Quantum Lax pairs for Painlevé systems and their solutions

Yasuhiko Yamada (Kobe Univ.)

Biwako, 5/Mar/2014

- A correspondence

Gauge theory $\underset{ }{[A G T]}$ CFT
 Painlevé

- At the classical level, it is known that the spectral curve of the Painlevé system = SW curve.
- The aim of this talk is to study the correspondence at the quantum level.
- Plan.

1. Lax pair for Painlevé type equations
2. Quantum Lax pairs from CFT
3. Solutions through the AGT relation

1. Lax pair for Painlevé type equations

- I will give a short overview of the Painlevé type equations and their relation to gauge theories and CFT.
- We use the Lax pair as a basic tool to understand the relation.
-What is Painlevé equation?
- In a narrow sense, the Painlevé equations mean the six nonlinear ODEs $P_{\mathrm{I}}, P_{\mathrm{II}}, \cdots, P_{\mathrm{VI}}$ discovered by P. Painlevé around 1900.
- The most important property of these equations is the formulation as IMD (iso-monodromic deformation).
- Example 1. $P_{\text {II }}$ equation

$$
q^{\prime \prime}=2 q^{3}+t q+b . \quad(b \in \mathbb{C})
$$

This equation for $q=q(t)$ can be written in Hamiltonian form as

$$
\frac{d q}{d t}=\frac{\partial H}{\partial p}, \quad \frac{d p}{d t}=-\frac{\partial H}{\partial q}
$$

where

$$
H=\frac{p^{2}}{2}-\left(q^{2}+\frac{t}{2}\right) p-a q . \quad\left(a=b+\frac{1}{2}\right)
$$

- $P_{\text {II }}$ equation is obtained as the compatibility of a pair of linear differential equations $L \psi=0, B \psi=0$ (Lax pair),

$$
\begin{gathered}
L=\partial_{x}^{2}-\left\{2 x^{2}+t+\frac{1}{x-q}\right\} \partial_{x}+\left\{\frac{p}{x-q}-2 H-2 a x\right\} \\
B=2 \partial_{t}-\frac{1}{x-q} \partial_{x}+\frac{p}{x-q}
\end{gathered}
$$

$\Rightarrow P_{\text {II }}$ equation is the IMD of the linear differential equation $L \psi=$ 0 through $B \psi=0$.

- Since $2 H=p^{2}-\left(2 q^{2}+t\right) p-2 a q$, one observe a symmety $\left(x, \partial_{x}\right) \leftrightarrow(q, p)$.
- Example 2. P_{VI} equation

Hamiltonian form:

$$
\frac{d q}{d t}=\frac{\partial H}{\partial p}, \quad \frac{d p}{d t}=-\frac{\partial H}{\partial q}
$$

where

$$
\begin{aligned}
H & =\frac{q(q-1)(q-t)}{t(t-1)}\left\{p^{2}-\left(\frac{\alpha_{0}-1}{q-t}+\frac{\alpha_{3}}{q-1}+\frac{\alpha_{4}}{q}\right) p\right\} \\
& +\frac{(q-t) \alpha_{2}\left(\alpha_{1}+\alpha_{2}\right)}{t(t-1)} . \\
& \left(\alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}=1\right)
\end{aligned}
$$

- P_{VI} equation as IMD

$$
\begin{aligned}
L & =\partial_{x}^{2}+\left\{\frac{1-\alpha_{0}}{x-t}+\frac{1-\alpha_{3}}{x-1}+\frac{1-\alpha_{4}}{x}-\frac{1}{x-q}\right\} \partial_{x} \\
& +\frac{p(q-1) q}{(x-1) x(x-q)}+\frac{\alpha_{2}\left(\alpha_{1}+\alpha_{2}\right)}{(x-1) x}-\frac{t(t-1) H}{(x-1) x(x-t)} \\
B & =\frac{t(t-1)}{q-t} \partial_{t}+\frac{x(x-1)}{q-x} \partial_{x}+\frac{p q(q-1)}{x-q}
\end{aligned}
$$

Compatibility of $L \psi=B \psi=0$ gives the P_{VI} equation.

