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» A correspondence

; ™
AGT
Gauge theory [<_>] C]FT
Painlevé
N J

» At the classical level, it is known that the spectral curve of the

Painlevé system = SW curve.

» The aim of this talk is to study the correspondence at the quan-

tum level.



» Plan.

1. Lax pair for Painlevé type equations
2. Quantum Lax pairs from CFT

3. Solutions through the AGT relation



1. Lax pair for Painlevé type equations

» | will give a short overview of the Painlevé type equations and

their relation to gauge theories and CFT.

» We use the Lax pair as a basic tool to understand the relation.



» What is Painlevé equation?

» In a narrow sense, the Painlevé equations mean the six nonlinear
ODEs P, Py, - - - , Py discovered by P. Painlevé around 1900.

» The most important property of these equations is the formula-

tion as IMD (iso-monodromic deformation).



» Example 1. F;; equation

(" =2¢3+tq+b (beC)

This equation for ¢ = ¢(¢) can be written in Hamiltonian form as

dg OH dp  OH
dt 9op’ dt  9q’

where

H=pQ—(q2+;)p—aq (a=10b+

5 )

1
2



» Fj; equation is obtained as the compatibility of a pair of linear

differential equations Ly = 0, By = 0 (Lax pair),

L:ax2_{2x2 o4 L }ax {xziq—QH—Qaa:},

N /

» = Fj equation is the IMD of the linear differential equation L) =
O through By = O.

» Since 2H = p? — (2¢2 + t)p — 2aq, one observe a symmety
(z,0z) < (q,p)-



» Example 2. P /; equation

Hamiltonian form:

dg OH dp  OH

dt  Op’ dt  Oq’

where
)

q(q—1)(g—1)f o ,ag—1 a3 | ag

H = _ |
t(t — 1) v Comt T q)p}
(¢ — t)az(ay + az)
t(t—1) '

(g + a1 +2a2+az+ag=1)




» P/ equation as IMD

-

N

L=8x2I{1_aOI1_a3I1_a4— 1 }3:1;
x —t r—1 T T —q
plg—1)g | as(ar+a2)  t(t—-1)H
" (z—Da(z—q) (z—- D= (z — Da(z —t)’
B:t(t—l)at I fv(x—l)am I pq(q—1)7
q—t q—z r —q

Compatibility of L.y) = B« = 0 gives the R, equation.

dg OH
dt op’

dp  OH
dt  9q




» Classification of the 2nd order IMD

f
/ !/
Pqg - Ry - Pn — P — P

N\ N\

PIV — PII — PI

N

These correspond to SU(2) gauge theories/Virasoro CFT

-

SW4 — SWg — SWQ — SWl — SWO

pN pN
ADQ — ADl — ADO
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» After the work of Painlevé, various generalized Painlevé type

equations have been constructed as IMDs.

» They are specified by the data:

Punctured Riemann surface and singularity type at each puncture

» These IMDs are expected to correspond to higher rank gauge

theory and W-CFT associated with the same geometry.
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» Example 1. 2 x 2 L-operator on P! with n 4 3 regular singular-
ities
0 Ap Aq no Ay,

L=——-A A=
Ox x x— 1 Z-;lx—ti

— n~-Garnier system (non-autonomous deformation of Gaudin model)
— SU(2)®™ quiver theory .

» Example 2. N x N L-operator P! with 4 regular singularities

A
=2 _a a="0 |

ox T r— 1 r — 1

where the spectral type (=multiplicity of eigenvalues) of Ag, A1, A¢, Aso
are (1Y), (1, N — 1), (1, N = 1), (1Y)
— IMD [Fuji-Suzuki][Tsuda] <> SU(N), Ny = 2N.
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» Example 3. Difference analogs
SU(2) case

4 N

Ell Eg

A
s 1

q Eg— E7—Eg— Ds— Ay — Aoy 1 —A141— Ay

d Fg—E7—Fs — Dg— Az —Aj41—4

pN pN
AQ —)Al

N J

The difference/qg-difference/elliptic difference cases are expected

to correspond to 4d/5d/6d gauge theories.
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» Duality

There may be many Lax pairs for one Painlevé type equation.

