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① Introduction 

AdS/CFT  is a very powerful method to understand strongly 
coupled condensed matter systems.  
 
Especially, the calculations become most tractable  
in the strong coupling and large N limit of  gauge theories.   
 
In this limit, the AdS side is given by a classical gravity and  
we can naturally expect universal behaviors such as the  
no hair theorem in GR,   η/s=1/4π, etc. 
 
So, we concentrate on this limit in this talk. 
 
  



In this talk, we would like to consider what is a universal 
properties for metallic condensed matter systems via AdS/CFT.  
 
The metals are usually described by the Landau’s Fermi 
liquids. It is well-known that Fermi liquid states are stable  
against perturbations by the Coulomb forces.  
 
However, in strongly correlated  
electron systems such as the  
strange metal phase of high Tc  
superconductors or heavy fermion  
systems etc.,  we encounter  
so called non-Fermi liquids.  
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So,  the main purpose of this talk is to answer the question: 
 
Can we obtain Landau’s Fermi liquids in the classical    
gravity limit ? 
  
 ⇒ We will show that the answer is NO ! 
 
 
Note:   Several interesting setups of (non-)Fermi liquids have 
already been found.  
 
(i) Probe fermions in Charged AdS BH (Emergent AdS2 in the IR) 
 
(ii) Electron stars (Lifshitz metric in the IR)  
     [Confined version: Soliton Star, Bhattacharya-Ogawa-Takayanagi-Ugajin 2012]   

⇒ Both of them do not have any Fermi surfaces in the leading 
order O(N2) of large N limit ! 
 

[Hartnoll-Tavanfar 2010] 
 

[Faulkner-Liu-McGreevy-Vegh 2009] 



Systems with Fermi surfaces  

          ⇔ Fermi liquids or non-Fermi liquids 

 

So, we concentrate on systems with Fermi surfaces. 

 

To make the presentation simpler, we will work for 2+1  

dim. systems with Fermi surfaces. But our analysis can be   

generalized to higher dimensions, straightforwardly. 
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How to characterize the Fermi surfaces ? 
 

Metals  ⇒ Conductivity ?     
 

But it seems difficult to find universal results for conductivity in  

the gravity dual.  This is because it is related to the propagation  

of U(1) gauge fields in AdS, whose behavior largely depends on  

the precise Lagrangian of gauge fields  e.g. f(φ)F2 . 

 

So we want to find a quantity whose gravity dual is closely  

related to the metric (i.e. gravity field). 

    ⇒ We should look at a thermodynamical quantity ! 

   



One traditional candidate is the specific heat C. 

 

For (Landau’s) fermi liquids,  we always have the behavior 

 

 

This linear specific heat can be understood if we note that we  

can approximate the excitations of Fermi liquids  by an infinite  

copies of 2 dim. CFTs. 
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In 2d CFT,  we know 

 

 

In this way, we can estimate the specific heat of the Fermi liquids 

 

 

 

However, the linear specific heat is not true for non-Fermi liquids.  

This is because they have anomalous dynamical exponents z.   

(~infinite copies of 2d Lifshitz theory:                                     ) 
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To characterize the existence of Fermi  surfaces,  we  

need to look at a property which is common to both  

the FL and non-FL. 

 

⇒  The entanglement entropy is a suitable quantity. 

 

After we concentrate on the systems with Fermi  

surfaces, we can distinguish between FL and non-FL by  

calculating the specific heat. 

 

This is our strategy in the present talk. 

 

 

 



Contents 

 

 

① Introduction 

② Entanglement Entropy and Fermi surfaces 

③   Holographic Entanglement Entropy (HEE) 

④   Fermi Surfaces and HEE  

⑤ Conclusions 



 
 
 

Divide a quantum system  
into two subsystems A and B: 
 
 
 
 
 

We define the reduced density matrix         for A  by 
 
 
 
 

taking trace over the Hilbert space of B . 

A
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A B Example: Spin Chain 

② Entanglement Entropy and Fermi surfaces   

(2-1) Definition and Properties of Entanglement Entropy 
 

 



Now the entanglement entropy        is defined by the  

von-Neumann entropy 

 

 

 

In QFTs,  it is defined geometrically: 
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(2-2) Area law  
 

EE in QFTs includes UV divergences.  
 

In a (d+1 ) dim. QFT with a UV fixed point, the leading term of EE  

is proportional to the area of the (d-1) dim. boundary         :  

 

 

                                      

where       is a UV cutoff (i.e. lattice spacing). 

 

Intuitively, this property is understood like:   
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 However,  there are two known exceptions: 
 
    (a)  1+1 dim.  CFT 
 
 
 
 
    (b)   ∃Fermi surfaces (                ) 
 
 
 
 
 
 
 
 

A 
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[Holzhey-Larsen-Wilczek 94, Calabrese-Cardy 04] 

[Wolf 05, Gioev-Klich 05] 



(2-3) Fermi Surfaces and Entanglement Entropy 

Why do Fermi Liquids violate the area law ? 

 
This can be understood if we remember that the Fermi liquids  

can be though of as infinite copies of 2d CFTs: 

 

 

 

 

 

We will mainly assume this choice of subsystem A below. 
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Recently, there have been evidences that this logarithmic  

behavior is true also for non-Fermi liquids (e.g.spin liquids).    
                                          [Swingle 09,10,  Zhang-Grover-Vishwanath 11 etc.] 

 

Intuitively,  we can naturally expect this because the logarithmic  

behavior does not change if we introduce the dynamical  

exponent z in the 2d theory as                                . 

