Instanton calculus for quiver gauge theories

Vasily Pestun (IAS)

in collaboration with Nikita Nekrasov (SCGP)

Osaka, 2012

Outline

- 4d $\mathrm{N}=2$ quiver theories \& classification
- Instanton partition function [LMNS, Nekrasov]
- Limit shape problem [Nekrasov-Okounkov]
- Cut-crossing and quiver Weyl group
- The spectral curve
- Integrable systems: G-bundles, Nahm transform and Hitchin systems

4d $N=2$ quiver theories \& classification

Assumptions

$$
\text { gauge group } G_{\mathrm{g}}=\times_{i \in \mathrm{Vert}} U\left(N_{i}\right)
$$

fundamental \& bifundamental hypers

$$
\begin{aligned}
c_{i i}= & 2 \\
c_{i j}= & c_{i j}=-\#_{\text {bifund hypers of } i \text { and } j} \\
N_{i}^{\mathrm{f}}= & \# \text { fund hypers of } i \\
& \beta_{i} \leq 0 \longrightarrow c_{i j} N_{j} \geq N_{i}^{\mathrm{f}} \geq 0
\end{aligned}
$$

$c_{i j}$ is Cartan matrix of Fin or Aff ADE Dynkin graph

Aff A_{r}
$\begin{array}{lllllll}1 & 1 & 1 & 0 & 1 & 1 & 1\end{array} 1$
Aff D_{r}

Aff E_{6}

Aff E_{7} $\begin{array}{lllllll}1 & 2 & 3 & 0 & 3 & 2 & 1 \\ 0 & 0 & 0 & 4 & & 0 & 0\end{array}$

Aff E_{8}

$$
\begin{array}{llllllll}
& & 0 & 3 & & & & \\
0 & 4 & 0 & 5 & 4 & 3 & 2 & 1
\end{array}
$$

Instanton partition function [LMNS'97,98; Nekrasov'02]

$$
Z_{\mathbb{T}}^{\text {inst }}(\mathbf{q})=\sum_{\mathbf{k} \in \mathbb{Z}_{\geq 0}^{\mid \text {Vert } \mid}} \mathbf{q}^{\mathbf{k}} \int_{\mathcal{M}_{\mathbf{k}}} \operatorname{eu}_{\mathbb{T}}\left(\operatorname{ker} \not D_{R}\right)
$$

instanton charges $\mathbf{k}=\left\{k_{i} \mid i \in \operatorname{Vert}\right\}$
coupling constants $\mathbf{q}=\left\{e^{2 \pi \imath \tau_{i}} \mid i \in\right.$ Vert $\}$
framed instanton moduli $\mathcal{M}_{\mathbf{k}}=\times_{i \in \operatorname{Vert}} \mathcal{M}_{k_{i}}$ matter bundle $R=\oplus_{i} \mathbf{N}_{i}^{\oplus N_{i}^{\mathrm{f}}} \oplus_{i<j}\left(\mathbf{N}_{i}, \overline{\mathbf{N}}_{j}\right)^{\oplus c_{i j}}$ equivariant Euler class $\mathrm{eu}_{\mathbb{T}}$
torus $\mathbb{T}=T_{G} \times T_{F} \times T_{L}$
($\mathbf{a}, \mathbf{m}, \boldsymbol{\epsilon}$) equivariant parameters in $\operatorname{Lie}(\mathbb{T})$

Complete partition function

$$
Z_{\mathbb{T}}(\mathbf{q})=Z_{\mathbb{T}}^{\text {tree }} Z_{\mathbb{T}}^{1-\text { loop }} Z_{\mathbb{T}}^{\text {inst }}(\mathbf{q})
$$

$$
Z_{\mathbb{T}}(\mathbf{q})=\sum_{\mathbf{k}} \mathbf{q}^{k} \int_{\mathcal{A} / \mathcal{G}_{\text {gauge }}} \mathrm{eu}_{\mathbb{T}}\left(\Omega^{2+} \otimes \operatorname{ad} G_{\mathrm{g}}\right) \mathrm{eu}_{\mathbb{T}}\left(\left(S^{-} \ominus S^{+}\right) \otimes R\right)
$$

$\mathcal{A}=\left\{G_{\mathrm{g}}\right.$ connections framed at infinity on $\left.R^{4}\right\}$

