# Exact spectrum of tachyons in AdS/CFT 

Ryo Suzuki<br>(Marie-Curie fellow, Mathematical Institute, Oxford) March 2014

Based on arXiv:1312.3900 (to appear in JHEP) in collaboration with
Zoltán Bajnok, Nadav Drukker, Árpád Hegedús, Raphael Nepomechie, László Palla, Christoph Sieg

## Tachyon and instability

Lagrangian density of a complex-scalar QFT

$$
\mathcal{L}=\left|\partial_{\mu} \phi\right|^{2}-V(\phi, \bar{\phi})
$$

The Ist derivative defines the vacuum, the 2 nd the mass

$$
\begin{aligned}
0 & =\partial^{2} \phi+\left.\partial_{\bar{\phi}} V(\phi, \bar{\phi})\right|_{(\phi, \bar{\phi})=\left(\phi_{0}, \bar{\phi}_{0}\right)}=\text { c.c. } \\
(\mathrm{mass})^{2} & =\left.\frac{\partial^{2} V(\phi, \bar{\phi})}{\partial \phi \partial \bar{\phi}}\right|_{(\phi, \bar{\phi})=\left(\phi_{0}, \bar{\phi}_{0}\right)}, \quad \begin{cases}(\text { mass })^{2}>0 & \text { stable } \\
(\text { mass })^{2}<0 & \text { unstable }\end{cases}
\end{aligned}
$$

When the mass is pure imaginary, the corresponding particle is called a tachyon, and the extremum is unstable


## Brane-antibrane system

D-brane \& D-antibrane (D- $\bar{D}$ ) system in the flat spacetime is an example of unstable state in string theory


D-brane \& D-antibrane and open strings in between in the curved spacetime $\left(\mathrm{AdS}_{5} \times \mathrm{S}^{5}\right)$ are less well-understood


## AdS/CFT correspondence

## $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ is the primary example of AdS/CFT



Superstring theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

$$
\begin{gathered}
N \rightarrow \infty, g_{s} \rightarrow 0 \\
\lambda=N g_{s}
\end{gathered}
$$

Stack of
N D3-branes
$?$

$$
\stackrel{?}{=}
$$


$\mathfrak{N}=44 \operatorname{dim} \operatorname{SU}(N)$
super Yang-Mills

$$
N \rightarrow \infty, g_{\mathrm{YM}} \rightarrow \mathbf{0}
$$

$$
\lambda=N g_{\mathrm{YM}}^{2}
$$

## AdS/CFT correspondence <br> 

 The energy of an open string in $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ ending on a pair of "giant-graviton" D- $\overline{\mathrm{D}}$ branes
should be dual to the dimension of a determinant-like operator in 4D $S U(N) \mathbb{N}=4$ super Yang-Mills theory

$$
\begin{aligned}
& \mathcal{O}_{Y, \bar{Y}}[V, W] \sim \epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \epsilon^{k_{1} \cdots k_{N}} \epsilon_{l_{1} \cdots l_{N}} \times \\
& Y_{i_{1}}^{j_{1}} \cdots Y_{i_{N-1}}^{j_{N-1}} V_{i_{N}}^{l_{N}} \bar{Y}_{k_{1}} \cdots \bar{Y}_{k_{N-1}-1}^{l_{N-1}} W_{k_{N}}^{j_{N}}
\end{aligned}
$$

Hope: demonstrate this duality using integrability

## Integrability Methods

The spectral problem at large $N$ is now "solvable" through (Asymptotic/Thermodynamic) Bethe Ansatz

$$
E_{\text {string }}(\lambda) \stackrel{\sim}{\sim} E_{\mathrm{ABA}}(\lambda) \text { or } E_{\mathrm{TBA}}(\lambda) \xrightarrow{\sim} \Delta_{\mathrm{SYM}}(\lambda)
$$

We want to solve TBA; i.e. obtain $\boldsymbol{E}_{\text {TBA }}(\lambda)$
Example: the exact dimension of Konishi operator




