Gauge instantons in noncommutative space

Toshio NAKATSU（Setsunan University，Osaka，Japan）

joint work with Masashi Hamanaka，to appear soon．

1. Introduction

Moyal space

The Moyal space \mathbb{R}^{4} is a four-dimensional non-commutative space which coordinate ring is non-commutative associative, endowed with the Moyal product

$$
\begin{aligned}
(f \star g)(x) & =\left.\exp \left(\frac{\sqrt{-1}}{2} \sum_{\mu, \nu=1}^{4} \theta^{\mu \nu} \partial_{\mu}^{x^{\prime}} \partial_{\nu}^{x^{\prime \prime}}\right) f\left(x^{\prime}\right) g\left(x^{\prime \prime}\right)\right|_{x^{\prime}=x^{\prime \prime}=x} \\
& =f(x) g(x)+\frac{\sqrt{-1}}{2} \sum_{\mu \nu} \theta^{\mu \nu} \partial_{\mu} f(x) \partial_{\nu} g(x)+O\left(\theta^{2}\right),
\end{aligned}
$$

where $\partial_{\mu}^{x^{\prime}}=\partial / \partial x^{\prime \mu}$ etc and $\theta^{\mu \nu}$ is a real anti-symmetric tensor of the form

$$
\left(\theta^{\mu \nu}\right)=\left[\begin{array}{cccc}
0 & -\theta_{1} & & \\
\theta_{1} & 0 & & \\
& & 0 & -\theta_{2} \\
& & \theta_{2} & 0
\end{array}\right] .
$$

Non-commutativity is measured by $\theta^{\mu \nu}$ as seen from

$$
\left[x^{\mu}, x^{\nu}\right]_{\star} \equiv x^{\mu} \star x^{\nu}-x^{\nu} \star x^{\mu}=\sqrt{-1} \theta^{\mu \nu} .
$$

Non-commutative gauge instanton

Non-commutative gauge instanton A is a solution of Aniti-Seld-Dual (ASD) Yang-Mills equation on the Moyal space \mathbb{R}^{4}

$$
* F=-F
$$

where F is the curvature two-form

$$
\begin{gathered}
F=\frac{1}{2} \sum_{\mu, \nu} F_{\mu \nu} d x^{\mu} \wedge d x^{\nu}, \\
F_{\mu \nu} \equiv \partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+A_{\mu} \star A_{\nu}-A_{\nu} \star A_{\mu},
\end{gathered}
$$

and the symbol $*$ means taking the Hodge star

$$
(* F)_{\mu \nu}=\frac{1}{2} \sum_{\rho, \sigma} \epsilon_{\mu \nu \rho \sigma} F^{\rho \sigma} \quad\left(\epsilon_{1234}=1\right)
$$

ADHM construction

The Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction is one of the most useful method to generate all instanton solutions just by solving matrix equations.

It is based on a duality between an instanton moduli space specified by ASD Yang-Mills equation (PDE) and a moduli space specified by ADHM equation (matrix equation).

Contents

In this talk, we outline a non-commutative version of the ADHM construction and its inverse construction.

1. Introduction
2. Non-commutative ADHM construction
3. Non-commutative topological charge
4. Inverse construction
5. Outlook

2. Non-commutative ADHM construction

Let $V \equiv \mathbb{C}^{k}$ and $W \equiv \mathbb{C}^{N}(k, N=1,2, \cdots)$.

Non-commutative ADHM data

Quadruple of matrices (B_{1}, B_{2}, I, J), where

$$
\begin{gathered}
B_{1}, B_{2} \in \operatorname{End} V \\
I \in \operatorname{Hom}(W, V), \quad J \in \operatorname{Hom}(V, W)
\end{gathered}
$$

are called the non-commutative ADHM data when the matrices satisfy the noncommutative ADHM equations:

$$
\begin{aligned}
& \text { i) }\left[B_{1}, B_{2}\right]+I J=\mathbf{0} \\
& \text { ii) }\left[B_{1}, B_{1}^{\dagger}\right]+\left[B_{2}, B_{2}^{\dagger}\right]+I I^{\dagger}-J^{\dagger} J=\zeta \mathbf{1}_{V},
\end{aligned}
$$

where $\zeta \equiv-2\left(\theta_{1}+\theta_{2}\right)$ is proportional to the seld-dual component of $\theta^{\mu \nu}$. When $\zeta=0$, the matrices are the standard ADHM data of $U(N) k$-instanton on \mathbb{R}^{4}.
In what follows, the condition $\zeta>0$ is imposed.

