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I A correspondence
� �

Gauge theory [AGT ]
←→ CFTxy

Painlevé� �

I At the classical level, it is known that the spectral curve of the

Painlevé system = SW curve.

I The aim of this talk is to study the correspondence at the quan-

tum level.
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I Plan.

1. Lax pair for Painlevé type equations

2. Quantum Lax pairs from CFT

3. Solutions through the AGT relation
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1. Lax pair for Painlevé type equations

I I will give a short overview of the Painlevé type equations and

their relation to gauge theories and CFT.

I We use the Lax pair as a basic tool to understand the relation.
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I What is Painlevé equation?

I In a narrow sense, the Painlevé equations mean the six nonlinear

ODEs PI, PII, · · · , PVI discovered by P. Painlevé around 1900.

I The most important property of these equations is the formula-

tion as IMD (iso-monodromic deformation).

5



I Example 1. PII equation
� �

q′′ = 2q3 + tq+ b. (b ∈ C)� �
This equation for q = q(t) can be written in Hamiltonian form as

dq

dt
=
∂H

∂p
,

dp

dt
= −

∂H

∂q
,

where

H =
p2

2
−

(
q2 +

t

2

)
p− aq. (a = b+

1

2
)
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I PII equation is obtained as the compatibility of a pair of linear

differential equations Lψ = 0, Bψ = 0 (Lax pair),
� �

L = ∂x
2 −

{
2x2 + t+

1

x− q

}
∂x+

{ p

x− q
− 2H − 2ax

}
,

B = 2∂t −
1

x− q
∂x+

p

x− q
.

� �

I⇒ PII equation is the IMD of the linear differential equation Lψ =

0 through Bψ = 0.

I Since 2H = p2 − (2q2 + t)p − 2aq, one observe a symmety

(x, ∂x)↔ (q, p).
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I Example 2. PVI equation

Hamiltonian form:

dq

dt
=
∂H

∂p
,

dp

dt
= −

∂H

∂q
,

where� �

H =
q(q − 1)(q − t)

t(t− 1)

{
p2 − (

α0 − 1

q − t
+

α3
q − 1

+
α4
q
)p

}

+
(q − t)α2(α1 + α2)

t(t− 1)
.

(α0 + α1 +2α2 + α3 + α4 = 1)� �
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IPVI equation as IMD
� �

L = ∂x
2 +

{1− α0
x− t

+
1− α3
x− 1

+
1− α4
x

−
1

x− q

}
∂x

+
p(q − 1)q

(x− 1)x(x− q)
+
α2(α1 + α2)

(x− 1)x
−

t(t− 1)H

(x− 1)x(x− t)
,

B =
t(t− 1)

q − t
∂t+

x(x− 1)

q − x
∂x+

pq(q − 1)

x− q
,

� �
Compatibility of Lψ = Bψ = 0 gives the PVI equation.

dq

dt
=
∂H

∂p
,

dp

dt
= −

∂H

∂q
.
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I Classification of the 2nd order IMD� �
PVI → PV → PIII → P ′III → P ′′III

↘ ↘
PIV → PII → PI� �

These correspond to SU(2) gauge theories/Virasoro CFT
� �

SW4 → SW3 → SW2 → SW1 → SW0
↘ ↘

AD2 → AD1 → AD0� �
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I After the work of Painlevé, various generalized Painlevé type

equations have been constructed as IMDs.

I They are specified by the data:

Punctured Riemann surface and singularity type at each puncture

I These IMDs are expected to correspond to higher rank gauge

theory and W -CFT associated with the same geometry.
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I Example 1. 2× 2 L-operator on P1 with n+3 regular singular-

ities

L =
∂

∂x
−A, A =

A0

x
+

A1

x− 1
+

n∑
i=1

Ati
x− ti

→ n-Garnier system (non-autonomous deformation of Gaudin model)

↔ SU(2)⊗n quiver theory .

I Example 2. N ×N L-operator P1 with 4 regular singularities

L =
∂

∂x
−A, A =

A0

x
+

A1

x− 1
+

At

x− t

where the spectral type (=multiplicity of eigenvalues) ofA0, A1, At, A∞

are (1N), (1, N − 1), (1, N − 1), (1N)

→ IMD [Fuji-Suzuki][Tsuda]↔ SU(N), Nf = 2N .
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I Example 3. Difference analogs

SU(2) case
� �

Ell E8
A1↗

q E8→E7→E6→D5→A4 →A2+1→A1+1→A1

d E8→E7→E6 → D4 → A3 →A1+1→A1
↘ ↘

A2 →A1

� �
The difference/q-difference/elliptic difference cases are expected

to correspond to 4d/5d/6d gauge theories.
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I Duality

There may be many Lax pairs for one Painlevé type equation.

I Example 1. SU(2) with Nf = 4.

(1) Scalar form with five regular singular points (one is apparent)

(2) 2× 2 form with four regular singular points

(3) 8× 8 form with one regular singularity x = 0 and one irregular

singularity x =∞ (↔ D
(1)
4 Drinfeld-Sokolov hierarchy)

(4) r × r form (3 ≤ r ≤ 7) are also known

These Lax pairs are related by some integral transformations.
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I Example 2. SU(2) with E6-flavor symmetry.

