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Introduction

The localization reduces the path integral to finite dimensional multiple
integrals or sums, and solves exactly (non-perturbatively) some
problems in field theories:
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In this sense, 2d (SUSY-)YM theory (and also 3d (SUSY-)CS theory) is

integrable (exactly solvable).



Introduction

Question:
Does this integrable structure still hold in lattice gauge theory (on

discretized space-time)?

Answer: YES!
We can construct exactly solvable 2d gauge theories on the lattice.

On simplicial

Oniba 577 complex

Today, I explain how to apply localization method to the lattice gauge
theories and give some exact results.



Harish-Chandra ltzykson-Zuber Integral

Let us first consider the so-called Harich-Chandra Itzykson-Zuber
(HCIZ) integral for a lesson:

N(N-1)/2 o
ZHCIZ s /DUG_BHHCIZ A 2_7T ( )/ deti,je B @bﬂ
B A(a)A(b)

where
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A, B : (constant) Hermite matrices

U : N x N unitary matrix
A(a), A(b) : Vandermonde determinants of eigenvalues

Aa) = | [(ai — ay)
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Prool by localhization

We can perform HCIZ integral exactly.
Why? = This is because the localization works

Phase space (coadjoint action orbit) is isomorphic to a coset
M=U(N)/U(1)N, which possesses a symplectic 2-form w (Kirillov-
Kostant-Souriau 2-form). The Hamiltonian Huciz generates a vector field
V with w.

dHuciz — tyw = 0

We rewrite (identifying the right-invariant one form with a fermion)
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Prool by localhization

The exponent is invariant (Q(SHuciz-w)=0) under the following
“supersymmetry” (BRST symmetry)

QU = wprU,  QvYr=1A+ 1WrYr
We can also introduce Q-exact “action”:
QE =B8Tr[A,UBUT2 + - -
Using these, if we deform the integral by Q-exact action
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we can show that the integral is independent of ¢ (= WKB(1-loop) exact)



Prool by localhization

The saddle points (fixed points) are given by the equation
[A,UBU'] =0 and 9 =0
= U =T, (permutation (Weyl group))

Evaluating the integral around the saddle points, we finally obtain
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Migdal-Kazakov model

Let us next extend the HCIZ integral to the multi-matrix model on the
lattice (induced QCD), that is;
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SMK — Z TrCIDxeyCI)yU;y
(zy)
This model is known as the Migdal-Kazokov model (1992).

(The relation to 2d YM is also discussed in [Caselle-D’ Adda-Lorenzo-
Magnea-Panzeri],[Kharchev-Marshakov-Mironov-Morozov].)




SUSY on latuce

The “action” (+symplectic 2-form) of MK model is invariant under the
following supersymmetry on the 2d lattice (generalization of the Sugino
model)
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where we have defined ¥, = ¢Yr Uy,
We also find
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(= equivariant cohomology)




SUSY action

The action of 2d N=(2,2) SUSY YM on the lattice is written in Q-exact
form by:
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where u, ~ W(U)-W(U)' ~ F,, are moment maps (superpotential
constraints) associated with each loops (faces).



l.ocalization in SUSY lattice

The partition function of the supersymmetric MK model deformed by
the Sugino action
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So the integral becomes WKB (1-loop) exact wrt the SUSY action



I-loop determimant

To evaluate the 1-loop determinant, we fix the gauge by:
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Then, we obtain the 1-loop determinant of the Sugino model:
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where the subscripts mean that the determinants come from each
variables, and S, L and F stand for sets of sites (vertices), links (edges)
and loops (faces), respectively.



Eixact result at fixed points

The fixed points are classified again by the permutations (Weyl group):
Yy —1F

and

Uey®,Ul, —®: =0 (= D,®(z) =0)
Then we get at the fixed points
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where y=s-I+f, and s, [ and f are respectively the number of vertices
(sites), edges (links) and faces, which come from the number of each
variables (matrices).



Examples

On one plaquette; i of ® and ¢, ¢ = 4
Usy s e ﬂ of Uajy =

®,c,c(4)
? f of x(or p) =1

Us1 p(x) | Uss

= 1
(I),C, 5(1)‘ Uiz .(I),C, 5(2) H(¢?’ sy ¢]) ~ disk

1<]

On a tetrahedron;
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Comparison with 2d YM

2d YM partition function on a general Riemann surface (Migdal)
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One branch (trivial permutation) of sSMK model (with Vv = %@2 )
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Remarks:

* Multiple integrals still remain because of flat directions of SUSY theory
(not fixed points but fixed lines)

* The partition function is independent of the simplicial decomposition but
depends only on the topology (and area) (= 2d YM is almost topological)



Conclusion and Discussion

Results:

* We exactly evaluated the partition function of the MK model under the
restricted symmetry (constraints)

+ Reversing the logic, we exactly calculated a vev of physical observable in
2d SUSY YM theory on the lattice

+ We also found other observables and useful Ward-Takahashi identities

Problems:
* Application to other integrable systems (spin chain, etc.)

+ Relation to (or realization in) string/M theory or gravity (topological
invariants, etc. in mathematics)

Our model is closely related to quiver gauge theory, deconstruction, etc...



