Emergent bubbling geometries in the plane wave matrix model

Yuhma Asano (Kyoto U.)

March 6, 2014

Collaboration with Goro Ishikib, Takashi Okada ${ }^{\text {bc }}$ and Shinji Shimasaki ${ }^{\text {a }}$ (a Kyoto U., ${ }^{\text {b }}$ YITP and ${ }^{\text {cKITP }) ~}$

Ref) JHEP1302(2013)148 (arXiv:1211.0364), arXiv:1401.5079

Plane Wave Matrix Model (1D Quantum Mechanics)

IIA SUGRA solution

This gravity solution was constructed by Lin and Maldacena in ' 05 .

Q: How does the space-time geometry emerge in the framework of the corresponding gauge theory?

Plane Wave Matrix Model

 (1D Quantum Mechanics)
IIA SUGRA solution

Geometry
Range of the eigenvalues \longleftrightarrow Typical geometric scale

I'm going to show
how the geometry can be constructed from the Plane Wave Matrix Model!

Plan of Talk

1) Gravity Side
2) PWMM (Gauge Theory)
3) Geometry from PWMM
4) Summary, Some Notes and Future Works

Gravity Side

The IIA SUGRA solutions dual to $S U(2 \mid 4)$ symmetric theories have $R \times S O(3) \times S O(6)$ isometry.

The metric can be written by a single function $V(r, z)$:
[Lin-Lunin-Maldacena '04, Lin-Maldacena '05]

$$
\begin{aligned}
& d s_{10}^{2}=\left(\frac{\ddot{V}-2 \dot{V}}{-V^{\prime \prime}}\right)^{1 / 2}\left\{-4 \frac{\ddot{V}}{\ddot{V}-2 \dot{V}} d t^{2}-2 \frac{V^{\prime \prime}}{\dot{V}}\left(d r^{2}+d z^{2}\right)+4 d \Omega_{5}^{2}+2 \frac{V^{\prime \prime} \dot{V}}{\Delta} d \Omega_{2}^{2}\right\}, \\
& C_{3}=-4 \frac{\dot{V}^{2} V^{\prime \prime}}{\Delta} d t \wedge d \Omega_{2}, \quad B_{2}=\left(\frac{\left(\dot{V}^{2}\right)^{\prime}}{\Delta}+2 z\right) d \Omega_{2}, \cdots \quad\left(\Delta=(\ddot{V}-2 \dot{V}) V^{\prime \prime}-\left(\dot{V}^{\prime}\right)^{2}\right)
\end{aligned}
$$

EoM and Killing spinor eq. for the geometry
V satisfies the Laplace eq. in a 3D axisymmetric system.
Reducing to axisymmetric electrostatic problems with "conducting disks."

General geometry:

The geometries are
labeled by $\left\{N_{2}{ }^{(s)}, N_{5}{ }^{(s)}\right\}_{s=1, \ldots, \Lambda}$

$\Lambda=1$ case:
$V(r, z)=V_{0}\left(r^{2} z-\frac{2}{3} z^{3}\right)+\beta(\kappa) V_{0} R^{3} \int_{-R}^{R} d t\left(-\frac{1}{\sqrt{r^{2}+(z+d+i t)^{2}}}+\frac{1}{\sqrt{r^{2}+(z-d+i t)^{2}}}\right) \frac{f_{\kappa}(t)}{\pi}$.
V_{0} : constant, R : radius of disk, $\kappa=d / R, \beta(\kappa)$: function of κ

$$
f_{\kappa}(x)-\frac{1}{\pi} \int_{-1}^{1} d y \frac{2 \kappa}{4 \kappa^{2}+(x-y)^{2}} f_{\kappa}(y)=1-\frac{2 \kappa}{\beta(\kappa)} x^{2}
$$

PWONM (Gauge Theary Side)

PWMM is a 1D Matrix Theory with $S U(2 \mid 4)$ symmetry.
[Berenstein-Maldacena-Nastase '02]

$$
\begin{aligned}
& S=\frac{1}{g^{2}} \int d \tau \operatorname{Tr}\left(\frac{1}{2}\left(D_{\tau} X_{a}\right)^{2}+\frac{1}{2}\left(D_{\tau} X_{m}\right)^{2}+\frac{1}{4}\left(2 \epsilon_{a b c} X_{c}-i\left[X_{a}, X_{b}\right]\right)^{2}-\frac{1}{2}\left[X_{a}, X_{m}\right]^{2}\right. \\
& D_{\tau}=\partial_{\tau}-i\left[A_{\tau}, *\right]\left.-\frac{1}{4}\left[X_{m}, X_{n}\right]^{2}+\frac{1}{2} X_{m} X^{m}+\text { fermions }\right)
\end{aligned}
$$

$$
a, b=1,2,3, \quad m, n=4, \ldots, 9
$$

The vacua are given by $S U(2)$ rep.