Seiberg-Witten limit

$$
\begin{aligned}
& Z_{\mathbb{T}}(\mathbf{a}, \mathbf{m}, \boldsymbol{\epsilon} ; \mathbf{q})=\exp \left(-\frac{1}{\epsilon_{1} \epsilon_{2}} \mathcal{F}_{\mathbb{T}}(\mathbf{a}, \mathbf{m}, \boldsymbol{\epsilon} ; \mathbf{q})\right) \\
& \lim _{\epsilon_{1}, \epsilon_{2} \rightarrow 0} \mathcal{F}_{\mathbb{T}}(\mathbf{a}, \mathbf{m}, \boldsymbol{\epsilon} ; \mathbf{q})=\mathcal{F}_{S W}(\mathbf{a}, \mathbf{m} ; \mathbf{q})
\end{aligned}
$$

Proofs

-[Nekrasov-Okounkov'03] for $U(N)$ with adj/fund matter
(limit shape of partition profiles)
-[Nakajima-Yoshioka'03] for $U(N)$ without matter
(blow-up recursion formula)
-[Braverman-Etingof'04] for generic G without matter
(surface operators for parabolic subgroups P of G)

Limit shape method [Nekrasov-Okounkov'03]

- relies on ADHM
- originally described the shape of the dominant partitions labeling \mathbb{T}-fixed points on $\mathcal{M}_{\text {inst }}$
- applicable to Lagrangian theories with classical gauge groups and tensor matter
- examples:
-[Nekrasov-Shadchin'04] $S O(N)$ and $S p(N)$ with adj/fund
-[Shadchin'05] $U\left(N_{1}\right) \times U\left(N_{2}\right)$ bifund and $U\left(N_{1}\right)$ sym/antisym

Review of limit shape method

$G=S U(N)$

$$
Z_{k}=\int_{\mathcal{M}_{N, k}} \mathrm{eu}_{\mathbb{T}}\left(\operatorname{ker} \not D_{R}^{\vee}\right)
$$

Nakajima's lectures

ADHM complex
$\mathcal{C}_{\mathrm{ADHM}}: \quad V \otimes K^{\frac{1}{2}} \xrightarrow{\left(B_{2}, B_{1}, J\right)} V \otimes L \otimes K^{\frac{1}{2}} \oplus W^{\left(-B_{1}, B_{2}, I\right)} V \otimes \Lambda^{2} L \otimes K^{\frac{1}{2}}$
where

$$
\left[B_{1} B_{2}\right]+I J=0
$$

$$
V=\mathbb{C}^{k}, W=\mathbb{C}^{N}, L \simeq \mathbb{C}^{2}, K=\Lambda^{2} L^{\vee}
$$

then

$$
\mathcal{E}_{z}=H^{1}\left(\mathcal{C}_{\mathrm{ADHM}, B-z}\right)
$$

$$
\begin{array}{rlrl}
\operatorname{ch}_{\mathbb{T}} \mathcal{E}_{z=0} \equiv \mathcal{E}_{\mathbb{T}} & =W_{\mathbb{T}}-K_{\mathbb{T}}^{\frac{1}{2}}\left(1-L_{\mathbb{T}}+\Lambda^{2} L_{\mathbb{T}}\right) V_{\mathbb{T}} & & W_{\mathbb{T}}=\sum_{\alpha=1}^{N} e^{\imath a_{\alpha}} \\
& =W_{\mathbb{T}}-e^{-\imath \epsilon_{+}}\left(1-e^{\imath \epsilon_{1}}\right)\left(1-e^{\imath \epsilon_{2}}\right) V_{\mathbb{T}}= & & V_{\mathbb{T}}=\sum_{i=1}^{k} e^{\imath \phi_{i}} \\
& =e^{\imath \epsilon_{1}}+e^{\imath \epsilon_{2}} \\
& =2 \operatorname{sh} \frac{\imath \epsilon_{1}}{2} 2 \operatorname{sh} \frac{\imath \epsilon_{2}}{2} V_{\mathbb{T}} & & \epsilon_{+}=\frac{1}{2}\left(\epsilon_{1}+\epsilon_{2}\right)
\end{array}
$$