Fock representation of the Moyal space

We associate complex coordinates $z_{1} \equiv x^{2}+\sqrt{-1} x^{1}, z_{2} \equiv x^{4}+\sqrt{-1} x^{3}$ with operators

$$
\widehat{z}_{i}=\sqrt{-2 \theta_{i}} \widehat{a}_{i}^{\dagger}, \quad \widehat{\bar{z}}_{i}=\widehat{z}_{i}^{\dagger}=\sqrt{-2 \theta_{i}} \widehat{a}_{i}
$$

where $\widehat{a}_{i}, \widehat{a}_{i}^{\dagger}(i=1,2)$ are annihilation and creation operators of harmonic oscillators with commutation relations $\left[\widehat{a}_{i}, \widehat{a}_{j}^{\dagger}\right]=\delta_{i j}$. These operators satisfy the same commutation relations as in the Lie algebra derived from the Moyal product:

$$
\left[\widehat{\bar{z}}_{i}, \widehat{z}_{j}\right]=-2 \theta_{i} \delta_{i j}, \quad\left[\widehat{z}_{i}, \widehat{z}_{j}\right]=\left[\widehat{\bar{z}}_{i}, \widehat{\bar{z}}_{j}\right]=0
$$

- We interpret $\widehat{z}_{i}, \widehat{\bar{z}}_{i}$ as endomorphisms over the Fock space \mathcal{F}

$$
\mathcal{F}=\bigoplus_{m_{1}, m_{2} \geq 0} \mathbb{C}\left(\widehat{a}_{1}^{\dagger}\right)^{m_{1}}|0\rangle^{(1)} \otimes\left(\widehat{a}_{2}^{\dagger}\right)^{m_{2}}|0\rangle^{(2)}
$$

This yields an identification of the Moyal space \mathbb{R}^{4} (plus the complex structure) with End \mathcal{F}. In particular, left- and right-multiplications of the Moyal product are converted respectively to the left- and right-multiplications on End \mathcal{F}.

Non-commutative ADHM complex

Let $\widehat{V} \equiv V \otimes \operatorname{End} \mathcal{F}$ and $\widehat{W} \equiv W \otimes \operatorname{End} \mathcal{F}$, where \mathcal{F} is the Fock space. For the non-commutative data (B_{1}, B_{2}, I, J), we associate a chain of linear mappings as

where linear operators $\widehat{\alpha}$ and $\widehat{\beta}$ are given by
$\widehat{\alpha}=\left(I, \widehat{z}_{2}-B_{2}, \widehat{z}_{1}-B_{1}\right) \quad{ }^{t}\left(\hat{w}, \hat{v}_{1}, \hat{v}_{2}\right) \mapsto I \hat{w}+\left(\widehat{z}_{2}-B_{2}\right) \hat{v}_{1}+\left(\widehat{z}_{1}-B_{1}\right) \hat{v}_{2}$,
$\widehat{\beta}={ }^{t}\left(J,-\left(\widehat{z}_{1}-B_{1}\right), \widehat{z}_{2}-B_{2}\right) \quad \hat{v} \mapsto{ }^{t}\left(J \hat{v},-\left(\widehat{z}_{1}-B_{1}\right) \hat{v},\left(\widehat{z}_{2}-B_{2}\right) \hat{v}\right)$.

- The ADHM equation i) yields $\widehat{\alpha} \widehat{\beta}=\mathbf{0}$. Thus, the chain (1) is a complex.

Dirac operator

The preceeding complex gives rise to the following Dirac operator:

$$
\hat{\nabla} \equiv\left(\widehat{\alpha}^{\dagger}, \widehat{\beta}\right)=\left(\begin{array}{cc}
I^{\dagger} & J \tag{2}\\
\widehat{\bar{z}}_{2}-B_{2}^{\dagger} & -\left(\widehat{z}_{1}-B_{1}\right) \\
\widehat{\bar{z}}_{1}-B_{1}^{\dagger} & \widehat{z}_{2}-B_{2}
\end{array}\right) \begin{array}{cc}
\widehat{V} & \\
\underset{W}{\bigoplus} & \begin{array}{|c}
\widehat{V} \\
\widehat{V} \\
\\
\end{array} \\
& \widehat{V}
\end{array}
$$