» Example 1. SU(2) with Ny = 4.
(1) Scalar form with five regular singular points (one is apparent)
(2) 2 x 2 form with four regular singular points

(3) 8 x 8 form with one regular singularity x = 0 and one irregular

singularity z = oo (+» Dgl) Drinfeld-Sokolov hierarchy)
(4) r x r form (3 < r < 7) are also known

These Lax pairs are related by some integral transformations.
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» Example 2. SU(2) with Eg-flavor symmetry.

(1) 2 x 2 difference operator [Arinkin-Borodin]

W(z+1) = A@@)W(2), Az) = (i§§§ 223)

where ord(detA) = 6

(2) 3 x 3 differential operator with 3 regular singular points [Boalch]

9 () = (AO N )

U
ox T €T — ()

There is no continuous deformation.
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2. Quantum Lax pairs

» The Lax operators L, B in Section.1 are differential operators in

(z, 0;) depending on (g, p) variables as parameter.

» There is a natural quantization of (¢, p) variables

— Quantum Lax operators are symmetric in (x, ;) and (g, dy),

and they are obtained as the BPZ equations in 2d CFT.
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» Quantum Lax pair for P,;: LW = BW = 0:

4 N
2) LD )

L=a(e-D@-0{= -+ 1+ = 2o,
(1 1) (1) _

—g(q—1)(g— {70+ 422",
qg q—1 qg-t gqg—x

+a(z—1)(z—1)e1%0:° —q(qg—1)(g—t)e2%94* + C(x—q),

_ oz(()l) agl) Qt €5
B =q(q—1 | Rt 9
q(q ){ 0 Tao1ta q_x}ez q
t(t—1 r(r—1
| (q—t )6162315 | (q_m >€1€28x+q(q—1)6223q2+0.
N J

ozgj) = a;—¢;, C = (Be—apg—a1—ar—aso) ((—ag—a1—artax) /4,
€ = €1 + en.
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» The operators L, B were obtained by using affine Weyl group
symmetry ([Nagoya-Y]1206.5963)

» The operators L, B give the classical Lax pair L, B for Py under

the Nekrasov-Shatashvili limit:

egaq — P. (62 — O)

» Relation to CFT
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» L) = B = 0 are the BPZ equations for 6-points block ) on

PL with two degenerate fields
(@, 0,1) = (Voey (2)V-; () Ovr ),
Ovi = Vag(0) Vi (1) Vi (8) Viaso (00),

where V,(z)s are the Virasoro primary operators:

2
€1 + ¢
=146 320 )= (-0,
€1€2 2€1€o
c/2 2 1

T(2)T(w) = T(w) OuwT (w) + - -

(z—w)4+(z—w)2 2 —w
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» Quantum Lax pair for Fyg:

a N
L = 6128:% — (t —+ D2 I G; : ;2> €10r — 2ax
— 2?97 + (t +2¢2 4+ 27 61) €204 + 2aq,
q—x
B =12 Or — 2€1€50¢
L —(q
— 62285 + (t + 2q2 | 2 ) €20q + 2aq.
q—<x
N y,

These are also obtained from CFT (with Gaiotto states), and repro-

duce the classical Lax pair under the NS limit
62&1 — P. (62 — O)
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» The integral formula for special solutions ¢ (x, g, t):

Ny, Ny
v=[ U qt{w} {v;}) 1] du; [ dvj,
¢ =1 j=1

where
_2e1 _2¢
U= II (ui—vu;) 2 I (v—v;) @
1<i< <Ny 1<i< <Ny
Nu NfU _2 Nu i NfU L
x 1T 1I (ui—v;)~ = II F(u)r [ Fv;)e2,
=1 j=1 i=1 i=1

and the function F(z) is given by
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F(z) =(z—x)2(z—q)1Fj(z) for P, with

Fi(z) = 3%+,

Fn(z) = 2%t

Fiv(z) = 2%a* H17,

Ry(z) = 2%(z — 1) ¥,
Fyi(z) = 290(z — 1)%1(z — ).