$\operatorname{ch}_{\mathbb{T}} \operatorname{ker} \not D_{R}=\int_{L} \hat{A}_{\mathbb{T}}(L) \operatorname{ch}_{\mathbb{T}}(\mathcal{E} \otimes R)=\frac{\operatorname{ch}_{\mathbb{T}}\left(\mathcal{E}_{z=0} \otimes R\right)}{2 \operatorname{sh} \frac{t \epsilon_{1}}{2} 2 \operatorname{sh} \frac{\imath \epsilon_{2}}{2}}$

$$
\operatorname{ch}_{\mathbb{T}} \operatorname{ker} \not D_{\mathcal{E}_{i} \otimes \mathcal{E}_{j}^{\vee}}=\frac{\left(\mathcal{E}_{i}\right)_{\mathbb{T}}\left(\mathcal{E}_{j}^{\vee}\right)_{\mathbb{T}}}{2 \operatorname{sh} \frac{\epsilon_{1}}{2} 2 \operatorname{sh} \frac{\imath \epsilon_{2}}{2}}
$$

then transform

$$
\operatorname{ch}_{\mathbb{T}}(M) \rightsquigarrow \mathrm{eu}_{\mathbb{T}}(M)
$$

using

$$
-\left.\frac{d}{d s} \frac{1}{\Gamma(s)} \int_{0}^{\infty} d t t^{s-1} e^{\imath w t}\right|_{s=0}=\log (\imath w)
$$

obtain

$$
\exp \left(-\frac{d}{d s} \frac{1}{\Gamma(s)} \int_{0}^{\infty} d t t^{s-1} \operatorname{ch}_{\mathbb{T}^{t}} M\right)_{s=0}=\operatorname{eu}_{\mathbb{T}} M
$$

where M is any \mathbb{T}-module

Let $\rho_{\mathbb{T} ; M}(x)$ be Fourier transform of $\operatorname{ch}_{\mathbb{T}^{t}} M$

$$
\begin{aligned}
\operatorname{ch}_{\mathbb{T}^{t}} M & =\sum e^{\imath w t} \\
\rho_{M ; \mathbb{T}}(x) & =\sum \delta(x-w) \\
\rho_{i}(x) & \equiv \rho_{\mathbb{T} ; \mathcal{E}_{i}}(x)
\end{aligned}
$$

$\operatorname{eu} \operatorname{co}_{\mathbb{T}} \operatorname{ker} D_{\mathcal{E}_{i} \otimes \mathcal{E}_{j}^{\vee}}=\exp \left(-\frac{d}{d s} \frac{1}{\Gamma(s)} \int_{0}^{\infty} d t t^{s-1} \frac{\int d x \rho_{i}(x) e^{\imath x t} \int d x \rho_{j}\left(x^{\prime}\right) e^{-\imath x^{\prime} t}}{2 \operatorname{sh} \frac{2 \epsilon_{1} t}{2} 2 \operatorname{sh} \frac{\varepsilon_{2} t}{2}} e^{\imath m_{i j} t}\right)=$

$$
=\exp \left(-\int d x d x^{\prime} \rho_{i}(x) \gamma_{\epsilon_{1}, \epsilon_{2}}\left(x-x^{\prime}+m_{i j}\right) \rho_{j}\left(x^{\prime}\right)\right)
$$

Barnes double gamma-function

$$
\gamma_{\epsilon_{1}, \epsilon_{2}}(x)=\frac{d}{d s} \frac{1}{\Gamma(s)} \int_{0}^{\infty} d t t^{s-1} \frac{e^{i x t}}{2 \operatorname{sh} \frac{t_{1} t}{2} 2 \operatorname{sh} \frac{2 \epsilon_{2} t}{2}}
$$

Assume

$$
\sum_{\text {cycle }} m_{i j}=0
$$

(always true for all Fin and Aff DE quivers b/c there are no cycles)
Absorb bi-fund masses to $U(1)$ Coloumb moduli

$$
\begin{gathered}
Z_{\mathbb{T}}=\sum_{\mathbf{k}} \int[D \rho]_{\mathbf{k}} e^{-\frac{1}{\epsilon_{1} \epsilon_{2}} \mathcal{F}} \\
\mathcal{F}=\sum_{i} \pi \imath \tau_{i} \int d x x^{2} \rho(x)-\sum_{i, j} \int d x d x^{\prime} \rho_{i}(x) k\left(x-x^{\prime}\right) \mathrm{c}_{i j} \rho_{j}\left(x^{\prime}\right) \\
k(x) \equiv-\epsilon_{1} \epsilon_{2} \gamma_{\epsilon_{1} \epsilon_{2}}(x) \\
\text { (no fundamentals) } \\
k(x)=\frac{x^{2}}{2}\left(\log x-\frac{3}{2}\right) \quad \text { as } \quad \epsilon_{i} \rightarrow 0 \quad \int_{I_{i \alpha}} d x \rho_{i}(x)=1
\end{gathered}
$$