The ADHM equation $i i$) yields $\widehat{\alpha} \widehat{\alpha}^{\dagger}=\widehat{\beta}^{\dagger} \widehat{\beta}:=\widehat{\square}$. Together with the closedness $\widehat{\alpha} \widehat{\beta}=0$, the Laplacian becomes a diagonal matrix of the form

$$
\hat{\nabla}^{\dagger} \widehat{\nabla}=\operatorname{diag}(\hat{\square}, \hat{\square}) \quad \widehat{V} \oplus \widehat{V} \longrightarrow \widehat{V} \oplus \widehat{V} .
$$

- When $\zeta \neq 0$, $\hat{\square} \in \operatorname{End} \widehat{V}$ is bijective for $\forall\left(B_{1}, B_{2}, I, J\right)$ and therefore invertible:

$$
\exists \widehat{\square}^{-1} \in \operatorname{End} \widehat{V} .
$$

Solutions of the Dirac equation

- When $\zeta \neq 0, \quad \operatorname{Ker} \hat{\nabla}=\emptyset, \quad \operatorname{Ker} \hat{\nabla}^{\dagger} \simeq \bigoplus^{N} \operatorname{End} \widehat{V} \quad$ for $\forall\left(B_{1}, B_{2}, I, J\right)$.

On $\operatorname{Ker} \widehat{\nabla}^{\dagger} \subset \widehat{W} \oplus \widehat{V} \oplus \widehat{V}$, End \mathcal{F} acts freely by the right multilplication $\widehat{v} \mapsto \widehat{v} \widehat{\Omega}$, where $\widehat{\Omega} \in \operatorname{GL}(N) \otimes \operatorname{End} \mathcal{F}$. By taking a suitable $\widehat{\Omega}$, the following basis $\widehat{\mathrm{v}}^{(1)}, \cdots, \widehat{\mathrm{v}}^{(N)}$ of $\mathrm{Ker} \widehat{\nabla}^{\dagger}$ is chosen.

$$
\widehat{\nabla}^{\dagger} \widehat{\mathbf{v}}^{(a)}=0, \quad \widehat{\mathbf{v}}^{(a) \dagger} \widehat{\mathbf{v}}^{(b)}=\delta^{a b} \mathbf{1}_{\mathcal{F}} \quad(a, b=1, \cdots, N)
$$

We introduce the matrix

$$
\widehat{\mathrm{V}}=\left(\widehat{v}^{(1)}, \cdots, \widehat{v}^{(N)}\right)
$$

The orthonormality of the basis implies

$$
\widehat{V}^{\dagger} \widehat{V}=\mathrm{id}
$$

Non-commutative ADHM construction

The trivial connection on $\widehat{W} \oplus \widehat{V} \oplus \widehat{V}$ induces an $U(N)$ connection \widehat{A} on \bigoplus^{N} End \mathcal{F}. It is given by using the matrix \widehat{V} as

$$
\widehat{A}_{\mu}=\widehat{\mathrm{V}}^{\dagger} \hat{\rho}_{\mu} \cdot \widehat{\mathrm{V}} \quad \in \mathrm{u}(\mathrm{~N}) \otimes \mathrm{End} \mathcal{F}
$$

where $\hat{\partial}_{\mu}(\mu=1, \cdots, 4)$ are differential operators of the form

$$
\hat{\partial}_{\mu} \equiv-\sqrt{-1} \theta_{\mu \nu}^{-1} \widehat{x}^{\nu}, \quad \hat{\partial}_{\mu} \cdot \widehat{\mathrm{V}} \equiv\left[\hat{\partial}_{\mu}, \widehat{\mathrm{V}}\right] .
$$

- The curvature $\widehat{F}=\frac{1}{2} \sum_{\mu, \nu} \widehat{F}_{\mu \nu} d x^{\mu} \wedge d x^{\nu}$, where $\widehat{F}_{\mu \nu}=\hat{\partial}_{\mu} \cdot \widehat{A}_{\nu}-\hat{\partial}_{\nu} \cdot \widehat{A}_{\mu}+\left[\widehat{A}_{\mu}, \widehat{A}_{\nu}\right]$ takes the form

$$
\widehat{F}=\sum_{i, j, k=1}^{3} \widehat{C}_{i} \sqrt{-1} \epsilon_{i j k}\left(d x^{j} \wedge d x^{k}-* d x^{j} \wedge d x^{k}\right), \quad \widehat{C}_{i}=\widehat{\mathrm{V}}^{\dagger}\left[\begin{array}{cc}
0 & 0 \\
0 & \sigma^{i} \otimes \widehat{\square}^{-1}
\end{array}\right] \widehat{\mathrm{V}}
$$

where $\epsilon_{123}=1$ and $\sigma^{i=1,2,3}$ denote Pauli's matrices. Clearly we see

$$
* \widehat{F}=-\widehat{F}
$$

3. Non-commutative topological charge

2nd Chern class

$$
\widehat{c}_{2} \equiv \frac{1}{32 \pi^{2}} \operatorname{Tr}_{\mathbb{C}^{N}} \widehat{F}_{\mu \nu} \widehat{F}_{\rho \sigma} \epsilon^{\mu \nu \rho \sigma} \quad \in \operatorname{End} \mathcal{F}
$$

where $\epsilon^{1234}=1$.

