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Gauge/Gravity Correspondence for SU(2|4) symmetric theories

Plane Wave Matrix Model ITA SUGRA solution
(1D Quantum Mechanics)

This gravity solution was constructed
by Lin and Maldacena in ’05.

Q: How does the space-time geometry emerge in the framework of
the corresponding gauge theory?



Gauge/Gravity Correspondence for SU(2|4) symmetric theories

Plane Wave Matrix Model ITA SUGRA solution
(1D Quantum Mechanics)

Eigenvalue dist. of matrices < > Geometry

Range of the eigenvalues - > Typical geometric scale

I’m going to show
how the geometry can be constructed
from the Plane Wave Matrix Model!
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é 'ﬁ scode
The ITA SUGRA solutions dual to SU(2|4) symmetric theories
have RxSO(3)xSO(6) isometry.

The metric can be written by a single function V(r,z):
[Lin-Lunin-Maldacena ’04, Lin-Maldacena '05]
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C3 = —d——dt N dQ, By = <( A> T 2z> GO (A = (V- 2)V" — (v’)2)

EoM and Killing spinor eq. for the geometry

V satisfies the Laplace eq. in a 3D axisymmetric system.

Reducing to axisymmetric electrostatic problems
with “conducting disks.”



Grawity Side

General geometry: 4= TN
d= gwéz)
The geometries are 1
labeled by { No(s), N5(s) il i d= §N5“)
A=1 case:
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Vo: constant, R: radius of disk, k=d/R, ((k): function of
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PUNI Gauge [leory Scde)

PWMM is a 1D Matrix Theory with SU(2|4) symmetry.

[Berenstein-Maldacena-Nastase '02]
1 1 1 1 1
S /dT Tr(§(DTXa)2+§(DTXm)ZJrZ(QeabCXC—i[Xa,Xb])2—§[Xa,Xm]2
9

. 1 1
D, =0, —i[A,, %] _Z[Xm’ Xn]2 e §Xme + fermions)

a,b=1,2,3, mmn=4,....9

The vacua are given by SU(2) rep.

A
A N(S)
X, =20 y0 @ L")

=

LaNse)l: spin (Ns(s) — 1) /2 rep. mat.
No(s): multiplicity of the spin (/N5() - 1)/2 rep.

» + labeled by { Na(8), N5(5) }s—1. . A



So as to construct geometiied

Consider simple vacua (A=1) from now on.

|

Then apply the localization method to PWMM
and get the same equation as that obtained on the gravity side:
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‘Z a. n.

Let us apply the localization method to PWMM.  [vA-ishiki-Okada-Shimasaki *12]

- SUSY: quarter BPS sector such that
P(7) = 2(—X3(7) + sinh(7) Xg(7) + 7 cosh(7) Xg(7))is invariant.

- B.C.: all fields approach to the vacuum configurations at 7— oo.

-V : 05V 1s SUSY-invariant and positive-definite. v = / dr Tr[¥,¥ + Vghost]

Then,
T dZ(t) o—SIX] _ L e
/DX 21 =l /DX Z(0) = Z(o0)
LLocalized around 6s)=0 !
i DR sl RS
T) = 269(1N< )y ®Lg® 7)) Xo(7) = ol ([La, M] = 0)

Ise=3l'



Localization

Hence, expectation values of any supersymmetric operators can be

obtained exactly by 1-loop calculations.

(] Trfa(d(ra))) = (] | Trfa(4Ls + 2iM)) asns

When A=1, { )anr is evaluated by the following partition function:

b T {42+ (0 - )P HED + (00— 4)%) 2w
-/ Ll 101 (@7 + D7 + (2 - ) |

J=0 1>j

gi: eigenvalues of (), where M = Q ® 1,



Tuteracting Fevmi Gae System

In the large- N5 limit, the partition fn. can be written as

No
T(q;i — gj) 2N 5 2N5
78— dg; | | tanh? 1 epq i "+
/H w]] 2 p{ 9° Z,;qz (2N5)? + (g — ¢;)°

1>
Repulsive force Central force Attractive force
By using the Cauchy 1d.,
3 m(q — qj) (o) ok 1
¢ LY S el
H tanh 2 N Z (=) H h (i — 9o (1))
i#] o i—1 COS .

Interacting Fermi1 gas system with hamiltonian

No

2N e 2N
olii— log coshp;, + —— qg; — —
D togeoshp+ DS 13 LM

= i=1 i#j

[Marino-Putrov ’[ 2]



Tuteracting Fevmi Gas Systen

We consider the limit in which the SUGRA approx. 1s valid:
large- Vo , large-N5 , A\:=g2N2 > N5

 + Thomas-Fermi1 approximation at zero temperature

The system is described by mean-field density p(q).

=c1genvalue density

It 1s determined by the following saddle point eq.:

2 N5 9 /qm ; 2 N5 ;
= 7p(q) q° — dq q
D T | N (= g

1 : chemical potential
gm: upper limit of the support of p(q)






(enstruction of geometry

1
™ 2N5/qm P(Gmy)
—0(@mT) — dy =1
up( ) /_1 (2N5/qm)? + (z —y)? u pg?

2N5q2

mil?Q

Identification to obtain the gravity picture

p(q) i I (q/qm) « charge density on the disk
P

By this 1dentification, the range of the eigenvalue dist. can be
written by the quantities on the gravity side:

2
Gm = ;R SO R&s = 2mqm,

The gravity solution corresponding to a simple vacuum in
PWMM has been constructed from the gauge theory side!



DE- and T1SS - brane limct

On the graVIty Slde, [Ling-Mohazab-Shieh-Anders-Raamsdonk '06]

these two double scaling limits are known:

D2-brane limit NSS5-brane limit
: —d g o :
et OQ K = E K —>
1
RZ; = m(3g2=Na)3 Rgs = 2m(8\)1

On the gauge theory side, solutions 1n the corresponding limits are

p(q) = % [1 = (qi)j , Gm = (?TNE); p(q) = Sﬁ;%) [1 = (qi)T %, Gm = (8A)

Then, R%s = 2y,

N

reproduce the same results as those on the gravity side.



Summary

- The mean-field density, that 1s, the eigenvalue distribution in the
matrix integral determines the geometry.

- The range of the eigenvalue dist. corresponds to S5 radius.

Some Votes and Future Wonks

- We can also reconstruct geometries dual to general vacua (A#1)
in the same way.

- This method also works for other SU(2|4) symmetric theories
such as SYM on RxS? and RXxS3/ Zy.

- Exact proof for the NS5-brane limit. (Work 1n progress)



