Exotic Branes and Black Hole Microstates

Masaki Shigemori

(KMI Nagoya)

Progress in Quantum Field Theory and String Theory Osaka City University, April 4, 2012

with I. Bena, J. de Boer, S. Giusto & N. Warner, 1004.2521, 1107.2650, 1110.2781

for the Origin of Particles and the Universe

String

Message:

"Exotic branes" are important for non-pert. physics of string theory — in particular, black holes.

Exotic Branes

Exotic branes (1)

"Forgotten" branes in string theory

[Elitzur+Giveon+Kutasov+Rabinovici '97] [Blau+O'Loughlin '97] [Obers+Pioline '98]

• Typical mass ~ g_s^{-3} , g_s^{-4}

Predicted by duality

Exotic branes (1)

"Forgotten" branes in string theory

[Elitzur+Giveon+Kutasov+Rabinovici '97] [Blau+O'Loughlin '97] [Obers+Pioline '98]

• Typical mass ~ g_s^{-3} , g_s^{-4}

Predicted by duality

Exotic branes (2)

Type IIA	P (7), F1 (7), D0 (1), D2 (21), D4 (35), D6 (7),
	NS5 (21), KKM (42), 5_2^2 (21), 0_3^7 (1), 2_3^5 (21),
	4_3^2 (35), 6_3^1 (7), $0_4^{(1,6)}$ (7), 1_4^6 (7)
Type IIB	P (7), F1 (7), D1 (7), D3 (35), D5 (21), D7 (1),
	NS5 (21), KKM (42), 5_2^2 (21), 1_3^6 (7), 3_3^4 (35),
	5_3^2 (21), 7 ₃ (1), $0_4^{(1,6)}$ (7), 1_4^6 (7)
M-theory	P (8), M2 (28), M5 (56), KKM (56),
	5^3 (56), 2^6 (28), $0^{(1,7)}$ (8)

Notation

$$b_n^c: M = \frac{R^b (R^c)^2}{g_s^n} \qquad b_n^{(c,d)}: M = \frac{R^b (R^c)^2 (R^d)^3}{g_s^n}$$

E.g. $5_2^2 (34567,89): M = \frac{R_3 \cdots R_7 (R_8 R_9)^2}{g_s^2 l_s^8}$

Exotic branes (3)

Co-dimension 2

Exotic branes (3)

Co-dimension 2

Charge = U-duality monodromy

Fields jump by U-duality as we go around

Generalizations of F-theory 7-branes [Greene+Shapere+Vafa+Yau] [Vafa] [Kumar+Vafa]

Exotic branes (3)

- Co-dimension 2
- Charge = U-duality monodromy
- Non-geometric [de Boer+MS, 1004.2521]

Even metric can have monodromy!

Examples of "U-folds"

[Liu+Minasian] [Hellerman+McGreevy+Williams] [Dabholkar+Hull] [Flournoy+Wecht+Williams] ...

Sugra solution for 5_2^2

5²₂(56789,34) metric:

 $ds^{2} = -dt^{2} + H(dr^{2} + r^{2}d\theta^{2}) + HK^{-1}dx_{34}^{2} + dx_{56789}^{2}$ $B_{34} = -K^{-1}\theta\sigma, \qquad e^{2\Phi} = HK^{-1}, \qquad K \equiv H^{2} + \sigma^{2}\theta^{2}$

 $r, \theta: \mathbb{R}^2$ $x^{3,4}: T^2$ $x^{5...9}: T^6$

$$H(r) = h + \sigma \log\left(\frac{\mu}{r}\right)$$
 $\sigma = \frac{R_3 R_4}{2\pi \alpha'}$ Cf. [Blau+O'Loughlin 1997]: 65

T-fold structure:

$$\theta = 0: G_{33} = G_{44} = H^{-1},$$

 $\theta = 2\pi: G_{33} = G_{44} = \frac{H}{H^2 + (2\pi\sigma)^2}$

 $\rightarrow x_3$ - x_4 torus size doesn't come back to itself!