Green: SYM, weak 5-loop Blue: TBA, numerics Red: String, strong 1-loop

## To do

$$
E_{\text {string }}(\lambda) \stackrel{\sim}{\sim} E_{\mathrm{ABA}}(\lambda) \text { or } E_{\mathrm{TBA}}(\lambda) \stackrel{\sim}{\sim} \Delta_{\mathrm{SYM}}(\lambda)
$$

We propose BTBA equations
(Boundary Thermodynamic Bethe Ansatz) and solve them numerically


$$
\mathcal{O}_{\boldsymbol{Y}, \bar{Y}}[\boldsymbol{V}, \boldsymbol{W}] \sim \epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \epsilon^{k_{1} \cdots k_{N}} \epsilon_{l_{1} \cdots l_{N}} \boldsymbol{Y}_{i_{1}}^{j_{1}} \cdots Y_{i_{N-1}}^{j_{N-1}} V_{i_{N}}^{l_{N}} \bar{Y}_{k_{1}}^{l_{1}} \cdots \bar{Y}_{k_{N-1}-1}^{l_{N-1}} W_{k_{N}}^{j_{N}}
$$

## However,

# Integrability vs Instability 

## Can we apply integrability methods to unstable systems?

## Problem I

- Even in $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$, there are unstable strings with complex energy whereas the energy is always real in integrability methods


## Problem 2

- TBA energy may diverge in the system with closed string tachyons eg. non-susy TsT-transformed $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ vs $\gamma$-deformed SYM

What happens in the open string sector?
cf. similar question [Rastelli, Pomoni] 1002.0006
We encounter apparent singularities

## $\checkmark$ Introduction

- Determinants and giant-gravitons
- BTBA equations and energy bound
- Summary and outlook

Determinants and giant-gravitons

## Spherical Maximal Giant Gravitons (SMGG's)

 Giant graviton $=$ Half-BPS, D3-brane solution on $\mathbf{A d S}_{5} \times \mathbf{S}^{5}$ carrying a large angular momentum $J=\mathcal{O}(N)$

Spherical $\quad \Leftrightarrow \quad$ "wrap" on $S^{3} \subset S^{5}$ with the angular momentum bound $J \leq N$
Maximal $\Leftrightarrow \quad J=N$


SMGG's are classified by the choice:

$$
\begin{aligned}
\mathrm{S}^{3} \subset \mathrm{~S}^{5} & =\left\{|X|^{2}+|Y|^{2}+|Z|^{2}=R_{\text {sphere }}^{2}\right\} \\
X & =0 \text { or } Y=0 \text { or } Z=0 \cdots
\end{aligned}
$$

$\bar{Y}=0$ brane $\Leftrightarrow$ Carrying negative angular momentum compared to $Y=0$

## Giant graviton is determinant

SMGG's are dual to determinants

$$
\operatorname{det} \Phi^{N}=\epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \Phi_{i_{1}}^{j_{1}} \cdots \Phi_{i_{N}}^{j_{N}}
$$

Open strings on the $Y=0$ brane are dual to det-like operator

$$
\operatorname{det}\left(Y^{N-1} V\right)=\epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} Y_{i_{1}}^{j_{1}} \cdots Y_{i_{N-1}}^{j_{N-1}} V_{i_{N}}^{j_{N}}
$$

A pair of open strings on $\mathrm{Y}=0$ and $\mathrm{Ybar}=0$ should be dual to:
$\mathcal{O}_{Y, \bar{Y}}[V, W] \sim \epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \epsilon^{k_{1} \cdots k_{N}} \epsilon_{l_{1} \cdots l_{N}} Y_{i_{1}}^{j_{1}} \cdots Y_{i_{N-1}}^{j_{N-1}} V_{i_{N}}^{l_{N}} \bar{Y}_{k_{1}}^{l_{1}} \cdots \bar{Y}_{k_{N-1}}^{l_{N-1}} W_{k_{N}}^{j_{N}}$

