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1. Introduction

Moyal space

The Moyal space R4 is a four-dimensional non-commutative space which coordinate

ring is non-commutative associative, endowed with the Moyal product

(f ⋆ g)(x) = exp
(√−1

2

4∑
µ,ν=1

θµν∂x
′
µ ∂

x′′
ν

)
f (x′)g(x′′)

∣∣∣
x′=x′′=x

= f (x)g(x) +

√
−1

2

∑
µν

θµν∂µf (x)∂νg(x) + O(θ2),

where ∂x
′
µ = ∂/∂x

′µ etc and θµν is a real anti-symmetric tensor of the form

( θµν ) =


0 −θ1
θ1 0

0 −θ2
θ2 0

 .
Non-commutativity is measured by θµν as seen from[

xµ, xν
]
⋆
≡ xµ ⋆ xν − xν ⋆ xµ =

√
−1θµν.
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Non-commutative gauge instanton

Non-commutative gauge instanton A is a solution of Aniti-Seld-Dual (ASD) Yang-Mills

equation on the Moyal space R4

∗F = −F

where F is the curvature two-form

F =
1

2

∑
µ,ν

Fµνdx
µ ∧ dxν,

Fµν ≡ ∂µAν − ∂νAµ + Aµ ⋆ Aν − Aν ⋆ Aµ,

and the symbol ∗ means taking the Hodge star

(∗F )µν =
1

2

∑
ρ,σ

ϵµνρσF
ρσ

(
ϵ1234 = 1

)
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ADHM construction

The Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction is one of the most useful

method to generate all instanton solutions just by solving matrix equations.

It is based on a duality between an instanton moduli space specified by ASD Yang-Mills

equation (PDE) and a moduli space specified by ADHM equation (matrix equation).

Contents

In this talk, we outline a non-commutative version of the ADHM construction and its

inverse construction.

1. Introduction
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3. Non-commutative topological charge

4. Inverse construction

5. Outlook
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2. Non-commutative ADHM construction

Let V ≡ Ck and W ≡ CN (k,N = 1, 2, · · · ).

Non-commutative ADHM data

Quadruple of matrices (B1, B2, I, J), where

B1, B2 ∈ End V,

I ∈ Hom(W, V ), J ∈ Hom(V, W )

are called the non-commutative ADHM data when the matrices satisfy the non-

commutative ADHM equations:

i) [B1, B2 ] + IJ = 0,

ii) [B1, B
†
1 ] + [B2, B

†
2 ] + II† − J †J = ζ1V ,

where ζ ≡ −2(θ1+θ2) is proportional to the seld-dual component of θ
µν. When ζ = 0,

the matrices are the standard ADHM data of U(N) k-instanton on R4.

In what follows, the condition ζ > 0 is imposed.
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Fock representation of the Moyal space

We associate complex coordinates z1 ≡ x2+
√
−1x1, z2 ≡ x4+

√
−1x3 with operators

ẑi =
√
−2θi â

†
i , ẑi = ẑ†i =

√
−2θi âi

where âi, â
†
i (i = 1, 2) are annihilation and creation operators of harmonic oscilla-

tors with commutation relations
[
âi, â

†
j

]
= δij. These operators satisfy the same

commutation relations as in the Lie algebra derived from the Moyal product:[
ẑi, ẑj

]
= −2θiδij,

[
ẑi, ẑj

]
=
[
ẑi, ẑj

]
= 0.

• We interpret ẑi, ẑi as endomorphisms over the Fock space F

F =
⊕

m1,m2≥0

C(â†1)
m1|0⟩(1) ⊗ (â†2)

m2|0⟩(2)

This yields an identification of the Moyal space R4 (plus the complex structure) with

EndF . In particular, left- and right-multiplications of the Moyal product are converted

respectively to the left- and right-multiplications on EndF .
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Non-commutative ADHM complex