Comments

- Not well-defined as stand-alone objects
 - Log divergence
 - → Superpositions (cf. F-theory 7-branes)
 - → Configs with higher codims. (we turn to this next!)
- Easy to get metric for other exotic branes
 - Questionable for states with $M \sim g_s^{-3}$, g_s^{-4} ?

Supertube Effect and Exotic Branes

Spontaneous polarization phenomenon
Produces new dipole charge

Exotic supertubes [de Boer+MS, 1004.2521]

Ordinary branes can polarize into exotic ones

- Only dipoles \rightarrow no log div.
- Exotic branes: *ubiquitous*

- Important for generic non-pert. physics
- Notable example: black hole

Exotic Branes and BH Microstates

BH microstates

BH has thermodynamic entropy

Is a BH an ensemble? Where are microstates?

A BH is filled with stringy "fuzz"

No horizon No singularity

- BH microstates = different configurations of the fuzz
- BH entropy = stat. mech. entropy of the fuzz

$$S_{\rm BH} = \frac{A}{4G_N} \stackrel{?}{=} S_{\rm fuzz}$$

2-charge sys: geometric microstates

DI-D5 system

arbitrary curve

Lunin-Mathur solutions "geometric microstates"

 $S_{\rm micro} \sim S_{\rm geom} \sim Q$

[Lunin+Mathur] [Lunin+Maldacena+Maoz] [Rychkov]

Non-geometric microstates

D4-D4 system

Metric for D4+D4 \rightarrow 5²₂

 $D4(6789)+D4(4589) \rightarrow 5_2^2 (4567\psi, 89)$ [de Boer+MS, 1004.2521]

$$ds^{2} = -\frac{1}{\sqrt{f_{1}f_{2}}}(dt - A)^{2} + \sqrt{f_{1}f_{5}} dx_{123}^{2} + \sqrt{\frac{f_{1}}{f_{2}}} dx_{45}^{2} + \sqrt{\frac{f_{2}}{f_{1}}} dx_{67}^{2} + \frac{\sqrt{f_{1}f_{2}}}{f_{1}f_{2} + \gamma^{2}} dx_{89}^{2},$$

$$f_{i}, A: \text{ sourced along curve in } \mathbb{R}^{3}$$

$$f_{1} = 1 + \frac{Q_{1}}{L} \int_{0}^{L} \frac{dv}{|\vec{x} - \vec{F}(v)|}, \quad f_{2} = 1 + \frac{Q_{1}}{L} \int_{0}^{L} \frac{|\vec{F}(v)|^{2}}{|\vec{x} - \vec{F}(v)|} dv, \quad A_{i} = -\frac{Q_{1}}{L} \int_{0}^{L} \frac{\dot{F}_{i}(v)}{|\vec{x} - \vec{F}(v)|} dv = *_{3} dA, \quad d\beta_{I} = *_{3} df_{I}$$

$$\gamma, \beta_{i} \text{ have monodromy around curve}$$

$$\gamma \rightarrow \gamma - 2q, \quad \beta_{I} \rightarrow \beta_{I} - 2Q_{I} \rightarrow \text{T-fold structure}$$

$$just as before$$

$$Asymptotically flat 4D$$

Metric for D4+D4 \rightarrow 5²₂

Other fields:

$$e^{2\Phi} = \frac{\sqrt{f_1 f_2}}{f_1 f_2 + \gamma^2}, \quad B_{89}^{(2)} = \frac{\gamma}{f_1 f_2 + \gamma^2}, \quad C^{(3)} = -\gamma \rho + \sigma$$

 $\rho = (f_2^{-1} + dt - A) \wedge dx^4 \wedge dx^5 + (f_1^{-1} + dt - A) \wedge dx^6 \wedge dx^7$ $\sigma = (\beta_1 - \gamma dt) \wedge dx^4 \wedge dx^5 + (\beta_2 - \gamma dt) \wedge dx^6 \wedge dx^7$

So far so good \bigcirc

But 2-charge system is not a real BH; horizon vanishes classically.