## GG as boundary condition

GG is a boundary condition for an asymptotic open spin chain

$$
\mathbf{Y}=0 \text { brane: } \quad \epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} Y_{i_{1}}^{j_{1}} \cdots Y_{i_{N-1}}^{j_{N-1}}(Z Z \ldots Z Z)_{i_{N}}^{j_{N}}
$$

Dilatation operator of $\mathcal{N}=4$ SYM $=$ Spin chain Hamiltonian

- Ground state

$$
(Z Z \ldots Z Z) \sim|0\rangle
$$

- One-particle state

$$
\sum_{x} e^{i p x}(Z \ldots Z \chi Z \ldots Z) \sim A_{\chi}^{\dagger}(p)|0\rangle
$$

- Two-particle state

$$
\sum_{x<x^{\prime}} e^{i p_{1} x+i p_{2} x^{\prime}}\left(Z \ldots Z \chi Z Z \chi^{\prime} Z \ldots Z\right) \sim A_{\chi}^{\dagger}\left(p_{1}\right) A_{\chi}^{\dagger}\left(p_{2}\right)|0\rangle
$$

## GG as boundary condition

GG is a boundary condition for an asymptotic open spin chain

$$
\mathbf{Y}=\mathbf{0} \text { brane: } \quad \epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} Y_{i_{1}}^{j_{1}} \cdots Y_{i_{N-1}}^{j_{N-1}}(Z Z \ldots Z Z)_{i_{N}}^{j_{N}}
$$

The $Y=0$ preserves the symmetry psu(1|2) ${ }^{2}$ which determines the reflection matrix, a solution of the boundary Yang-Baxter relation

$$
\begin{gathered}
\mathbb{S}\left(-p_{2},-p_{1}\right) \mathbb{R}_{Y}\left(p_{1}\right) \mathbb{S}\left(p_{1},-p_{2}\right) \mathbb{R}_{Y}\left(p_{2}\right)=\mathbb{R}_{Y}\left(p_{2}\right) \mathbb{S}\left(p_{2},-p_{1}\right) \mathbb{R}_{Y}\left(p_{1}\right) \mathbb{S}\left(p_{1}, p_{2}\right) \\
\mathbb{R}_{Y}^{-}(p)=R_{0}^{-}(p)^{2}\left(\begin{array}{llll}
e^{-i p / 2} & & \\
& -e^{i p / 2} & & \\
& & 1 & \\
& & & 1
\end{array}\right)^{\otimes 2}
\end{gathered}
$$

$$
R_{0}^{-}(p)^{2}=-e^{-i p} \sigma(p,-p) \quad \text { obeys boundary crossing relation }
$$

## The $Y_{\theta}=0$ brane

New reflection amplitudes can be found by rotating $\boldsymbol{R}_{\boldsymbol{Y}}$

- $\mathcal{N}=4$ SYM: Field redefinition: $\operatorname{det} Y^{N} \rightarrow \operatorname{det}(Y \cos \theta+\bar{Y} \sin \theta)^{N}$
- Integrable system:

$$
\begin{gathered}
\text { Rotation } T:\binom{1}{2} \rightarrow\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{1}{2}, \quad \text { same for }(\dot{1}, \dot{2}) \\
\mathbb{R}_{\theta}^{-}(p) \equiv T R_{Y}^{-} T^{-1}=R_{0}^{-}(p)^{2}\left(\begin{array}{ccc}
\cos ^{2} \theta e^{-i p / 2}-\sin ^{2} \theta e^{i p / 2} & \sin \theta \cos \theta\left(e^{-i p / 2}+e^{i p / 2}\right) \\
\sin \theta \cos \theta\left(e^{-i p / 2}+e^{i p / 2}\right) & \sin ^{2} \theta e^{-i p / 2}-\cos ^{2} \theta e^{i p / 2} & \\
& 1 & 1
\end{array}\right)^{\otimes 2}
\end{gathered}
$$