$$
\frac{d q}{d t}=\frac{\partial H}{\partial p}, \quad \frac{d p}{d t}=-\frac{\partial H}{\partial q} .
$$

- Classification of the 2nd order IMD

$$
\begin{aligned}
P_{\mathrm{VI}} \rightarrow P_{\mathrm{V}} & \rightarrow P_{\mathrm{III}} \\
& \rightarrow P_{\mathrm{III}}^{\prime} \rightarrow \\
& \rightarrow P_{\mathrm{III}}^{\prime \prime} \\
& P_{\mathrm{IV}}
\end{aligned} \rightarrow P_{\mathrm{II}} \rightarrow>P_{\mathrm{I}}
$$

These correspond to $S U(2)$ gauge theories/Virasoro CFT

$$
\begin{aligned}
S W_{4} \rightarrow S W_{3} & \rightarrow S W_{2} \rightarrow S W_{1} \rightarrow S W_{0} \\
\searrow & A D_{2} \rightarrow A D_{1} \rightarrow A D_{0}
\end{aligned}
$$

- After the work of Painlevé, various generalized Painlevé type equations have been constructed as IMDs.
- They are specified by the data:

Punctured Riemann surface and singularity type at each puncture

- These IMDs are expected to correspond to higher rank gauge theory and W-CFT associated with the same geometry.
- Example 1. $2 \times 2 L$-operator on \mathbb{P}^{1} with $n+3$ regular singularities

$$
L=\frac{\partial}{\partial x}-A, \quad A=\frac{A_{0}}{x}+\frac{A_{1}}{x-1}+\sum_{i=1}^{n} \frac{A_{t_{i}}}{x-t_{i}}
$$

$\rightarrow n$-Garnier system (non-autonomous deformation of Gaudin model)
$\leftrightarrow S U(2)^{\otimes n}$ quiver theory .

- Example 2. $N \times N L$-operator \mathbb{P}^{1} with 4 regular singularities

$$
L=\frac{\partial}{\partial x}-A, \quad A=\frac{A_{0}}{x}+\frac{A_{1}}{x-1}+\frac{A_{t}}{x-t}
$$

where the spectral type (=multiplicity of eigenvalues) of $A_{0}, A_{1}, A_{t}, A_{\infty}$ $\operatorname{are}\left(1^{N}\right),(1, N-1),(1, N-1),\left(1^{N}\right)$
\rightarrow IMD [Fuji-Suzuki][Tsuda] $\leftrightarrow S U(N), N_{f}=2 N$.

- Example 3. Difference analogs

$S U(2)$ case

$$
\begin{aligned}
& \text { Ell } \quad E_{8} \\
& q \quad E_{8} \rightarrow E_{7} \rightarrow E_{6} \rightarrow D_{5} \rightarrow A_{4} \rightarrow A_{2+1} \rightarrow A_{1+1} \rightarrow A_{1} \\
& { }^{d} \quad E_{8} \rightarrow E_{7} \rightarrow E_{6} \quad \rightarrow \quad D_{4} \rightarrow A_{3} \rightarrow A_{1+1} \rightarrow A_{1} \\
& A_{2} \rightarrow A_{1}
\end{aligned}
$$

The difference/ q-difference/elliptic difference cases are expected to correspond to 4d/5d/6d gauge theories.

- Duality

There may be many Lax pairs for one Painlevé type equation.

- Example 1. $S U(2)$ with $N_{f}=4$.
(1) Scalar form with five regular singular points (one is apparent)
(2) 2×2 form with four regular singular points
(3) 8×8 form with one regular singularity $x=0$ and one irregular singularity $x=\infty\left(\leftrightarrow D_{4}^{(1)}\right.$ Drinfeld-Sokolov hierarchy)
(4) $r \times r$ form $(3 \leq r \leq 7)$ are also known

These Lax pairs are related by some integral transformations.

