Progress in the synthesis of integrabilities arising from gauge-string duality Ritsumeikan U.

Integrability of BPS equations in ABJM theory

Kazuhiro Sakai
 (Ritsumeikan University)

Work in collaboration with
S. Terashima (YITP, Kyoto U.)

JHEP11(2013)002 (arXiv:1308.3583)

The worldvolume theory of M2-branes was not known until recently.

The theory should be a 3D CFT with no adjustable coupling, but people could not construct such a CFT with sufficient amount of supersymmetries.

ABJM theory
(Aharony-Bergman-Jafferis-Maldacena '08)
$\mathcal{N}=6 \mathrm{U}(N) \times \mathrm{U}(N)$ super Chern-Simons theory with two bifundamental hypermultiplets
Chern-Simons levels are chosen to be $k_{1}=-k_{2}=k$
The theory describes the low energy effective theory of the worldvolume theory of \boldsymbol{N} M2-branes probing a $\mathbb{C}^{4} / \mathbb{Z}_{\boldsymbol{k}}$ singularity.
$k=1:$ M2-branes in flat space(?)

The worldvolume theory of M5-branes is still mysterious. (Covariant Lagrangian description might not exist.)

Two descriptions of BPS D2-D4 bound states
(Diaconescu '96)

In the worldvolume theory of
D4-branes, the bound states are described as monopole solutions.

In the worldvolume theory of D2-branes, the bound states are described as solutions of the Nahm equations (Nahm data).

It would be very interesting if one could promote this picture to M-theory.

Two descriptions of BPS M2-M5 bound states

In the worldvolume theory of M5-branes, the bound states should be given as some solutions.

In the worldvolume theory of M2-branes (ABJM theory), the bound states are described as solutions of the BPS equations.

BPS equations in the ABJM theory
$Y^{a}(s)(a=1,2): N \times N$ complex matrices
$s:$ a real coordinate $\quad \dot{\boldsymbol{Y}}^{a}:=\frac{d}{d s} \boldsymbol{Y}^{a}$
Automorphism

$$
\begin{gathered}
Y^{a} \rightarrow Y^{\prime a}=e^{i \varphi} \Lambda_{b}^{a} U Y^{b} V^{\dagger} \\
U, V \in \mathrm{SU}(N), \quad\left(\Lambda_{b}^{a}\right) \in \mathrm{SU}(2), \quad e^{i \varphi} \in \mathrm{U}(1)
\end{gathered}
$$

$Y^{\prime a}$ again satisfy the above equations

We argue that the BPS equations are classically integrable.
The BPS equations admit a Lax representation

$$
\begin{gathered}
\dot{A}=[A, B] \\
A(s ; \lambda)=\left(\begin{array}{cc}
O & Y^{1}+\lambda Y^{2} \\
Y^{1 \dagger}-\lambda^{-1} Y^{2 \dagger} & O
\end{array}\right) \\
B(s ; \lambda)=\left(\begin{array}{cc}
\lambda^{-1} Y^{1} Y^{2 \dagger}+\lambda Y^{2} Y^{1 \dagger} & \lambda Y^{1 \dagger} Y^{2}+\lambda^{-1} Y^{2 \dagger} Y^{1}
\end{array}\right)
\end{gathered}
$$

$\boldsymbol{\lambda} \in \mathbb{C}$: the spectral parameter
Making use of this structure we formulate an efficient way of constructing solutions of the BPS equations.

Nahm equations

$$
\dot{T}^{I}=i \epsilon_{I J K} T^{J} T^{K}
$$

$$
T^{I}(I=1,2,3): N \times N \text { hermitian matrices }
$$

- Relation between the BPS equations and the Nahm equations

$$
\begin{aligned}
& T_{1}^{I}:=\left(\sigma^{I}\right)_{a b} Y^{a} Y^{b \dagger}, \quad T_{2}^{I}:=\left(\sigma^{I}\right)_{a b} Y^{b \dagger} Y^{a} \\
& \sigma^{I}(I=1,2,3): \text { Pauli matrices }
\end{aligned}
$$

If \boldsymbol{Y}^{a} are solutions to the BPS equations, both T_{1}^{I} and T_{2}^{I} satisfy the Nahm equations.