- $\boldsymbol{R}_{\theta}$ still preserves integrability
(solutions of boundary Yang-Baxter relation)

$$
\mathbb{S}\left(-p_{2},-p_{1}\right) \mathbb{R}\left(p_{1}\right) \mathbb{S}\left(p_{1},-p_{2}\right) \mathbb{R}\left(p_{2}\right)=\mathbb{R}\left(p_{2}\right) \mathbb{S}\left(p_{2},-p_{1}\right) \mathbb{R}\left(p_{1}\right) \mathbb{S}\left(p_{1}, p_{2}\right)
$$

- $\theta=\pi / 2$ corresponds to the Ybar=0 brane


## YbarY determinant-like operator

A pair of open strings on $\mathrm{Y}=0$ and $\mathrm{Ybar}=0$ should be dual to:

$$
\mathcal{O}_{Y, \bar{Y}}[V, W] \sim \epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \epsilon^{k_{1} \cdots k_{N}} \epsilon_{l_{1} \cdots l_{N}} Y_{i_{1}}^{j_{1}} \cdots Y_{i_{N-1}}^{j_{N-1}} V_{i_{N}}^{l_{N}} \bar{Y}_{k_{1}}^{l_{1}} \cdots \bar{Y}_{k_{N-1}}^{l_{N-1}} W_{k_{N}}^{j_{N}}
$$

In the 't Hooft limit, its dimension should take the factorized form

$$
\Delta=2 N-2+\Delta[V]+\Delta[W]
$$

The simplest case is $\quad V=Z^{L}, W=Z^{L^{\prime}}$

$$
\Delta[V]=L+\text { wrapping }, \quad \Delta[W]=L^{\prime}+\text { wrapping }
$$

The energy of a corresponding open string should be

$$
E=2 N+E_{\text {open }}[V]+E_{\text {open }}[W]
$$

$$
E_{\text {open }}[V]=-1+L+\text { wrapping }
$$

Actually the representative state is not a dilatation eigenstate
$\mathcal{O}_{\boldsymbol{Y}, \bar{Y}}[\boldsymbol{V}, \boldsymbol{W}] \sim \epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \epsilon^{k_{1} \cdots k_{N}} \epsilon_{l_{1} \cdots l_{N}} \boldsymbol{Y}_{i_{1}}^{j_{1}} \cdots \boldsymbol{Y}_{i_{N-1}}^{j_{N-1}} V_{i_{N}}^{l_{N}} \bar{Y}_{k_{1}}^{l_{1}} \cdots \overline{\boldsymbol{Y}}_{k_{N-1}}^{l_{N-1}} W_{k_{N}}^{j_{N}}$
An example of potential mixings
$\mathcal{O}_{Y, \bar{Y}}^{\prime}[\boldsymbol{V}, W] \sim \epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \epsilon^{k_{1} \cdots k_{N}} \epsilon_{l_{1} \cdots l_{N}} Y_{i_{1}}^{j_{1}} \cdots(\boldsymbol{Y} \overline{\boldsymbol{Y}})_{i_{N-1}}^{j_{N-1}} V_{i_{N}}^{l_{N}} \bar{Y}_{k_{1}}^{l_{1}} \cdots \delta_{k_{N-1}}^{l_{N-1}} W_{k_{N}}^{j_{N}}$
We must use the true eigenstate before computing wrapping diagram

- Nevertheless, the wrapping computation seem to be insensitive to the details
- The classification of dilatation eigenstate at finite $N$ is difficult particularly when the length of operator exceeds $N$
(cf. to classify all representations of non-semi-simple Brauer algebra)


## Wrapping diagram

 After a lot of tree-level contractions between $\boldsymbol{Y} \overline{\boldsymbol{Y}}$, we obtain

this is same as the so-called zig-zag diagram

## Wrapping diagram

 After a lot of tree-level contractions between $\boldsymbol{Y} \overline{\boldsymbol{Y}}$, we obtain


The result is

$$
\delta \Delta_{L}=-\frac{4(g / 2)^{4 L}}{4 L-1}\binom{4 L}{2 L} \zeta(4 L-3)+\mathcal{O}\left(g^{4 L+2}\right), \quad g \ll 1
$$