$$
\hat{X}_{a}=-2 \bigoplus_{s=1}^{\Lambda}\left(\mathbf{1}_{N_{2}^{(s)}} \otimes L_{a}^{\left[N_{5}^{(s)}\right]}\right) \quad \begin{aligned}
& L_{a}^{\left[N_{5}(s)\right]: \operatorname{spin}\left(N_{5}^{(s)}-1\right) / 2 \text { rep. mat. }} \\
& N_{2}(s): \text { multiplicity of the spin }\left(N_{5}^{(s)}-1\right) / 2 \text { rep }
\end{aligned}
$$

-• labeled by $\left\{N_{2}{ }^{(s)}, N_{5}{ }^{(s)}\right\}_{s=1, \ldots, \Lambda}$

So as to construct geametries

Consider simple vacua ($\Lambda=1$) from now on.

Then apply the localization method to PWMM and get the same equation as that obtained on the gravity side:

$$
f_{\kappa}(x)-\frac{1}{\pi} \int_{-1}^{1} d y \frac{2 \kappa}{4 \kappa^{2}+(x-y)^{2}} f_{\kappa}(y)=1-\frac{2 \kappa}{\beta(\kappa)} x^{2}
$$

Lacalization

Let us apply the localization method to PWMM. [rA.-shiki-OKada-Shimasaki '12]

- SUSY: quarter BPS sector such that

$$
\phi(\tau)=2\left(-X_{3}(\tau)+\sinh (\tau) X_{8}(\tau)+i \cosh (\tau) X_{9}(\tau)\right) \text { is invariant. }
$$

- B.C.: all fields approach to the vacuum configurations at $\tau \rightarrow \infty$.
- $\mathcal{V}: \delta_{s} \mathcal{V}$ is SUSY-invariant and positive-definite. $\quad \mathcal{V}=\int d \tau \operatorname{Tr}\left[\overline{\psi \delta_{s} \Psi}+\mathcal{V}_{\text {ghost }}\right]$

Then,

$$
Z(t):=\int \mathcal{D} X e^{-S[X]-t \delta_{s} \mathcal{V}} \quad \quad \frac{d Z(t)}{d t}=0 \quad \int \mathcal{D} X e^{-S[X]}=Z(0)=Z(\infty)
$$

Localized around $\delta_{s} \mathcal{V}=0$!

$$
\hat{X}_{a}(\tau)=-2 \bigoplus_{s=1}^{\Lambda}\left(\mathbf{1}_{N_{2}^{(s)}} \otimes L_{a}^{\left[N_{5}^{(s)}\right]}\right) \quad \hat{X}_{9}(\tau)=\frac{M}{\cosh (\tau)} \quad\left(\left[L_{a}, M\right]=0\right)
$$

Lacalization

Hence, expectation values of any supersymmetric operators can be obtained exactly by 1 -loop calculations.

$$
\left\langle\prod_{a} \operatorname{Tr} f_{a}\left(\phi\left(\tau_{a}\right)\right)\right\rangle=\left\langle\prod_{a} \operatorname{Tr} f_{a}\left(4 L_{3}+2 i M\right)\right\rangle_{M M}
$$

When $\Lambda=1,\langle \rangle_{M M}$ is evaluated by the following partition function:

$$
Z=\int \prod_{i} d q_{i} \prod_{J=0}^{N_{s}-1} \prod_{i>j}^{N_{2}} \frac{\left\{(2 J+2)^{2}+\left(q_{i}-q_{j}\right)^{2}\right\}\left\{(2 J)^{2}+\left(q_{i}-q_{j}\right)^{2}\right\}}{\left\{(2 J+1)^{2}+\left(q_{i}-q_{j}\right)^{2}\right\}^{2}} e^{-\frac{2 N_{s}}{g^{2}} \sum_{i} q_{i}{ }^{2}} .
$$

qi: eigenvalues of Q, where $M=Q \otimes \mathbf{1}_{N_{5}}$

Interacting Fermi Gas System

In the large $-N_{5}$ limit, the partition fn. can be written as

$$
\begin{gathered}
Z=\int \prod_{i} d q_{i} \prod_{i>j}^{N_{2}} \tanh ^{2} \frac{\pi\left(q_{i}-q_{j}\right)}{2} \exp \left\{-\frac{2 N_{5}}{g^{2}} \sum_{i} q_{i}^{2}+\frac{2 N_{5}}{\left(2 N_{5}\right)^{2}+\left(q_{i}-q_{j}\right)^{2}}-\cdots\right\} \\
\text { Repulsive force } \quad \text { Central force } \quad \text { Attractive force }
\end{gathered}
$$

$$
\begin{aligned}
& \text { By using the Cauchy id., } \\
& \prod_{i \neq j}^{N_{2}} \tanh \frac{\pi\left(q_{i}-q_{j}\right)}{2}=\sum_{\sigma \in S_{N_{2}}}\left(-\epsilon^{\epsilon(\sigma)} \prod_{i=1}^{N_{2}} \frac{1}{\cosh \frac{\pi\left(q_{i}-q_{\sigma(i)}\right)}{2}}\right.
\end{aligned}
$$