Lax representation for the Nahm equations

$$
\begin{gathered}
\dot{A}_{\alpha}=\left[A_{\alpha}, B_{\alpha}\right] \\
A_{\alpha}:=T_{\alpha}^{3}+\frac{\lambda}{2}\left(T_{\alpha}^{1}-i T_{\alpha}^{2}\right)-\frac{1}{2 \lambda}\left(T_{\alpha}^{1}+i T_{\alpha}^{2}\right) \\
B_{\alpha}:=\frac{\lambda}{2}\left(T_{\alpha}^{1}-i T_{\alpha}^{2}\right)+\frac{1}{2 \lambda}\left(T_{\alpha}^{1}+i T_{\alpha}^{2}\right)
\end{gathered}
$$

The above Lax forms are related to those of the BPS equations in a remarkably simple way:

$$
A^{2}=\left(\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right), \quad B=\left(\begin{array}{cc}
B_{1} & 0 \\
0 & B_{2}
\end{array}\right)
$$

Idea of our construction of solutions to the BPS equations

- The Lax equation is regarded as the compatibility condition of the following auxiliary linear problem:

$$
\begin{aligned}
& A(s ; \lambda) \psi(s ; \lambda)=\eta(\lambda) \psi(s ; \lambda) \\
& B(s ; \lambda) \psi(s ; \lambda)=-\dot{\psi}(s ; \lambda)
\end{aligned}
$$

Two sets of solutions of the Nahm equations

Solutions of the BPS equations

The most general semi-infinite solutions with $N=\mathbf{2}$

$$
\left.\begin{array}{rl}
T_{\alpha}^{1} & =\frac{c}{\sinh \left(x-x_{\alpha}\right)} \frac{\sigma^{1}}{2}+t^{1} 1_{2} \\
T_{\alpha}^{2} & =\frac{c}{\sinh \left(x-x_{\alpha}\right)} \frac{\sigma^{2}}{2}+t^{2} 1_{2} \\
T_{\alpha}^{3} & =\frac{c}{\tanh \left(x-x_{\alpha}\right)} \frac{\sigma^{3}}{2}+t^{3} 1_{2}
\end{array}\right\} \begin{aligned}
& x=c s, \quad c \geq 0 \\
& x_{1}=0, \quad x^{I}: \text { Pauli matrices } \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \\
& Y^{1}=\sqrt{\frac{c}{2 \sinh l \sinh x \sinh (x+l)}}\left(\begin{array}{cc}
\sinh (x+l) \cos \frac{\theta}{2} e^{i \phi} & \sinh l \sin \frac{\theta}{2} \\
0 & \sinh x \cos \frac{\theta}{2} e^{i \phi}
\end{array}\right) \\
& Y^{2}=\sqrt{\frac{c}{2 \sinh l \sinh x \sinh (x+l)}}\left(\begin{array}{cc}
\sinh x \sin \frac{\theta}{2} & 0 \\
\sinh l \cos \frac{\theta}{2} e^{i \phi} & \sinh (x+l) \sin \frac{\theta}{2}
\end{array}\right)
\end{aligned}
$$