Agree with the boundary Lüscher formula for $L=J>1$

## BTBA equations

## and energy bound

## Exact dimension/energy <br> 

Begin with the equivalence of Euclidean worldsheet partition functions

[Zamolodchikov (1990)]
[Arutyunov, Frolov (2007)]

In Hamiltonian formalism, $\quad \operatorname{tr} e^{-R H(L)}=\operatorname{tr} e^{-L \tilde{H}(R)}$
Take the large $\boldsymbol{R}$ limit,

$$
e^{-R E_{0}(L)}=\lim _{R \rightarrow \infty} e^{-\tilde{\mathcal{F}}(\mathcal{R})}
$$

The "mirror" free energy can be computed by the "mirror" asymptotic Bethe Ansatz equations in the thermodynamic limit
$\Rightarrow$ Thermodynamic Bethe Ansatz equations (TBA)

## Mirror trick with boundary

 A simple generalization is to change boundary conditions

$(\boldsymbol{R} \rightarrow \infty)$

Ground-state BTBA $\quad \log \frac{\boldsymbol{Y}_{a}}{\boldsymbol{Y}_{a}^{\circ}}=\log \left(\frac{1 \pm \boldsymbol{Y}_{b}}{1 \pm \boldsymbol{Y}_{b}^{\circ}}\right) \star K_{b a} \quad$ for auxiliary $\mathbf{Y}$

$$
\begin{aligned}
\log \frac{Y_{Q}}{Y_{Q}^{\circ}} & =\log \left(\frac{1 \pm Y_{b}}{1 \pm Y_{b}^{\circ}}\right) \star K_{b Q} \\
Y_{\text {aux }}^{\circ} & =\text { asymptotic Y-functions, } \quad Y_{Q}^{\circ}=0
\end{aligned}
$$

## Exact ground-state energy

$$
E_{\mathrm{BTBA}}(L, g)=-\sum_{Q=1}^{\infty} \int_{0}^{\infty} \frac{d \tilde{p}_{Q}}{2 \pi} \log \left(1+Y_{Q}\right)
$$

## Summary of YbarY energy


YbarY BTBA: $\quad \log \frac{Y_{a}}{Y_{a}^{\circ}}=\log \left(\frac{1 \pm Y_{b}}{1 \pm Y_{b}^{\circ}}\right) \star K_{b a}$
( $\infty$ nonlinear integral equations can be solved by numerical iteration)
BTBA energy: $\quad E_{\mathrm{BtBA}}(L, g)=-\sum_{Q=1}^{\infty} \int_{0}^{\infty} \frac{d \widetilde{p}_{Q}}{2 \pi} \log \left(1+Y_{Q}\right)$
Our BTBA describes $\Delta$ of the determinant-like operator:

$$
\begin{aligned}
& \mathcal{O}_{Y, \bar{Y}}\left[Z^{L}, Z^{\left.L^{\prime}\right] \sim} \epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \epsilon^{k_{1} \cdots k_{N}} \epsilon_{l_{1} \cdots l_{N}} \times\right. \\
& Y_{i_{1}}^{j_{1}} \cdots Y_{i_{N-1}}^{j_{N-1}}\left(Z^{L}\right)_{i_{N}}^{l_{N}} \bar{Y}_{k_{1}}^{l_{1}} \cdots \bar{Y}_{k_{N-1}}^{l_{N-1}}\left(Z^{L^{\prime}}\right)_{k_{N}}^{j_{N}} \\
& \Delta=2 N-2+L+L^{\prime}+\frac{E_{\text {BTBA }}(L, g)+E_{\text {BTBA }}\left(L^{\prime}, g\right)}{\text { all wrapping corrections, negative values }}
\end{aligned}
$$