CGOT formula

The ADHM construction yields $(32 \pi)^{-1} \widehat{F}_{\mu \nu} \widehat{F}_{\rho \sigma} \epsilon^{\mu \nu \rho \sigma}=\pi^{-2} \sum_{i} \widehat{C}_{i}^{2}$. By using the expression we obtain the formula:

$$
\begin{gathered}
\widehat{c}_{2}=\frac{1}{16 \pi^{2}} \operatorname{Tr}_{\mathbb{C}^{k}} \hat{\partial}^{2} \cdot\left\{\hat{\partial}^{\mu} \cdot\left(\widehat{\square} \hat{\partial}_{\mu} \cdot \hat{\square}^{-1}\right)\right\} \in \operatorname{End} \mathcal{F} \\
\text { where } \\
\widehat{\square}=\sum_{i}\left(\widehat{z}_{i}-B_{i}\right)\left(\widehat{\bar{z}}_{i}-B_{i}^{\dagger}\right)+I I^{\dagger}\left(=\widehat{\alpha} \widehat{\alpha}^{\dagger}\right) \\
\hat{\partial}^{2} \cdot \widehat{\mathcal{O}}=\hat{\partial}^{\mu} \cdot\left(\hat{\partial}_{\mu} \cdot \widehat{\mathcal{O}}\right), \widehat{\mathcal{O}} \in \operatorname{End} \mathcal{F}
\end{gathered}
$$

Topological charge

$$
c_{2} \equiv\left\langle\widehat{c}_{2}\right\rangle
$$

where

$$
\begin{gathered}
\left\langle\widehat{c}_{2}\right\rangle \equiv 4 \pi \theta_{1} \theta_{2} \lim _{L \rightarrow+\infty} \sum_{m_{1}+m_{2} \leq L}\left\langle m_{1}, m_{2}\right| \widehat{c}_{2}\left|m_{1}, m_{2}\right\rangle \\
\left(=4 \pi \theta_{1} \theta_{2} \operatorname{Tr}_{\mathcal{F}} \widehat{c_{2}}\right)
\end{gathered}
$$

c_{2} is computed by applying the CGOT formula together with using formulas for the partial diagonal sum of $\widehat{\mathcal{O}}_{\left(m_{1}, m_{2}\right),\left(n_{1}, n_{2}\right)} \equiv\left\langle m_{1}, m_{2}\right| \widehat{\mathcal{O}}\left|n_{1}, n_{2}\right\rangle$

- It turns out that c_{2} takes the value

$$
c_{2}=k, \quad N=1,2, \cdots
$$

4. Inverse construction

Let $N, k=1,2, \cdots$ and specialize $\theta_{1}=\theta_{2}=-\zeta / 4$.
Non-commutative ASD instanton

$$
\widehat{A}_{\mu} \in u(N) \otimes \operatorname{End} \mathcal{F}
$$

1. $\quad \widehat{F}_{\mu \nu}^{(+)}=\left(\widehat{\partial}_{\mu} \cdot \widehat{A}_{\nu}-\widehat{\partial}_{\nu} \cdot \widehat{A}_{\mu}+\left[\widehat{A}_{\mu}, \widehat{A}_{\nu}\right]\right)^{(+)}=0$
2. $c_{2}=k$
3. $\exists \widehat{g}_{\infty} \in \operatorname{End} \mathcal{F}^{N}$ such that