Toward 'real' BHs

3-charge system (DI-D5-P)

- Not so successful oxtimes
 - A huge # of geom. microstates have been constructed

[Bena+Warner '05] [Berglund+Gimon+Levi '05]

Evidence that they are not enough

[de Boer+El-Showk+Messamah+Van de Bleeken '08-09] [Bena+Bobev+Ruef+Warner '08]

$$S_{\text{geom}} \sim Q^{\frac{5}{4}} \qquad \ll \qquad S_{\text{BH}} \sim Q^{\frac{3}{2}}$$

They looked for geometric solutions in sugra and didn't find enough microstates.

But this seems just in accord with what we saw:

Generic BH microstates involve exotic branes and are non-geometric!

"Double bubbling" (1) [de Boer+MS, 1004.2521]

▶ 3-charge system: 5D BH : Well studied for microstate geometry

M2(56) M2(78) M2(9A)

"Double bubbling" (1) [de Boer+MS, 1004.2521]

3-charge system: 5D BH : Well studied for microstate geometry

M5(789Aψ) M5(569Aψ) M5(5678ψ)

> arbitrary curve "supertube"

cf. black ring

M2(56)

M2(78)

M2(9A)

"Double bubbling" (1) [de Boer+MS, 1004.2521]

3-charge system: 5D BH : Well studied for microstate geometry

M2(56) M2(78) M2(9A) M5(789A ψ) M5(569A ψ) M5(5678 ψ)

arbitrary curve

"supertube"

cf. black ring

9Αψ) 9Αψ) 78ψ)

Ŵ

 $5^{3}(789A\phi, 56\psi)$ $5^{3}(569A\phi, 78\psi)$ $5^{3}(5678\phi, 9A\psi)$

arbitrary surface "superstratum"

non-geometric microstates

 $S_{\text{micro}} \stackrel{?}{=} S_{\text{nongeom}}$

stra·tum [stréitəm | stráː-] 『ラテン語「広がったもの」の意から』 一阁回(鶴-ta [-tə], ~s) 1 【地質】地層; 層. 2 層, 階級.

*

"Double bubbling" (2)

• 4-charge system: 4D BH : Well studied for microstate counting

[Maladacena+Strominger+Witten]

D0 D4(6789) D4(4589) D4(4567)

"Double bubbling" (2)

▶ 4-charge system: 4D BH : Well studied for microstate counting

[Maladacena+Strominger+Witten]

"Double bubbling" (2)

• 4-charge system: 4D BH : Well studied for microstate counting [Maladacena+Strominger+Witten]

Endless bubbling??

Toward Proving Double Bubbling

Susy in supertube [Bena+de Boer+Warner+MS | 107.2650]

• Preserves $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ susy

- Locally $\frac{1}{2}$ BPS
- Which ¹/₂ is preserved
 depends on local orientation
- Common susy preserved = original ¹/₄ susy

This is why supertube can be along an arbitrary curve.

Susy in superstratum

Preserves $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$ susy

- Locally $\frac{1}{2}$ BPS
- Which ¹/₂ is preserved
 depends on local orientation
- Common susy preserved = original ¹/₈ susy

If true, superstratum can be along an arbitrary surface in principle!

Example: F1-P \rightarrow D2

General formula for $1 \rightarrow 2$ puff-up

Projectors before puffing up:

$$\Pi_1 = \frac{1}{2}(1+P_1), \qquad \Pi_2 = \frac{1}{2}(1+P_2)$$

Projector after puffing up:

$$\Pi = \frac{1}{2} [1 + c^2 P_1 + s^2 P_2 - sc \Gamma^{0\psi} + sc \Gamma^{0\psi} P_1 P_2]$$

= $c (c - s\Gamma^{0\psi}) \Pi_1 + s (s - c\Gamma^{0\psi}) \Pi_2 + 2sc \Gamma^{0\psi} \Pi_1 \Pi_2$

Special case: D1-D5-P (1)

D1(θ) D5(θ6789)

$\mathrm{KKM}(6789\phi,\theta)$

Original config.

Supertube: traveling waves on DI-D5

Locally same as DI-D5 2-chg sys.

DI-D5-KK Superstratum

Special case; superstratum is geometric

Special case: D1-D5-P (2)

Local picture

Original config.