Let V̂ ≡ V ⊗ EndF and Ŵ ≡ W ⊗ EndF , where F is the Fock space. For the

non-commutative data (B1, B2, I, J), we associate a chain of linear mappings as

V̂
β̂−−−−−→

Ŵ⊕
V̂⊕
V̂

α̂−−−−−→ V̂ (1)

where linear operators α̂ and β̂ are given by

α̂ =
(
I, ẑ2 −B2, ẑ1 −B1

)
t( ŵ, v̂1, v̂2 ) 7→ Iŵ + (ẑ2 −B2)v̂1 + (ẑ1 −B1)v̂2,

β̂ = t
(
J, −(ẑ1 −B1), ẑ2 −B2

)
v̂ 7→ t( Jv̂, −(ẑ1 −B1)v̂, (ẑ2 −B2)v̂ ).

• The ADHM equation i) yields α̂β̂ = 0. Thus, the chain (1) is a complex.
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Dirac operator

The preceeding complex gives rise to the following Dirac operator:

∇̂ ≡
(
α̂†, β̂

)
=


I† J

ẑ2 −B†
2 −(ẑ1 −B1)

ẑ1 −B†
1 ẑ2 −B2

 V̂⊕
V̂

−−→

Ŵ⊕
V̂⊕
V̂

(2)

The ADHM equation ii) yields α̂α̂† = β̂†β̂ := □̂ . Together with the closedness

α̂β̂ = 0, the Laplacian becomes a diagonal matrix of the form

∇̂†∇̂ = diag
(
□̂, □̂

)
V̂ ⊕ V̂ −−→ V̂ ⊕ V̂ .

• When ζ ̸= 0, □̂ ∈ EndV̂ is bijective for ∀(B1, B2, I, J) and therefore invertible:

∃ □̂−1 ∈ EndV̂ .
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Solutions of the Dirac equation

• When ζ ̸= 0, Ker∇̂ = ∅, Ker∇̂† ≃
N⊕

EndV̂ for ∀(B1, B2, I, J).

On Ker∇̂† ⊂ Ŵ ⊕ V̂ ⊕ V̂ , EndF acts freely by the right multilplication v̂ 7→ v̂ Ω̂,

where Ω̂ ∈ GL(N)⊗EndF . By taking a suitable Ω̂, the following basis v̂(1), · · · , v̂(N)

of Ker∇̂† is chosen.

∇̂† v̂(a) = 0, v̂(a)† v̂(b) = δab1F (a, b = 1, · · · , N)

We introduce the matrix

V̂ =
(
v̂(1), · · · , v̂(N)

)
The orthonormality of the basis implies

V̂† V̂ = id
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Non-commutative ADHM construction

The trivial connection on Ŵ ⊕ V̂ ⊕ V̂ induces an U(N) connection Â on
N⊕

EndF .

It is given by using the matrix V̂ as

Âµ = V̂† ∂̂µ· V̂ ∈ u(N)⊗ EndF

where ∂̂µ (µ = 1, · · · , 4) are differential operators of the form

∂̂µ ≡ −
√
−1θ−1

µν x̂
ν, ∂̂µ· V̂ ≡

[
∂̂µ, V̂

]
.

• The curvature F̂ = 1
2

∑
µ,ν F̂µνdx

µ∧dxν, where F̂µν = ∂̂µ· Âν− ∂̂ν· Âµ+
[
Âµ, Âν

]
takes the form

F̂ =

3∑
i,j,k=1

Ĉi
√
−1ϵijk(dx

j ∧ dxk − ∗dxj ∧ dxk), Ĉi = V̂†

[
0 0
0 σi ⊗ □̂−1

]
V̂

where ϵ123 = 1 and σi=1,2,3 denote Pauli’s matrices. Clearly we see

∗F̂ = −F̂
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3. Non-commutative topological charge

2nd Chern class

ĉ2 ≡ 1

32π2
TrCN F̂µνF̂ρσϵ

µνρσ ∈ EndF

where ϵ1234 = 1.