- $\widehat{g}_{\infty}^{\dagger} \widehat{g}_{\infty}=1_{N}$
- when $m_{1}+m_{2}, n_{1}+n_{2} \geq L$

$$
\left(\widehat{A}_{\mu}-\widehat{g}_{\infty} \widehat{\partial}_{\mu} \cdot \widehat{g}_{\infty}^{-1}\right)_{\left(m_{1}, m_{2}\right),\left(n_{1}, n_{2}\right)}=O\left(L^{-\frac{3}{2}}\right)
$$

as $L \rightarrow+\infty$

Dirac equation

$$
\widehat{\overline{\mathcal{D}}}_{A}=\bar{e}^{\mu}\left(\widehat{\partial}_{\mu} \cdot+\widehat{A}_{\mu}\right) \quad \widehat{\mathcal{D}}_{A}=e^{\mu}\left(\widehat{\partial}_{\mu} \cdot+\widehat{A}_{\mu}\right)
$$

where $\bar{e}^{\mu}=\left(\bar{e}^{\mu \dot{\alpha} \beta}\right), e^{\mu}=\left(e_{\alpha \dot{\beta}}^{\mu}\right)$ are $4 \mathrm{~d} 2 \times 2 \gamma$-matrices.
Assumption we assume $\operatorname{Ker} \widehat{\overline{\mathcal{D}}}_{A} \simeq \bigoplus^{k} \operatorname{End} \mathcal{F}$ and $\operatorname{Ker} \widehat{\mathcal{D}}_{A} \simeq \emptyset$
Basis of $\operatorname{Ker} \widehat{\overline{\mathcal{D}}}_{A}: \quad \widehat{\psi}_{1}=\left(\widehat{\psi}_{\alpha 1}^{a}\right)_{a=1, \cdots, N}, \widehat{\psi}_{2}, \cdots, \widehat{\psi}_{k}$

$$
\widehat{\overline{\mathcal{D}}}_{A} \cdot \widehat{\psi}_{i}=0, \quad\left\langle\widehat{\psi}_{i}^{\dagger} \widehat{\psi}_{j}\right\rangle=\delta_{i j}
$$

Define the matrix

$$
\widehat{\Psi}=\left(\widehat{\psi}_{1}, \cdots, \widehat{\psi}_{k}\right)
$$

It is also convenient to express the spinor index explicitly as

$$
\widehat{\Psi}=\binom{\widehat{\Psi}_{1}}{\widehat{\Psi}_{2}} \quad \widehat{\Psi}_{\alpha}=\left(\widehat{\psi}_{\alpha 1}^{a}, \cdots, \widehat{\psi}_{\alpha k}^{a}\right)_{a=1, \cdots, N}
$$

Asymptotics

Asymptotic condition on \widehat{A}_{μ} implies

- \exists constant matrix $\Omega=\binom{\Omega^{1}}{\Omega^{2}}$, where $\Omega^{\dot{\alpha}}=\left(\Omega_{i}^{\dot{\alpha} a}\right)_{i=1, \cdots, k ; a=1, \cdots, N}$, satisfying the condition that, for $m_{1}+m_{2}, n_{1}+n_{2} \geq L$

$$
\left(\widehat{\Psi}-\widehat{g}_{\infty}\left(\widehat{\Psi}_{0} \otimes 1_{N}\right) \Omega\right)_{\left(m_{1}, m_{2}\right),\left(n_{1}, n_{2}\right)}=O\left(L^{-\frac{5}{2}}\right)
$$

as $L \rightarrow+\infty$.
$\widehat{\Psi}_{0}$ is a pair of solutions of the free Dirac equation $\left(\bar{e}^{\mu} \widehat{\partial}_{\mu}\right) \cdot \widehat{\Psi}_{0}=0$ and takes the form

$$
\widehat{\Psi}_{0}=\frac{1}{\pi}\left(\widehat{\square}_{0}-\frac{\zeta}{2}\right)^{-1} \sum_{\mu} e_{\mu} \widehat{x}^{\mu}\left(\widehat{\square}_{0}-\frac{\zeta}{2}\right)^{-1}
$$

where $\widehat{\square}_{0}=\sum_{i} \widehat{\bar{z}}_{i} \widehat{z}_{i}=\sum_{\mu}\left(\widehat{x}^{\mu}\right)^{2}+\frac{\zeta}{2}$.

Inverse construction

- Define

$$
\begin{gathered}
B_{i} \equiv\left\langle\widehat{z}_{i} \widehat{\Psi}^{\dagger} \widehat{\Psi}\right\rangle \in \text { End } V \\
I \equiv-\Omega^{2 \dagger} \in \operatorname{Hom}(W, V), \quad J \equiv \Omega^{1} \in \operatorname{Hom}(V, W)
\end{gathered}
$$

$\Longrightarrow\left(B_{1}, B_{2}, I, J\right)$ satisfies the non-commutative ADHM equations $\left.\left.i\right), i i\right)$.

- The inverse construction is actually the inverse of the ADHM construction of non-commutative instatntons.