[Marino-Putrov '12]
Interacting Fermi gas system with hamiltonian

$$
H=\sum_{i=1}^{N_{2}} \log \cosh p_{i}+\frac{2 N_{5}}{g^{2}} \sum_{i=1}^{N_{2}} q_{i}^{2}-\frac{1}{2} \sum_{i \neq j}^{N_{2}} \frac{2 N_{5}}{\left(2 N_{5}\right)^{2}+\left(q_{i}-q_{j}\right)^{2}}
$$

Interacting Fermi Gas System

We consider the limit in which the SUGRA approx. is valid: large- N_{2}, large- $N_{5}, \lambda:=g^{2} N_{2} \gg N_{5}$

- . Thomas-Fermi approximation at zero temperature

The system is described by mean-field density $\rho(q)$.

$$
=\text { eigenvalue density }
$$

It is determined by the following saddle point eq.:

$$
\mu=\pi \rho(q)+\frac{2 N_{5}}{g^{2}} q^{2}-\int_{-q_{m}}^{q_{m}} d q^{\prime} \frac{2 N_{5}}{\left(2 N_{5}\right)^{2}+\left(q-q^{\prime}\right)^{2}} \rho\left(q^{\prime}\right)
$$

μ : chemical potential
q_{m} : upper limit of the support of $\rho(q)$

Construction of geametry

$$
\frac{\pi}{\mu} \rho\left(q_{m} x\right)-\int_{-1}^{1} d y \frac{2 N_{5} / q_{m}}{\left(2 N_{5} / q_{m}\right)^{2}+(x-y)^{2}} \frac{\rho\left(q_{m} y\right)}{\mu}=1-\frac{2 N_{5} q_{m}^{2}}{\mu g^{2}} x^{2}
$$

$$
f_{\kappa}(x)-\frac{1}{\pi} \int_{-1}^{1} d y \frac{2 \kappa}{4 \kappa^{2}+(x-y)^{2}} f_{\kappa}(y)=1-\frac{2 \kappa}{\beta(\kappa)} x^{2}
$$

Construction of geametry

$$
\frac{\pi}{\mu} \rho\left(q_{m} x\right)-\int_{-1}^{1} d y \frac{2 N_{5} / q_{m}}{\left(2 N_{5} / q_{m}\right)^{2}+(x-y)^{2}} \frac{\rho\left(q_{m} y\right)}{\mu}=1-\frac{2 N_{5} q_{m}^{2}}{\mu g^{2}} x^{2}
$$

Identification to obtain the gravity picture

$$
\rho(q)=\frac{\mu}{\pi} f_{\kappa}\left(q / q_{m}\right) \quad \propto \text { charge density on the disk }
$$

By this identification, the range of the eigenvalue dist. can be written by the quantities on the gravity side:

$$
q_{m}=\frac{2}{\pi} R \quad \text { so } \quad R_{S^{5}}^{2}=2 \pi q_{m}
$$

The gravity solution corresponding to a simple vacuum in PWMM has been constructed from the gauge theory side!

D2-and NS5-brane limit

On the gravity side, these two double scaling limits are known:

D2-brane limit

$$
R_{S^{5}}^{2}=\pi\left(3 g_{S^{2}}^{2} N_{2}\right)^{\frac{1}{3}}
$$

NS5-brane limit

$R_{S^{5}}^{2}=2 \pi(8 \lambda)^{\frac{1}{4}}$

On the gauge theory side, solutions in the corresponding limits are

$$
\rho(q)=\frac{\mu}{\pi}\left[1-\left(\frac{q}{q_{m}}\right)^{2}\right], \quad q_{m}=\left(\frac{3 \pi \lambda}{8 N_{5}}\right)^{\frac{1}{3}} \quad \rho(q)=\frac{\mu q_{m}}{3 \pi N_{5}}\left[1-\left(\frac{q}{q_{m}}\right)^{2}\right]^{\frac{3}{2}}, q_{m}=(8 \lambda)^{\frac{1}{4}}
$$

Then, $R_{S^{5}}^{2}=2 \pi q_{m}$
reproduce the same results as those on the gravity side.

Summary

- The mean-field density, that is, the eigenvalue distribution in the matrix integral determines the geometry.
- The range of the eigenvalue dist. corresponds to S_{5} radius.

Same Notes and Future Works

- We can also reconstruct geometries dual to general vacua ($\Lambda \neq 1$) in the same way.
- This method also works for other $S U(2 \mid 4)$ symmetric theories such as SYM on $R \times S^{2}$ and $R \times S^{3} / Z_{k}$.
- Exact proof for the NS5-brane limit. (Work in progress)