- Example 2. $S U(2)$ with E_{6}-flavor symmetry.
(1) 2×2 difference operator [Arinkin-Borodin]

$$
\Psi(x+1)=A(x) \Psi(x), \quad A(x)=\left(\begin{array}{ll}
a(x) & b(x) \\
c(x) & d(x)
\end{array}\right)
$$

where $\operatorname{ord}(\operatorname{det} A)=6$
(2) 3×3 differential operator with 3 regular singular points [Boalch]

$$
\frac{\partial}{\partial x} \Psi(x)=\left(\frac{A_{0}}{x}+\frac{A_{1}}{x-1}\right) \Psi(x)
$$

There is no continuous deformation.

2. Quantum Lax pairs

- The Lax operators L, B in Section. 1 are differential operators in (x, ∂_{x}) depending on (q, p) variables as parameter.
- There is a natural quantization of (q, p) variables
\rightarrow Quantum Lax operators are symmetric in $\left(x, \partial_{x}\right)$ and $\left(q, \partial_{q}\right)$, and they are obtained as the BPZ equations in $2 d$ CFT.
- Quantum Lax pair for $P_{\mathrm{VI}}: \widehat{L} \Psi=\widehat{B} \Psi=0$:

$$
\begin{aligned}
\widehat{L} & =x(x-1)(x-t)\left\{\frac{\alpha_{0}^{(2)}}{x}+\frac{\alpha_{1}^{(2)}}{x-1}+\frac{\alpha_{t}^{(2)}}{x-t}-\frac{\epsilon_{1}-\epsilon_{2}}{x-q}\right\} \epsilon_{1} \partial_{x} \\
& -q(q-1)(q-t)\left\{\frac{\alpha_{0}^{(1)}}{q}+\frac{\alpha_{1}^{(1)}}{q-1}+\frac{\alpha_{t}^{(1)}}{q-t}-\frac{\epsilon_{2}-\epsilon_{1}}{q-x}\right\} \epsilon_{2} \partial_{q} \\
& +x(x-1)(x-t) \epsilon_{1}^{2} \partial_{x}^{2}-q(q-1)(q-t) \epsilon_{2}^{2} \partial_{q}^{2}+C(x-q), \\
\widehat{B} & =q(q-1)\left\{\frac{\left\{x_{0}^{(1)}\right.}{q}+\frac{\alpha_{1}^{(1)}}{q-1}+\frac{\alpha_{t}}{q-t}-\frac{\epsilon_{2}}{q-x}\right\} \epsilon_{2} \partial_{q} \\
& +\frac{t(t-1)}{q-t} \epsilon_{1} \epsilon_{2} \partial_{t}+\frac{x(x-1)}{q-x} \epsilon_{1} \epsilon_{2} \partial_{x}+q(q-1) \epsilon_{2}^{2} \partial_{q}{ }^{2}+C .
\end{aligned}
$$

$$
\alpha_{i}^{(j)}=\alpha_{i}-\epsilon_{j}, C=\left(3 \epsilon-\alpha_{0}-\alpha_{1}-\alpha_{t}-\alpha_{\infty}\right)\left(\epsilon-\alpha_{0}-\alpha_{1}-\alpha_{t}+\alpha_{\infty}\right) / 4,
$$

$$
\epsilon=\epsilon_{1}+\epsilon_{2} .
$$

- The operators \widehat{L}, \widehat{B} were obtained by using affine Weyl group symmetry ([Nagoya-Y]1206.5963)
- The operators \widehat{L}, \widehat{B} give the classical Lax pair L, B for $P_{\mathrm{VI}_{\mathrm{I}}}$ under the Nekrasov-Shatashvili limit:

$$
\epsilon_{2} \partial_{q} \rightarrow p . \quad\left(\epsilon_{2} \rightarrow 0\right)
$$

- Relation to CFT
- $\widehat{L} \psi=\widehat{B} \psi=0$ are the BPZ equations for 6-points block ψ on \mathbb{P}^{1} with two degenerate fields

$$
\begin{aligned}
& \psi(x, q, t)=\left\langle V_{-\epsilon_{2}}(x) V_{-\epsilon_{1}}(q) \mathcal{O}_{V_{I}}\right\rangle \\
& \mathcal{O}_{V_{\mathrm{I}}}=V_{\alpha_{0}}(0) V_{\alpha_{1}}(1) V_{\alpha_{t}}(t) V_{\alpha_{\infty}}(\infty),
\end{aligned}
$$