(1) 2× 2 difference operator [Arinkin-Borodin]

Ψ(x+1) = A(x)Ψ(x), A(x) =

 a(x) b(x)
c(x) d(x)


where ord(detA) = 6

(2) 3×3 differential operator with 3 regular singular points [Boalch]

∂

∂x
Ψ(x) =

(A0

x
+

A1

x− 1

)
Ψ(x)

There is no continuous deformation.
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2. Quantum Lax pairs

I The Lax operators L,B in Section.1 are differential operators in

(x, ∂x) depending on (q, p) variables as parameter.

I There is a natural quantization of (q, p) variables

→ Quantum Lax operators are symmetric in (x, ∂x) and (q, ∂q),

and they are obtained as the BPZ equations in 2d CFT.
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I Quantum Lax pair for PVI: L̂Ψ = B̂Ψ = 0:
� �

L̂ = x(x−1)(x−t)
{α(2)0

x
+
α
(2)
1

x−1
+
α
(2)
t

x−t
−
ϵ1−ϵ2
x−q

}
ϵ1∂x

−q(q−1)(q−t)
{α(1)0

q
+
α
(1)
1

q−1
+
α
(1)
t

q−t
−
ϵ2−ϵ1
q−x

}
ϵ2∂q

+x(x−1)(x−t)ϵ12∂x2−q(q−1)(q−t)ϵ22∂q2 + C(x−q),

B̂ = q(q−1)
{α(1)0

q
+
α
(1)
1

q−1
+

αt

q−t
−

ϵ2
q−x

}
ϵ2∂q

+
t(t−1)
q−t

ϵ1ϵ2∂t+
x(x−1)
q−x

ϵ1ϵ2∂x+q(q−1)ϵ22∂q2+C.

� �
α
(j)
i = αi−ϵj, C = (3ϵ−α0−α1−αt−α∞)(ϵ−α0−α1−αt+α∞)/4,

ϵ = ϵ1 + ϵ2.
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I The operators L̂, B̂ were obtained by using affine Weyl group

symmetry ([Nagoya-Y]1206.5963)

I The operators L̂, B̂ give the classical Lax pair L,B for PVI under

the Nekrasov-Shatashvili limit:

ϵ2∂q → p. (ϵ2→ 0)

I Relation to CFT
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I L̂ψ = B̂ψ = 0 are the BPZ equations for 6-points block ψ on

P1 with two degenerate fields

ψ(x, q, t) =
⟨
V−ϵ2(x)V−ϵ1(q)OVI

⟩
,

OVI = Vα0(0)Vα1(1)Vαt(t)Vα∞(∞),

where Vα(z)s are the Virasoro primary operators:

c = 1+ 6
(ϵ1 + ϵ2)

2

ϵ1ϵ2
, h(a) =

a

2ϵ1ϵ2
(ϵ1 + ϵ2 −

a

2
),

T (z)T (w) =
c/2

(z − w)4
+

2

(z − w)2
T (w)+

1

z − w
∂wT (w)+ · · ·
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I Quantum Lax pair for PII:� �
L̂ = ϵ1

2∂2x −
t+2x2 +

ϵ1 − ϵ2
x− q

 ϵ1∂x − 2ax

− ϵ22∂2q +

t+2q2 +
ϵ2 − ϵ1
q − x

 ϵ2∂q +2aq,

B̂ =
ϵ1ϵ2
x− q

∂x − 2ϵ1ϵ2∂t

− ϵ22∂2q +

t+2q2 +
ϵ2

q − x

 ϵ2∂q +2aq.

� �
These are also obtained from CFT (with Gaiotto states), and repro-

duce the classical Lax pair under the NS limit

ϵ2∂q → p. (ϵ2→ 0)
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I The integral formula for special solutions ψ(x, q, t):

ψ =
∫
C
U(x, q, t, {ui}, {vj})

Nu∏
i=1

dui
Nu∏
j=1

dvj,

where

U =
∏

1≤i<j≤Nu
(ui − uj)

−2ϵ1
ϵ2

∏
1≤i<j≤Nv

(vi − vj)
−2ϵ2
ϵ1

×
Nu∏
i=1

Nv∏
j=1

(ui − vj)−2
Nu∏
i=1

F(ui)
1
ϵ1

Nv∏
i=1

F(vi)
1
ϵ2 ,

and the function F(z) is given by
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F(z) = (z − x)ϵ2(z − q)ϵ1FJ(z) for PJ with

FII(z) = e
2
3z

3+zt,

FIII(z) = zae
t
z+z,

FIV(z) = zae
1
4z

2+tz,

FV(z) = za(z − 1)be−tz,

FVI(z) = zα0(z − 1)α1(z − t)αt.

I The integral ψ solves the linear problem L̂ψ = B̂ψ = 0 if

parameters take special values related to Nu, Nv ∈ Z≥0: e.g.