$$
(x=c s, \quad c, l, \theta, \phi \in \mathbb{R})
$$

The most general solution with $N=\mathbf{2}$

- Matrices of the form

$$
\begin{aligned}
& Y^{1}=\frac{1}{2}\left(f_{1} \sin \frac{\theta}{2} \sigma^{1}+f_{2} \sin \frac{\theta}{2} i \sigma^{2}+f_{3} e^{i \phi} \cos \frac{\theta}{2} \sigma^{3}-f_{0} e^{i \phi} \cos \frac{\theta}{2} 1_{2}\right) \\
& Y^{2}=\frac{1}{2}\left(f_{1} e^{i \phi} \cos \frac{\theta}{2} \sigma^{1}-f_{2} e^{i \phi} \cos \frac{\theta}{2} i \sigma^{2}-f_{3} \sin \frac{\theta}{2} \sigma^{3}-f_{0} \sin \frac{\theta}{2} 1_{2}\right)
\end{aligned}
$$

with any real functions $f_{i}(s)$ satisfying

$$
\dot{f}_{i}=f_{j} f_{k} f_{l}
$$

are solutions of the BPS equations.
A sufficiently general solution is given by

$$
\begin{gathered}
f_{i}=\frac{\vartheta_{i+1}(u)}{\vartheta_{i+1}\left(u_{*}\right)} \sqrt{\frac{\pi}{2 \omega_{1}} \frac{\vartheta_{1}\left(u_{*}\right) \vartheta_{2}\left(u_{*}\right) \vartheta_{3}\left(u_{*}\right) \vartheta_{4}\left(u_{*}\right)}{\vartheta_{1}\left(u_{*}+u\right) \vartheta_{1}\left(u_{*}-u\right)}} \\
\vartheta_{i+1}(u):=\vartheta_{i+1}(u, \tau) \\
\left.u=\frac{s-s_{0}}{2 \omega_{1}}, \quad s_{0} \in \mathbb{R}, \quad 0<u_{*}<\frac{1}{2}, \quad \omega_{1} \in \mathbb{R}_{>0}, \quad \tau \in i=0,1,2,3\right)
\end{gathered}
$$

The solution is defined over the region

$$
-\boldsymbol{u}_{*}<\boldsymbol{u}<\boldsymbol{u}_{*}
$$

and f_{i} diverge at each boundary of the region.

Reduction in connection with the periodic Toda chain

- Let us make an ansatz of $Y^{a}(s)$ as follows:

$$
\begin{aligned}
& \qquad\left(Y^{1}\right)_{m n}=g_{m}(s) \delta_{m, n}, \quad\left(Y^{2}\right)_{m n}=h_{n}(s) \delta_{m, n+1} \\
& \text { The BPS equations become } \\
& (m, n=1, \ldots, N)
\end{aligned}
$$

$$
\dot{g}_{m}=\left(h_{m-1}^{2}-h_{m}^{2}\right) g_{m}, \quad \dot{h}_{m}=\left(g_{m+1}^{2}-g_{m}^{2}\right) h_{m}
$$

If we introduce

$$
\begin{array}{ll}
a_{m}:=g_{m+1} h_{m}, & \tilde{a}_{m}:=g_{m} h_{m}, \\
b_{m}:=g_{m}^{2}-h_{m}^{2}, & \tilde{b}_{m}:=g_{m}^{2}-h_{m-1}^{2},
\end{array}
$$

a_{m}, b_{m} satisfy (and the same is true for $\tilde{a}_{m}, \tilde{b}_{m}$)

$$
\dot{a}_{m}=a_{m}\left(b_{m+1}-b_{m}\right), \quad \dot{b}_{m}=-2\left(a_{m}^{2}-a_{m-1}^{2}\right)
$$

These are the equations for the periodic Toda chain!

Summary

- We have shown that the BPS equations in the ABJM theory is classically integrable.
- The integrable structure of the BPS equations is closely related to that of the Nahm equations.
- By making use of this fact, we have formulated an efficient way of constructing solutions of the BPS equations.
- By way of illustration we have constructed the most general solution describing two M2-branes.

Outlook

- What is the structure of the moduli space of the solutions?
- Are there any other integrable BPS equations?
-What is the analog of the Nahm construction?
- What is the role of integrability in the theory of M5-branes and in the whole M-theory?