CGOT formula

The ADHM construction yields (32π)−1F̂µνF̂ρσϵ
µνρσ = π−2

∑
i Ĉ

2
i . By using the

expression we obtain the formula:

ĉ2 =
1

16π2
TrCk ∂̂

2·
{
∂̂µ·
(
□̂ ∂̂µ· □̂−1

)}
∈ EndF

where

□̂ =
∑
i

(ẑi −Bi)(ẑi −B†
i ) + II†

(
= α̂α̂†

)
∂̂2 · Ô = ∂̂µ·

(
∂̂µ · Ô

)
, Ô ∈ EndF
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Topological charge

c2 ≡ ⟨ ĉ2 ⟩

where

⟨ ĉ2 ⟩ ≡ 4πθ1θ2 lim
L→+∞

∑
m1+m2≤L

⟨m1,m2| ĉ2 |m1,m2⟩(
= 4πθ1θ2TrF ĉ2

)
c2 is computed by applying the CGOT formula together with using formulas for the

partial diagonal sum of Ô(m1,m2),(n1,n2) ≡ ⟨m1,m2| Ô |n1, n2⟩

• It turns out that c2 takes the value

c2 = k, N = 1, 2, · · · .
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4. Inverse construction

Let N, k = 1, 2, · · · and specialize θ1 = θ2 = −ζ/4.

Non-commutative ASD instanton

Âµ ∈ u(N)⊗ EndF

1. F̂ (+)
µν =

(
∂̂µ · Âν − ∂̂ν · Âµ + [Âµ, Âν]

)(+)

= 0

2. c2 = k

3. ∃ ĝ∞ ∈ EndFN such that

• ĝ†∞ĝ∞ = 1N

• when m1 +m2, n1 + n2 ≥ L(
Âµ − ĝ∞∂̂µ · ĝ−1

∞

)
(m1,m2),(n1,n2)

= O(L−3
2)

as L→ +∞
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Dirac equation

D̂A = eµ(∂̂µ · +Âµ) D̂A = eµ(∂̂µ · +Âµ)

where eµ = (eµ α̇β), eµ = (eµ
αβ̇
) are 4d 2× 2 γ-matrices.

Assumption we assume Ker D̂A ≃
k⊕

EndF and Ker D̂A ≃ ∅

Basis of Ker D̂A: ψ̂1 =
(
ψ̂aα 1

)
a=1,··· ,N , ψ̂2, · · · , ψ̂k

D̂A · ψ̂i = 0, ⟨ ψ̂†
i ψ̂j⟩ = δij

Define the matrix

Ψ̂ =
(
ψ̂1, · · · , ψ̂k

)
It is also convenient to express the spinor index explicitly as

Ψ̂ =

(
Ψ̂1

Ψ̂2

)
Ψ̂α =

(
ψ̂aα1, · · · , ψ̂aαk

)
a=1,··· ,N
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Asymptotics

Asymptotic condition on Âµ implies

• ∃ constant matrix Ω =

(
Ω1

Ω2

)
, where Ωα̇ =

(
Ωα̇ai

)
i=1,··· ,k; a=1,··· ,N

, satisfying the

condition that , for m1 +m2, n1 + n2 ≥ L(
Ψ̂− ĝ∞(Ψ̂0 ⊗ 1N)Ω

)
(m1,m2),(n1,n2)

= O(L−5
2)

as L→ +∞.

Ψ̂0 is a pair of solutions of the free Dirac equation (eµ∂̂µ) · Ψ̂0 = 0 and takes the form

Ψ̂0 =
1

π

(
□̂0 −

ζ

2

)−1
∑
µ

eµx̂
µ
(
□̂0 −

ζ

2

)−1

where □̂0 =
∑
i

ẑiẑi =
∑
µ

(x̂µ)2 +
ζ

2
.
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Inverse construction

• Define

Bi ≡ ⟨ ẑiΨ̂†Ψ̂⟩ ∈ EndV,

I ≡ −Ω2† ∈ Hom(W,V ), J ≡ Ω1 ∈ Hom(V,W )

=⇒ (B1, B2, I, J) satisfies the non-commutative ADHM equations i), ii).

• The inverse construction is actually the inverse of the ADHM construc-

tion of non-commutative instatntons.
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