Interestingly, there exists a lower bound for the (B)TBA energy

## $\mathrm{YQ}(\mathrm{v})$ at large v


BTBA equation for $Y Q$ in the large $v$ limit

$$
\begin{aligned}
& \log \frac{Y_{Q}(v)}{Y_{Q}^{\bullet}(v)}=-2 \int_{-\infty}^{\infty} d t \log \left(1+Y_{Q^{\prime}}(t) K_{\Sigma}^{Q^{\prime} Q}(t, v)+\ldots\right. \\
& \sim-4 E_{B T B A} \log (v), \quad v \gg 1 \\
& \Leftrightarrow \quad \log Y_{Q}(v) \sim-\left(4 L+4 E_{\mathrm{BTBA}}\right) \log (v)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{i} \log \Sigma^{Q^{\prime} Q}(t, v)=\Phi\left(y_{1}^{+}, y_{2}^{+}\right)-\Phi\left(y_{1}^{+}, y_{2}^{-}\right)-\Phi\left(y_{1}^{-}, y_{2}^{+}\right)+\Phi\left(y_{1}^{-}, y_{2}^{-}\right) \\
& +\frac{1}{2}\left(\Psi\left(y_{2}^{+}, y_{1}^{+}\right)+\Psi\left(y_{2}^{-}, y_{1}^{+}\right)-\Psi\left(y_{2}^{+}, y_{1}^{-}\right)-\Psi\left(y_{2}^{-}, y_{1}^{-}\right)\right) \\
& -\frac{1}{2}\left(\Psi\left(y_{1}^{+}, y_{2}^{+}\right)+\Psi\left(y_{1}^{-}, y_{2}^{+}\right)-\Psi\left(y_{1}^{+}, y_{2}^{-}\right)-\Psi\left(y_{1}^{-}, y_{2}^{-}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Phi\left(x_{1}, x_{2}\right)=i \oint \frac{d w_{1}}{2 \pi} \oint \frac{d w_{2}}{2 \pi} \frac{1}{\left(w_{1}-x_{1}\right)\left(w_{2}-x_{2}\right)} \log \frac{\Gamma\left[1+\frac{i g}{2}\left(w_{1}+\frac{1}{w_{1}}-w_{2}-\frac{1}{w_{2}}\right)\right]}{\Gamma\left[1-\frac{i g}{2}\left(w_{1}+\frac{1}{w_{1}}-w_{2}-\frac{1}{w_{2}}\right)\right]} \\
& \Psi\left(x_{1}, x_{2}\right)=i \oint \frac{d w}{2 \pi} \frac{1}{w-x_{2}} \log \frac{\Gamma\left[1+\frac{i g}{2}\left(x_{1}+\frac{1}{x_{1}}-w-\frac{1}{w}\right)\right]}{\Gamma\left[1-\frac{i g}{2}\left(x_{1}+\frac{1}{x_{1}}-w-\frac{1}{w}\right)\right]} \\
& x(v)=\frac{1}{2}\left(v-i \sqrt{4-v^{2}}\right), \quad y_{1}^{ \pm}=x\left(t \pm \frac{i Q^{\prime}}{g}\right), \quad y_{2}^{ \pm}=x\left(v \pm \frac{i Q}{g}\right)
\end{aligned}
$$

## $\mathrm{YQ}(\mathrm{v})$ at large v


BTBA equation for YQ in the large v limit

$$
\begin{aligned}
& \log \frac{Y_{Q}(v)}{Y_{Q}^{\bullet}(v)}=-2 \int_{-\infty}^{\infty} d t \log \left(1+Y_{Q^{\prime}}(t)\right) K_{\Sigma}^{Q^{\prime} Q}(t, v)+\ldots \\
& \sim-4 E_{B T B A} \log (v), \quad v \gg 1 \\
& \Leftrightarrow \quad \log Y_{Q}(v) \sim-\left(4 L+4 E_{\mathrm{BTBA}}\right) \log (v)
\end{aligned}
$$