α0 + α1 + αt+ α∞ = (3− 2Nu)ϵ1 + (3− 2Nv)ϵ2 for PVI.
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I Proofs

The free fields representation or a direct computation using the

identities:

1

ϵ1ϵ2
L̂(U) =

Nu∑
i=1

∂

∂ui

(
U

(x− q)GJ(ui)

(ui − x)(ui − q)

)
+ (u→ v),

1

ϵ1ϵ2
B̂(U) =

Nu∑
i=1

∂

∂ui

(
U
GJ(ui)

(ui − q)

)
+ (u→ v),

where

GII(z) = 1, GIII(z) = z2, GIV(z) = z,

GV(z) = z(z − 1), GVI(z) = z(z − 1)(z − t).
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I The construction of quantum Lax pairs and the inegral formulae

can be extended to N - Garnier system :

ψ(x,q1, · · · , qN , t) =
⟨
V−ϵ2(x)

N∏
i=1

V−ϵ1(qi) OVI

⟩
,

OVI = Vα0(0)Vα1(1)Vαt(t)Vα∞(∞).
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3. Solutions through the AGT relation

I In view of the AGT relation, the Nekrasov functions should give a

solution for the quantum Lax linear problems L̂ψ = B̂ψ = 0.

I We will check ψ = Zcft = ZNek (up to U(1) factors).

25



I For the quantum Lax linear problems L̂ψ = B̂ψ = 0 for PVI,

there exist a power series solution of the form

ψ(x, q, t) = x
v
ϵ1q

v
ϵ2t
−v(v+α0+αt−ϵ)ϵ1ϵ2 Zcft(x, q, t),

Zcft(x, q, t) = 1+ · · · ∈ C[[x,
q

x
,
t

q
]].

I Zcft will be related to the 6 points block on P1 with following

intermediate states:

α1 −ϵ2 −ϵ1 αt
| | | |
| | | |

α∞ −− 1 −− x −− q −− t −− α0
v+ ϵ v+ ϵ1 v
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IZcft is represented in terms of Nekrasov function

([AGT], [Alba-Morozov](0912.2535))

IZNek = ZNek(x, q, t; {m1,m2, m̃1, m̃2}, {a, b, c})
a1,2 = ±a, b1,2 = ±b, c1,2 = ±c.

m2

m1

m̃2

m̃1

1 x q t

a2, U2

a1, U1

b2, V2

b1, V1

c2,W2

c1,W1

ZNek is defined as a sum over the 6 partitions Ui, Vi,Wi (i = 1,2):

ZNek =
∑

U,V,W

 2∏
i,j=1

wij

 x|U1|+|U2|(
q

x
)|V1|+|V2|(

t

q
)|W1|+|W2|.
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m2

m1

m̃2

m̃1

a2, U2

a1, U1

b2, V2

b1, V1

c2,W2

c1,W1

wij =
zf(ai, Ui,mj)zb(ai−bj +

ϵ1
2
, Ui, Vj)zb(bi−cj +

ϵ2
2
, Vi,Wj)zf(ci,Wi, m̃j)

zb(ai−aj, Ui, Uj)zb(bi−bj, Vi, Vj)zb(ci−cj,Wi,Wj)
,

zf(a, Y,m) =
∏

(i,j)∈Y
(a+ ϵ1(i− 1) + ϵ2(j − 1) +m)

zb(a, Y,W ) =
∏

(i,j)∈Y
(a+ ϵ1(−W ′j + i) + ϵ2(Yi − j +1))

×
∏

(i,j)∈W
(a+ ϵ1(Y

′
j − i+1)+ ϵ2(−Wi+ j)).

Y ′ is a dual Young diagram of Y .
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I We have ZNek = ZU(1)Zcft, where

ZU(1) = (1− x)k1(1− q)k2(1− t)k3(1−
q

x
)k4,

k1 =
ϵ(ϵ1 +2ϵ− αt)

ϵ1ϵ2
, k2 =

ϵ(ϵ2 +2ϵ− αt)
ϵ1ϵ2

,

k3 =
α1(ϵ− αt)

ϵ1ϵ2
, k4 = −

ϵ1
ϵ2
− 2,

(α0, αt, α1, α∞) = (m1 +m2 + ϵ,m1 −m2 +2ϵ,

m̃1 + m̃2, m̃1 − m̃2 + ϵ),

v − (0,
ϵ1
2
,
ϵ

2
) = m2 − ϵ− (a, b, c), ϵ = ϵ1 + ϵ2.
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I The example given above is for Nf = 4 case (quantum PVI)↔

usual CFT with regular singular points.

INf = 0 case was also checked. Hence, the gauge/CFT/Painlevé

correspondence is consistent with degenerations.
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Conclusion:

I Quantum gauge/CFT/Painlevé correspondence is studied.

IFrom this correspondence, it is expected that Nekrasov partition

functions solve the quantum Lax linear problem for IMDs.

I We have checked this in SU(2) case.

I Classical Lax is recovoerd by NS limit: c → ∞. Relation to

the work [Iorgov, Lisovyy, Teschner, · · · ] (conformal bock at c =

1 gives the τ -function of classical Painlevé equation ) will be an

interesting problem.
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Thank you!
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