where $V_{\alpha}(z) \mathrm{s}$ are the Virasoro primary operators:

$$
\begin{gathered}
c=1+6 \frac{\left(\epsilon_{1}+\epsilon_{2}\right)^{2}}{\epsilon_{1} \epsilon_{2}}, \quad h(a)=\frac{a}{2 \epsilon_{1} \epsilon_{2}}\left(\epsilon_{1}+\epsilon_{2}-\frac{a}{2}\right), \\
T(z) T(w)=\frac{c / 2}{(z-w)^{4}}+\frac{2}{(z-w)^{2}} T(w)+\frac{1}{z-w} \partial_{w} T(w)+\cdots
\end{gathered}
$$

- Quantum Lax pair for P_{II} :

$$
\begin{aligned}
\widehat{L} & =\epsilon_{1}^{2} \partial_{x}^{2}-\left(t+2 x^{2}+\frac{\epsilon_{1}-\epsilon_{2}}{x-q}\right) \epsilon_{1} \partial_{x}-2 a x \\
& -\epsilon_{2}^{2} \partial_{q}^{2}+\left(t+2 q^{2}+\frac{\epsilon_{2}-\epsilon_{1}}{q-x}\right) \epsilon_{2} \partial_{q}+2 a q \\
\widehat{B} & =\frac{\epsilon_{1} \epsilon_{2}}{x-q} \partial_{x}-2 \epsilon_{1} \epsilon_{2} \partial_{t} \\
& -\epsilon_{2}^{2} \partial_{q}^{2}+\left(t+2 q^{2}+\frac{\epsilon_{2}}{q-x}\right) \epsilon_{2} \partial_{q}+2 a q
\end{aligned}
$$

These are also obtained from CFT (with Gaiotto states), and reproduce the classical Lax pair under the NS limit

$$
\epsilon_{2} \partial_{q} \rightarrow p . \quad\left(\epsilon_{2} \rightarrow 0\right)
$$

- The integral formula for special solutions $\psi(x, q, t)$:

$$
\psi=\int_{C} U\left(x, q, t,\left\{u_{i}\right\},\left\{v_{j}\right\}\right) \prod_{i=1}^{N_{u}} d u_{i} \prod_{j=1}^{N_{u}} d v_{j}
$$

where

$$
\begin{aligned}
U & =\prod_{1 \leq i<j \leq N_{u}}\left(u_{i}-u_{j}\right)^{-\frac{2 \epsilon_{1}}{\epsilon_{2}}} \prod_{1 \leq i<j \leq N_{v}}\left(v_{i}-v_{j}\right)^{-\frac{2 \epsilon_{2}}{\epsilon_{1}}} \\
& \times \prod_{i=1}^{N_{u}} \prod_{j=1}^{N_{v}}\left(u_{i}-v_{j}\right)^{-2} \prod_{i=1}^{N_{u}} F\left(u_{i}\right)^{\frac{1}{\epsilon_{1}}} \prod_{i=1}^{N_{v}} F\left(v_{i}\right)^{\frac{1}{\epsilon_{2}}}
\end{aligned}
$$

and the function $F(z)$ is given by

$$
\begin{aligned}
& F(z)=(z-x)^{\epsilon_{2}}(z-q)^{\epsilon_{1}} F_{J}(z) \text { for } P_{\jmath} \text { with } \\
& F_{\mathrm{II}}(z)
\end{aligned}=e^{\frac{2}{3} z^{3}+z t}, ~ \begin{aligned}
& a \\
& F_{\mathrm{III}}(z)=z^{\frac{t}{z}+z} \\
& F_{\mathrm{IV}}(z)=z^{a} e^{\frac{1}{4} z^{2}+t z} \\
& F_{\mathrm{V}}(z)=z^{a}(z-1)^{b} e^{-t z} \\
& F_{\mathrm{VI}}(z)=z^{\alpha_{0}}(z-1)^{\alpha_{1}}(z-t)^{\alpha_{t}}
\end{aligned}
$$