However, the integrals in BTBA energy diverges if $Y_{Q}(v) \sim 1 / v$

$$
\int_{0}^{\infty} \frac{d v}{2 \pi} \frac{d \widetilde{p}_{Q}}{d v} \log \left(1+Y_{Q}(v)\right) \sim(\text { const }) \int^{\infty} d v v^{-4 L-4 E_{\mathrm{BTBA}}}
$$

The BTBA energy cannot be negative and large
$4 L+4 E_{\mathrm{BTBA}}>1 \quad \Leftrightarrow \quad E_{\mathrm{BTBA}}>1 / 4-L$

$$
\begin{aligned}
& \text { BTBA equation for } \mathrm{YQ} \text { in the large } \mathrm{Q} \text { limit } \\
& \Leftrightarrow \quad \log Y_{Q}(v) \sim\left(3-4 L-4 E_{\mathrm{BTBA}}\right) \log (Q)
\end{aligned}
$$

However, the sum in BTBA energy diverges if $Y_{Q}(v) \sim 1 / Q$

$$
\begin{aligned}
E_{\mathrm{BTBA}} & =-\sum_{Q=1}^{\infty} \int_{0}^{\infty} \frac{d \widetilde{p}_{Q}}{2 \pi} \log \left(1+Y_{Q}\right) \\
& \sim \sum_{Q=1}^{\infty}(\mathrm{const}) Q^{3-4 L-4 E_{\mathrm{BTBA}}}
\end{aligned}
$$

The BTBA energy cannot be negative and large $4 L+4 E_{\mathrm{BTBA}}>4 \Leftrightarrow E_{\mathrm{BTBA}}>1-L$


## The stronger bound is

$$
E_{\text {open }}\left[Z^{L}\right]=L-1+E_{\mathrm{BTBA}}(L, g)>0
$$

It is impossible to saturate this lower bound.

## Suppose $\boldsymbol{E}_{\mathrm{BTBA}}=1-L$

 then BTBA dictates $Y_{Q}(v) \sim 1 / Q$This implies $\boldsymbol{E}_{\mathrm{BTBA}}$ diverges, which is a contradiction
A sign of divergences can also be seen at numerical analysis (ie. indeed TBA energy seems to "hit" the bound)

## Numerical Results




Solid: BTBA solution, Dashed: Lüscher formula, Dotted: Lower bound

$$
E_{\mathrm{BTBA}}^{(\mathrm{num})}(J, g)=-\sum_{Q=1}^{Q_{\max }} \int_{0}^{\infty} \frac{d \widetilde{p}_{Q}}{2 \pi} \log \left(1+Y_{Q}\right)-\sum_{Q=Q_{\max }+1}^{100} \int_{0}^{\infty} \frac{d \widetilde{p}_{Q}}{2 \pi} \log \left(1+Y_{Q}^{\bullet}\right)
$$

## Numerical Results



Solid: BTBA solution, Dashed: Lüscher formula, Dotted: Lower bound

$$
E_{\mathrm{BTBA}}^{(\mathrm{num})}(J, g)=-\sum_{Q=1}^{Q_{\max }} \int_{0}^{\infty} \frac{d \widetilde{p}_{Q}}{2 \pi} \log \left(1+Y_{Q}\right)-\sum_{Q=Q_{\max }+1}^{100} \int_{0}^{\infty} \frac{d \widetilde{p}_{Q}}{2 \pi} \log \left(1+Y_{Q}^{\bullet}\right)
$$

## Phase diagram


under the assumption that the $L=\mathbf{1}$ energy diverges at $\boldsymbol{g}=\mathbf{0}$

## Summary and outlook

## Summary

- Studied the spectrum of determinant-like operators dual to open strings ending on giant gravitons
- Wrapping corrections from $\mathcal{N}=4$ SYM agree with the Lüscher formula
- Proposed and solved BTBA equations for $Y=0$ \& $Y b a r=0$
- Found the lower-bound for the (B)TBA energy


## Future works

- Beyond the critical coupling? Compare with string theory?
- How to compute the dimension of the L=I state?
- AdS/CFT for unstable systems?

Thank you for attention Спасибо за внимание