» The integral ¢ solves the linear problem Ly = By =

parameters take special values related to Ny, Ny € Z>qg: e.g.
ag+ a1+ ar + aco = (3—2Ny)eg + (3 —2Ny)en  for Py
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» Proofs

The free fields representation or a direct computation using the
identities:

(z — q)G (u;)
(U

s — aym —qy) T

Ny u;
" B(U) = 2. & (U(iJ(_Z)>) - (u — ),

Gnu(z) =1, Gm(z) =2%, Gn(2) =z,
Gy(z) =2(z—1), Gyi(z) =2(z—1)(z—1).
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» The construction of quantum Lax pairs and the inegral formulae

can be extended to N- Garnier system :

N
¢($7017 AN, t) — <V—€2($) 'H]_ V—El(Qi> OVI>7

Ovi = Vag(0) Vi (1) Vi, () Vs (00).
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3. Solutions through the AGT relation

» In view of the AGT relation, the Nekrasov functions should give a

solution for the quantum Lax linear problems Lt = B = O.

» We will check v = Z-t = Znek (Up to U (1) factors).
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» For the quantum Lax linear problems Ly = By = 0 for Py,
there exist a power series solution of the form

v v _fu(v—|—ozo—|-ozt—e)
w(xaqvt) — CEelq€2t €12 ZCft(ajaqat)?

t
ZCft(xaqat) =1 + e € C[[ajaga_]]
L (g

» Z.s Will be related to the 6 points block on P1 with following

iIntermediate states:
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» Zcrt 1S represented in terms of Nekrasov function
([AGT], [Alba-Morozov](0912.2535))

> ZNek — ZNek(ma Q7t' {m17 ’ITLQ,’I’T’L]_,?’T’LQ}, {CL, b7 C})
a1 = £a, by o = £b, ¢1 2 = *c.

mi

a1, Uq b1, V1 c1, W1 1

a2, Uz | by V5 o, Wy —— 2

m2

ZNek Is defined as a sum over the 6 partitions U;, V;,, W, (1 = 1, 2):

2
q t
ZNek = Y (H wij) 2| UL1HU2] (Ly[Vi]+[Va| ( Ly [Wa|+[Wa|

UV,W \i,j=1 T q
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mi

CL1,U1 b17V1 Cl’Wl ’ﬁll

mo a2, U2 | by, V5 co, Wo M2

zf<ai,Ui,mj>zb<ai—bj+€1 Ui, ]>zb<b c]+€2 Vi, W)z s (ci, Wi, ;)
zb(ai_ajanan)zb(b Vi, ])zb(cz ]7W27W) ,

wij —

zp(a, Yym) = ]] (a+e1(i—1)+e(f—1)+m)

(1,5)€Y

z(a, Y, W) =[] (a+e(=Wj+i)+ex(¥; —j+ 1))
(i,j)eY

x I (e+eay]—i+1)+e(-W;+ ).
(1,7)eW

Y’ is a dual Young diagram of Y.
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» We have Znek = Zyy(1)Zcft, Where

Zyy = (1 —2)R1(1 - ¢)*2(1 — )k3(1 - gw,

e(e1 + 2 — o) e(ex + 2e — o)
kl — ) kQ — )
€1€D €1€D
k?):ozl(e—()ét)7 k4=—6—1—2,
€1€2 €2

(a07 a, &g, O{OO) — (ml T m> _I_ €, M1 — My —I_ 267

m1 + mo, m1 — mo + €),

6].
— (0,
v— ( 5

;)—mg—e—(abc) € = €1 + eo.
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» The example given above is for Ny = 4 case (quantum P) <

usual CFT with regular singular points.

» Ny = O case was also checked. Hence, the gauge/CFT/Painlevée

correspondence is consistent with degenerations.
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Conclusion:
» Quantum gauge/CFT/Painlevé correspondence is studied.

» From this correspondence, it is expected that Nekrasov partition

functions solve the quantum Lax linear problem for IMDs.
» We have checked this in SU(2) case.

» Classical Lax is recovoerd by NS limit: ¢ — oo. Relation to
the work [lorgov, Lisovyy, Teschner, -- -] (conformal bock at ¢ =
1 gives the r-function of classical Painlevé equation ) will be an

interesting problem.
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Thank you!
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