Critical density (with constraints):

$$
\int_{I_{i}} d x x^{2} \rho_{i}(x)=\mathbf{a}_{\mathbf{i}}{ }^{2}-2 \epsilon_{1} \epsilon_{2} k
$$

$$
\frac{d^{2}}{d x^{2}} \frac{\delta \mathcal{F}}{\delta \rho}=0
$$

critical density solves

(no fundamentals)

$$
\psi_{j}(x+i 0)+\psi_{j}(x-i 0)=2 \pi \imath \tau_{i}-\sum_{j \neq i} \mathrm{c}_{i j} \psi_{j}(x), \quad x \in I_{i}
$$

where potentials

$$
\psi_{j}(x)=\int k_{x x}\left(x-x^{\prime}\right) \rho\left(x^{\prime}\right) d x^{\prime} \quad k_{x x}(x)=\log x, \quad \epsilon_{i} \rightarrow 0
$$

in term of exp-potentials $\quad y_{i}(x)=\exp \psi_{i}(x)$
critical equations with fundamentals

$$
y_{i}(x+i 0) y_{i}(x-i 0)=Q(x) \prod_{j \neq i} y_{j}^{-\mathrm{c}_{i j}}(x)
$$

involve matter polynomials

$$
\begin{aligned}
& \text { mials } \\
& Q_{i}(x)=q_{i} \prod_{f=1}^{N_{i}^{F}}\left(x+m_{i f}\right)
\end{aligned}
$$

Cut-crossing and quiver Weyl group

cut-crossing jump

$$
\psi_{i}(x+i 0) \rightarrow \psi_{i}(x-i 0)
$$

from the critical equations:

$$
T_{i}(x)=\log Q_{i}(x)
$$

$$
s_{i}: \quad \psi_{j}(x) \mapsto\left\{\begin{array}{l}
\psi_{j}(x)-\sum_{k} \psi_{k}(x) \mathrm{c}_{k j}+T_{j}(x), \quad j=i \\
\psi_{j}(x), \quad j \neq i
\end{array}\right.
$$

The cut-crossing transformations generate the quiver Weyl group W_{q} !

$$
\begin{gathered}
\text { quiver Cartan } \mathfrak{t}_{\mathbf{q}} \longleftrightarrow\left\{\psi_{i}(x)\right\} \\
\mathbf{t}(x)=\mathbf{t}(x)+\sum_{i} \alpha_{i}^{\vee} \psi_{i}(x) \quad \dot{\mathbf{t}}(x)=-\sum_{i} \Lambda_{i}^{\vee} T_{i}(x) . \\
s_{i}: \quad \mathbf{t} \mapsto \mathbf{t}-\alpha_{i}(\mathbf{t}) \alpha_{i}^{\vee} . \quad \text { si- simple root reflections }
\end{gathered}
$$

W_{q} invariants

Define canonical W_{q} invariant functions

$$
\chi_{i}(\mathbf{t})=e^{-\Lambda_{i}(\mathbf{t})} \sum_{w \in W / W_{i}} e^{\Lambda_{i}^{w}(\mathbf{t})}
$$

equivalently

$$
y_{i}=x^{N_{i}}+O(1), \quad x \rightarrow \infty
$$

$$
\chi_{i}=\sum_{w \in W / W_{i}} w\left(y_{i}\right)=y_{i}+\ldots
$$

is Weyl orbit of i-th fundamental weight
All terms $\prod_{j} y_{j}(x)^{\bullet} Q_{j}(x)^{\bullet} \quad$ contain integer powers of $y_{i}(x)$ and positive integer powers of $Q_{i}(x)$ in combinations such that each term is majorated by $O\left(x^{N_{i}}\right)$ as $x \rightarrow \infty$

$$
\chi_{i}=c_{i}(\mathbf{q}) x^{N_{i}}+O(1)
$$

Solution to the quiver limit shape problem is given by the system of analytic equations on the exp-potentials $y_{i}(x)$

$$
\left\{\chi_{i}(\mathbf{y} ; \mathbf{Q})=P_{i}(x), \quad \operatorname{deg} P_{i}=N_{i}\right\}
$$