- The integral ψ solves the linear problem $\widehat{L} \psi=\widehat{B} \psi=0$ if parameters take special values related to $N_{u}, N_{v} \in \mathbb{Z}_{\geq 0}$: e.g. $\alpha_{0}+\alpha_{1}+\alpha_{t}+\alpha_{\infty}=\left(3-2 N_{u}\right) \epsilon_{1}+\left(3-2 N_{v}\right) \epsilon_{2} \quad$ for P_{VI}.
- Proofs

The free fields representation or a direct computation using the identities:

$$
\begin{aligned}
\frac{1}{\epsilon_{1} \epsilon_{2}} \widehat{L}(U) & =\sum_{i=1}^{N_{u}} \frac{\partial}{\partial u_{i}}\left(U \frac{(x-q) G_{\jmath}\left(u_{i}\right)}{\left(u_{i}-x\right)\left(u_{i}-q\right)}\right)+(u \rightarrow v), \\
\frac{1}{\epsilon_{1} \epsilon_{2}} \widehat{B}(U) & =\sum_{i=1}^{N_{u}} \frac{\partial}{\partial u_{i}}\left(U \frac{G_{\jmath}\left(u_{i}\right)}{\left(u_{i}-q\right)}\right)+(u \rightarrow v),
\end{aligned}
$$

where

$$
\begin{aligned}
& G_{\mathrm{II}}(z)=1, \quad G_{\mathrm{III}}(z)=z^{2}, \quad G_{\mathrm{IV}}(z)=z \\
& G_{\mathrm{V}}(z)=z(z-1), \quad G_{\mathrm{VI}}(z)=z(z-1)(z-t)
\end{aligned}
$$

- The construction of quantum Lax pairs and the inegral formulae can be extended to N - Garnier system :

$$
\begin{gathered}
\psi\left(x, q_{1}, \cdots, q_{N}, t\right)=\left\langle V_{-\epsilon_{2}}(x) \prod_{i=1}^{N} V_{-\epsilon_{1}}\left(q_{i}\right) \mathcal{O}_{\mathrm{VI}}\right\rangle \\
\mathcal{O}_{\mathrm{VI}}=V_{\alpha_{0}}(0) V_{\alpha_{1}}(1) V_{\alpha_{t}}(t) V_{\alpha_{\infty}}(\infty)
\end{gathered}
$$

3. Solutions through the AGT relation

- In view of the AGT relation, the Nekrasov functions should give a solution for the quantum Lax linear problems $\widehat{L} \psi=\widehat{B} \psi=0$.
- We will check $\psi=Z_{\text {cft }}=Z_{\text {Nek }}$ (up to $U(1)$ factors).
- For the quantum Lax linear problems $\widehat{L} \psi=\widehat{B} \psi=0$ for $P_{\mathrm{VI}_{\mathrm{I}}}$, there exist a power series solution of the form

$$
\begin{aligned}
& \psi(x, q, t)=x^{\frac{v}{\epsilon_{1}}} q^{\frac{v}{\epsilon_{2}}}-\frac{v\left(v+\alpha_{0}+\alpha_{t}-\epsilon\right)}{\epsilon_{1} \epsilon_{2}} \\
& Z_{\mathrm{Cft}}(x, q, t), \\
& Z_{\mathrm{Cft}}(x, q, t)=1+\cdots \in \mathbb{C}\left[\left[x, \frac{q}{x}, \frac{t}{q}\right]\right]
\end{aligned}
$$

- $Z_{\text {cft }}$ will be related to the 6 points block on \mathbb{P}^{1} with following intermediate states:

- $Z_{\text {cft }}$ is represented in terms of Nekrasov function ([AGT], [Alba-Morozov](0912.2535))
- $Z_{\text {Nek }}=Z_{\text {Nek }}\left(x, q, t ;\left\{m_{1}, m_{2}, \tilde{m}_{1}, \tilde{m}_{2}\right\},\{a, b, c\}\right)$
$a_{1,2}= \pm a, b_{1,2}= \pm b, c_{1,2}= \pm c$.