Infinite straight supertube = tilted and boosted DI-D5 Infinite straight superstratum

Special case: D1-D5-P (3)

$$\widehat{\Pi} = \frac{1}{2} (1 + s_4^2 \widehat{P}_1 + c_4^2 \widehat{P}_2 - s_4 c_4 \Gamma^{0\psi} + s_4 c_4 \Gamma^{0\psi} \widehat{P}_1 \widehat{P}_2)$$

Same 1/8 susy preserved

Backreacted strata

- Dynamics of superstrata
 - Arbitrary surface possible?

- ► 6D sugra (DI-D5-P) [Gutowski+Martelli+Reall] [Cariglia+Mac Conamhna] [Bena+Giusto+Warner+MS 1110.2781]
 - Linear problem, if solved in the right order
 - Given superstratum data, must be possible to find solutions in principle

Linear structure (1)

6D spacetime: (u, v, x^m) u: isometry x^m : 4D base 4D base $\mathcal{B}^4(v)$: almost hyper-Kähler $ds_4^2 = h_{mn}(x, v)dx^m dx^n$, m, n = 1,2,3,4 $\beta(x, v)$: I-form (\leftrightarrow KKM) $J^{(A)}(x, v), A = 1,2,3$: almost HK 2-forms

$$J^{(A)m}{}_{n}J^{(B)n}{}_{p} = \epsilon^{ABC}J^{(C)m}{}_{p} - \delta^{AB}\delta^{m}_{p}$$
$$\tilde{d}J^{(A)} = \partial_{\nu}(\beta \wedge J^{(A)}), \qquad \tilde{d} \equiv dx^{m}\partial_{m}$$

Linear structure (2)

Fields on \mathcal{B}^4

 Z_1 : scalar $\leftrightarrow DI(v)$ Z_2 : scalar $\leftrightarrow D5(v6789)$ Θ_1 : 2-form $\leftrightarrow DI(\psi)$ Θ_2 : 2-form $\leftrightarrow D5(\psi6789)$ ω : I-form $\leftrightarrow J$ \mathcal{F} : scalar $\leftrightarrow P(v)$

$$D[*_{4} (DZ_{i} + \dot{\beta}Z_{i})] + 2(D\beta) \wedge \Theta_{j} = 0 \qquad \{i, j\} = \{1, 2\}$$
$$D\Theta_{j} - \dot{\beta} \wedge \Theta_{j} - \partial_{\nu} \left[\frac{1}{2} *_{4} (DZ_{i} + \dot{\beta}Z_{i})\right] = 0 \qquad \vdots \equiv \partial_{\nu}$$

$$ds_{6}^{2} = \frac{2}{\sqrt{Z_{1}Z_{2}}}(dv + \beta)\left(du + \omega + \frac{1}{2}\mathcal{F}(dv + \beta)\right) - \sqrt{Z_{1}Z_{2}}\,ds_{4}^{2}$$

Geometric superstrata (2)

So far it was possible to construct:

[Niehoff+Vasilakis+Warner 1203.1348]

N strands of DI-P and D5-PNext step: KKMsupertube spirals along arbitrarydipolecurves $\vec{F}^{(i)}, i = 1, ..., N$ (work in progress)

Falling into BH

Black hole

The fallen person thinks she's gone to a dual spacetime

Exotic brane

From an outside observer, it's she who got dualized

Falling into BH

In reality, she has gone to pieces and is indistinguishable from Hawking radiation

Conclusions

Conclusions

- Exotic branes = non-geometries (U-folds)
- Relevant even for non-exotic physics by supertube effect
 - Exotic branes are not at all exotic; They are everywhere!
- Essential ingredients of BHs

Future directions

Geometric superstrata

- Hints from string amplitudes [Giusto, Russo, et al.]
- Non-geometric superstrata
 - Locally geometric
 - Generalize susy sol'n ansatz
 - Generalized geometry, DFT

[Berman, Hohm, Hull, Perry, Zwiebach, ...]

Conjecture:

Generic microstates of black holes involve non-geometric superstrata. Thanks!