+\gamma P_{n+1}=0$

$$
\begin{aligned}
& \alpha=\frac{x^{3}(x-q) t^{4}}{q\left(q+x^{2} t^{3}\right)\left(1+x q t^{3}\right)}, \\
& \beta=-\frac{t^{2} x^{2}}{1+x^{2} q t^{3}}-\frac{q-x q t^{2}+x^{4} t^{6}+x^{2} t^{2}(1+t+q t)}{\left(q+x^{2} t^{3}\right)\left(1+x q t^{3}\right)} \\
& \gamma=\frac{1}{q+x^{2} q^{2} t^{3}} .
\end{aligned}
$$



## Refinement / Categorification

## Quantum Volume Conjecture:

[S.G., H.Fuji, P.Sulkowski]

$$
\widehat{A}^{\mathrm{ref}}(\widehat{x}, \widehat{y} ; q, t) P_{*}(K ; q, t) \simeq 0
$$

Example: $\widehat{A}^{\text {ref }}(\widehat{x}, \widehat{y} ; q, t)=\alpha \widehat{y}^{-1}+\beta+\gamma \widehat{y}$

$$
\begin{aligned}
& \alpha=\frac{x^{3}(x-q) t^{4}}{q\left(q+x^{2} t^{3}\right)\left(1+x q t^{3}\right)}, \\
& \beta=-\frac{t^{2} x^{2}}{1+x^{2} q t^{3}}-\frac{q-x q t^{2}+x^{4} t^{6}+x^{2} t^{2}(1+t+q t)}{\left(q+x^{2} t^{3}\right)\left(1+x q t^{3}\right)} \\
& \gamma=\frac{1}{q+x^{2} q^{2} t^{3}} .
\end{aligned}
$$



## Deformation vs Quantization

$\hat{A}(x, y ; q)$
 $\hat{A}^{\text {ref }}(x, y ; q, t)$


$A(x, y)$

$A^{\text {ref }}(x, y ; t)$

## Powerful Calculations

- $(3,4)$ torus knot
- Colored HOMFLY homology

has dimension 8,170,288,749,315



## A-polynomial

| Knot | A-polynomial | Volume |
| :---: | :---: | :---: |
| $3_{1}$ | $l m^{6}+1$ | non-hyperbolic |
| $4_{1}$ | $-2+m^{4}+m^{-4}-m^{2}-m^{-2}-l-l^{-1}$ | $2.0298832 \ldots$ |
| $5_{1}$ | $l m^{10}+1$ | non-hyperbolic |
| $5_{2}$ | $1+l\left(-1+2 m^{2}+2 m^{4}-m^{8}+m^{10}\right)+l^{2}\left(m^{4}-m^{6}+\right.$ | $2.8281220 \ldots$ |
|  | $\left.+2 m^{10}+2 m^{12}-m^{14}\right)+l^{3} m^{14}$ |  |
| $7_{1}$ | $m^{14}+l$ |  |
| $(-2,3,7)$-pretzel | $-m^{110}+l m^{90}\left(m^{2}-1\right)^{2}+l^{2}\left(2 m^{74}+m^{72}\right)-$ | $2.8281221 \ldots$ |
|  | $-l^{4}\left(m^{38}+2 m^{36}\right)-l^{5} m^{16}\left(m^{2}-1\right)^{2}+l^{6}$ |  |

## Mirror Symmetry for Knots



$$
\mathcal{H}^{\lambda}(K) \cong \mathcal{H}^{\lambda^{t}}(K)
$$