$Z_{\text {Nek }}$ is defined as a sum over the 6 partitions $U_{i}, V_{i}, W_{i}(i=1,2)$:
$Z_{\mathrm{Nek}}=\sum_{U, V, W}\left(\prod_{i, j=1}^{2} w_{i j}\right) x^{\left|U_{1}\right|+\left|U_{2}\right|}\left(\frac{q}{x}\right)^{\left|V_{1}\right|+\left|V_{2}\right|}\left(\frac{t}{q}\right)^{\left|W_{1}\right|+\left|W_{2}\right|}$.

$$
\begin{gathered}
w_{i j}=\frac{z_{f}\left(a_{i}, U_{i}, m_{j}\right) z_{b}\left(a_{i}-b_{j}+\frac{\epsilon_{1}}{2}, U_{i}, V_{j}\right) z_{b}\left(b_{i}-c_{j}+\frac{\epsilon_{2}}{2}, V_{i}, W_{j}\right) z_{f}\left(c_{i}, W_{i}, \tilde{m}_{j}\right)}{z_{b}\left(a_{i}-a_{j}, U_{i}, U_{j}\right) z_{b}\left(b_{i}-b_{j}, V_{i}, V_{j}\right) z_{b}\left(c_{i}-c_{j}, W_{i}, W_{j}\right)}, \\
z_{f}(a, Y, m)=\prod_{(i, j) \in Y}\left(a+\epsilon_{1}(i-1)+\epsilon_{2}(j-1)+m\right) \\
z_{b}(a, Y, W)=\prod_{(i, j) \in Y}\left(a+\epsilon_{1}\left(-W_{j}^{\prime}+i\right)+\epsilon_{2}\left(Y_{i}-j+1\right)\right) \\
\times \prod_{(i, j) \in W}\left(a+\epsilon_{1}\left(Y_{j}^{\prime}-i+1\right)+\epsilon_{2}\left(-W_{i}+j\right)\right) .
\end{gathered}
$$

Y^{\prime} is a dual Young diagram of Y.

- We have $Z_{\text {Nek }}=Z_{U(1)} Z_{\text {cft }}$, where

$$
\begin{gathered}
Z_{U(1)}=(1-x)^{k_{1}}(1-q)^{k_{2}}(1-t)^{k_{3}}\left(1-\frac{q}{x}\right)^{k_{4}}, \\
k_{1}=\frac{\epsilon\left(\epsilon_{1}+2 \epsilon-\alpha_{t}\right)}{\epsilon_{1} \epsilon_{2}}, \quad k_{2}=\frac{\epsilon\left(\epsilon_{2}+2 \epsilon-\alpha_{t}\right)}{\epsilon_{1} \epsilon_{2}}, \quad k_{4}=-\frac{\epsilon_{1}}{\epsilon_{2}}-2, \\
k_{3}=\frac{\alpha_{1}\left(\epsilon-\alpha_{t}\right)}{\epsilon_{1} \epsilon_{2}}, \quad m_{0}, m_{1}+m_{2}+\epsilon, m_{1}-m_{2}+2 \epsilon, \\
\left(\alpha_{0}, \alpha_{t}, \alpha_{1}, \alpha_{\infty}\right)=\left(m_{1}+\tilde{m}_{2}, \tilde{m}_{1}-\tilde{m}_{2}+\epsilon\right), \\
v-\left(0, \frac{\epsilon_{1}}{2}, \frac{\epsilon}{2}\right)=m_{2}-\epsilon-(a, b, c), \quad \epsilon=\epsilon_{1}+\epsilon_{2}
\end{gathered}
$$

- The example given above is for $N_{f}=4$ case (quantum $P_{\mathrm{VI}_{\mathrm{I}}}$) \leftrightarrow usual CFT with regular singular points.
- $N_{f}=0$ case was also checked. Hence, the gauge/CFT/Painlevé correspondence is consistent with degenerations.

Conclusion:

- Quantum gauge/CFT/Painlevé correspondence is studied.
- From this correspondence, it is expected that Nekrasov partition functions solve the quantum Lax linear problem for IMDs.
- We have checked this in $S U(2)$ case.
- Classical Lax is recovoerd by NS limit: $c \rightarrow \infty$. Relation to the work [lorgov, Lisovyy, Teschner, ...] (conformal bock at $c=$ 1 gives the τ-function of classical Painlevé equation) will be an interesting problem.

Thank you!