This defines the curve

$$
\Sigma \subset \mathbb{C}_{\langle x\rangle} \times\left(\mathbb{C}_{\left\langle y_{i}\right\rangle}^{\times}\right)^{n}, \quad n=\# \text { gauge groups }
$$

$$
\begin{aligned}
& \left(\chi_{1}=\right) \quad y_{1}+Q_{1} \frac{y_{2}}{y_{1}}+Q_{1} Q_{2} \frac{1}{y_{2}}=P_{1} \\
& \left(\chi_{2}=\right) y_{2}+Q_{2} \frac{y_{1}}{y_{2}}+Q_{1} Q_{2} \frac{1}{y_{2}}=P_{2}
\end{aligned}
$$

Example: A_{2} quiver

canonical Weyl invariant system

$$
\begin{array}{ll}
\left(\chi_{1}=\right) & y_{1}+Q_{1} \frac{y_{2}}{y_{1}}+Q_{1} Q_{2} \frac{1}{y_{2}}=P_{1} \\
\left(\chi_{2}=\right) & y_{2}+Q_{2} \frac{y_{1}}{y_{2}}+Q_{1} Q_{2} \frac{1}{y_{2}}=P_{2}
\end{array}
$$

implies Seiberg-Witten curve equation

$$
y_{1}^{3}-P_{1}(x) y_{1}^{2}+P_{2}(x) Q_{1}(x) y_{1}-Q_{1}(x)^{2} Q_{2}(x)=0
$$

Spectral curve in terms of characteristic polynomial for Fin quivers

To each irrep R of G_{q} we can associate the spectral polynomial and the algebraic curve:

$$
\operatorname{det}_{R}\left(y-e^{\mathbf{t}}\right)=0
$$

The coefficients of powers of y in the expansion

$$
\operatorname{det}_{R}\left(y-e^{\mathbf{t}}\right)=\sum_{k=0}^{\operatorname{dim} R} y^{\operatorname{dim} R-k}(-1)^{k} \operatorname{tr}_{\Lambda^{k} R} e^{\mathbf{t}}
$$

are expressed polynomially in terms of invariants χ_{i} and, hence, $P_{i}(x)$ and $Q_{i}(x)$

Aff quivers, theta-functions and G_{q} bundles on elliptic curve

$$
\begin{aligned}
& E_{\langle t\rangle}=\mathbb{C}^{\times} / q^{\mathbb{Z}} \quad \text { elliptic curve } \quad q=\prod_{i=0}^{r} q_{i}^{a_{i}^{\vee}} \\
& a_{i}^{\vee} \quad \text { Dynkin marks }
\end{aligned}
$$

\hat{G}_{q} orbits on $\hat{\mathfrak{t}}_{\mathrm{q}} \longleftrightarrow G_{\mathrm{q}}$-flat connections on E
\ddagger
ADE theta-functions

$G_{\mathrm{q}}^{\mathbb{C}}$ polystable degree zero holomorphic bundles on E
$\mathbb{W}_{a_{0}^{\vee}, \ldots, a_{r}^{\vee}}$

Algebraic integrable system associated to affine ADE quiver

$$
\begin{aligned}
& \mathcal{M}=\operatorname{Bun}_{G_{\mathrm{q}}, N}^{0, \mathrm{ss}}\left(\overline{\mathbf{C}}_{\langle x\rangle} \times E_{\langle t\rangle}, \infty \times E\right) \\
& \downarrow \\
& \mathcal{B}=\left.\operatorname{Maps}_{N}\left(\overline{\mathbf{C}}_{\langle x\rangle}, \operatorname{Bun}_{G_{\mathrm{q}}}^{0, \mathrm{ss}}(E)\right)\right|_{\infty \rightarrow P_{t}}
\end{aligned}
$$

$$
\operatorname{dim}_{\mathbb{C}} \mathcal{M}=2 N h^{\vee}
$$

$$
\operatorname{dim}_{\mathbb{C}} \mathcal{B}=N h^{\vee}
$$

The fibers are Lagrangian tori for holomorphic symplectic structure on \mathcal{M}

Affine AD quivers, Nahm transform and Hitchin systems
holomorphic $S U(r+1) / S O(2 r) / S p(2 r)$-bundles of instanton charge N on $\mathbf{C} \times E$

Nahm transform

ADHM Higgs bundles on E^{\vee} with (ADHM dual) $S U(N) / S p(2 N) /$ $S O(N)$ structure group

$S L(N) / S p(2 N) / S O(N)$ Hitchin system on elliptic curve E^{\vee} (with $r+1 / 2 r / 2 r$ punctures)

THEANTR