 

Therefore we find the characterization: 

 

       ∃Fermi surface ⇔ Logarithmic behavior of EE 
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To apply the AdS/CFT,  we will embed the Fermi surface in a CFT. 
In this case, the leading divergence still satisfies the area law. 
But the subleading finite term has the logarithmic behavior: 
 
 
 
 
 
if  we assume                      .   
 
 
           
 
                 .  
So,  we will concentrate on the gravity dual whose entanglement 
entropy has this behavior in our arguments below. 
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Holographic Entanglement Entropy Formula   [Ryu-TT 06] 

     
 
 
 
 
 
 
 

         is the minimal area surface  
    (codim.=2)  such that             
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③ Holographic Entanglement Entropy   
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• In spite of a heuristic argument [Fursaev, 06] , there has been no  

   complete proof.  But, so many evidences and no counter examples. 

 

[A Partial List of Evidences] 

 

  Area law follows straightforwardly [Ryu-TT 06] 

  Agreements with analytical 2d CFT results for AdS3 [Ryu-TT 06] 

 Holographic proof of strong subadditivity [Headrick-TT 07] 

  Consistency of 2d CFT results for disconnected subsystems                

      [Calabrese-Cardy-Tonni 09]   with our holographic formula  [Headrick 10]                                                                                            

  Agreement on the coefficient of log term in 4d CFT  (~a+c) 

     [Ryu-TT 06, Solodukhin 08,10,  Lohmayer-Neuberger-Schwimmer-Theisen 09,   

       Dowker 10, Casini-Huerta, 10,  Myers-Sinha 10]  

  A direct  proof  when A = round ball   [Casini-Hueta-Myers 11]  

 Holographic proof of Cadney-Linden-Winter inequality  

      [Hayden-Headrick-Maloney 11] 

 



 
④ Fermi Surfaces and HEE  [Ogawa-Ugajin-TT 11]   

 
(4-1)  Setup of gravity dual 

 

For simplicity, we consider a general gravity dual of 2+1 dim.  

systems.  The general metric can be written as follows  (up to diff.) 

 

 

 

where f(z) and g(z) are arbitrary functions. 

We impose that it is asymptotically AdS4 i.e. 
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(4-2)  Holographic EE 

 

Now we would like to calculate the HEE for this gravity dual. 

We choose the subsystem as the strip width l as before  

 

 

 

 

 

the minimal surface condition reads   
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In the end, we obtain 

 

 

 

when the size of subsystem A is large                .   

In this case, the minimal surface extends to the IR region deeply. 

 

⇒ The logarithmic behavior of EE is realized just when n=1. 

 

 

 

We identify           as a characteristic scale of the Fermi energy. 

Note: f(z) does not affect the HEE and is still arbitrary. 
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(4-3) Null Energy Condition 

 

To have a sensible holographic dual, a necessary condition is  

known as the null energy condition: 

 

 

 

 

 

In the IR region, the null energy condition argues 
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At finite temperature, we expect that the solution is given by  

a black brane extension of our background: 

 

 

 

The `non-extremal factors’  behave near the horizon 

 

 

 

From this, we can easily find the behavior of specific heat:   
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Combined with the null energy condition:              , we obtain   

 

  

    

Notice that this excludes the Landau’s Fermi liquids (α=1). 

 

In summary,  we find that classical gravity duals only allow             

non-fermi liquids.    

 

Comments:   

(i) This result might not be so unnatural as the non-Fermi liquids 
are expected in strongly correlated systems. 

(ii) Even in the presence of perturbative higher derivative 
corrections, the result does not seem to be changed.   
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(iii) Some miracle coincidences ? 

 

AdS:   No curvature singularity in the gravity dual 

                 ⇒ α=2/3  [11] 

Shaghoulian 

CMT:   Spin fluctuations:   
               [Moriya, Hertz, Millis …. 70’-90’] 

             N Fermions + U(1) gauge:  

              ⇒ α=2/3   (i.e. z=3) 
         [Lee 09, Metlitski, and S. Sachdev 10,  

            Mross-McFreevy-Liu-Senthil 10, 

  Lawler-Barci-Fernandez-Fradkin-Oxman 06] 

 

Experiment:   YbRh2(Si1-xGex)2    

                         ⇒ α=2/3  

Examples of heavy fermions 
[Pepin 11, talk at KITP] 



(iv) We can embed this background in an effective gravity theory: 

 

 
                    [This theory was already extensively studied in Charmousis et.al. 10] 

if W and V behave in the large φ limit as follows [Ogawa-Ugajin-TT 11] 

 

 

 

 

 

 

 

 

 

   [A solution in the p=2 case has been found in Shaghoulian 11] 
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(v) This metric can also be regarded as a generalization of Lifshitz  

backgrounds so that it violates the hyperscaling. 

   [Huijse-Sachdev-Swingle 11, Dong-Harrison-Kachru-Torroba-Wang 12] 
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⑤ Conclusions 

• The entanglement entropy (EE) is a useful bridge between   

  gravity (string theory) and cond-mat physics.  

 

     Gravity                        Entanglement           Cond-mat. 

                                                                                            systems 

 

•  Classical gravity duals + Null energy condition   

       ⇒  a  constraint on  specific heat    

  ⇒ Non-fermi liquids !               

 

• Questions:  Any string theory embeddings of the NFL b.g. ?   

    Can we see Fermi surfaces more directly ? (Maybe smeared ?) 
                                                          [see also  Hartnoll- Shaghoulian 12] 
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