関西相対論・宇宙論合同セミナー

17 December 2012, Kyoto

"Studying Gravity with Quantum Optics ~ Test of Gravity at short range using Bose-Einstein Condensates ~

Kyoto University, JST

Y. Takahashi

Quantum Optics Group Members

Introduction:

quantum optics researches for studying gravity

Proposed experiment:

test of gravity at short range using Bose-Einstein condensates:

current status and prospects

Introduction:

quantum optics researches for studying gravity

Proposed experiment:

test of gravity at short range using Bose-Einstein condensates:

current status and prospects

Gravity and Quantum Optics

For gravitational wave detection: Quantum Non-Demolition Measurement (proposed by Braginsky)

[n, H_{int}]=0 (Back-action evasion)

The Nobel Prizes in Physics 2012

"for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems"

"Development of Quantum Optics"

S. Haroche

QND of photons and Quantum Feedback control

by S. Haroche

Gravity and Quantum Optics

Gravity and Quantum Optics

For gravitational wave detection: Squeezed States of Light

Important resources for Quantum information processing Teleportation of a Schrödinger cat state of light

Furusawa G (U. of Tokyo)

The Nobel Prizes in Physics 2012

"for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems"

"Development of Quantum Optics"

S. Haroche

Optical clocks and relativity D. Wineland Group, [Science 329,1630 (2010)]

$\Delta f/f : ~ 10^{-17}!$

→
$$f(Hg^+)/f(Al^+): 10^{-17}$$

 $\dot{\alpha} / \alpha = (-1.6 \pm 2.3) \times 10^{-17} / yr$

Precise measurement of g using atoms [PRL 106, 038501(2011)]

⁸⁸Sr atoms: N~ 10⁶, T~ 0.6μK, almost non-interacting

"Bloch oscillation"

1st BZ: $2\hbar k_L = F\tau_B$, $F = m_{\rm Sr}g$ $\nu_B = m_{\rm Sr}g\lambda_L/2h$

 $g_{\text{atom}} = 9.804\,923\,2(14)\,\,\text{m/s}^2$

no change up to 15 μm near surface

Probing Planck-scale physics with quantum optics

Igor Pikovski^{1,2}*, Michael R. Vanner^{1,2}, Markus Aspelmeyer^{1,2}, M. S. Kim³* and Časlav Brukner^{2,4}

Introduction: quantum optics researches for studying gravity

Proposed experiment:

test of gravity at short range using Bose-Einstein condensates:

current status and prospects

Test of the Gravitational r² Law at Short Range

Gravity at Short Range

PHYSICAL REVIEW D 77, 034020 (2008)

Neutron scattering and extra-short-range interactions

V. V. Nesvizhevsky*

Institute Laue Langevin, 6 rue Jules Horowitz, F-38042, Grenoble, France

G. Pignol[†] and K. V. Protasov[‡]

Laboratoire de Physique Subatomique et de Cosmologie, UJF-CNRS/IN2P3-INPG, 53 Av. des Martyrs, Grenoble, France (Received 14 November 2007; published 25 February 2008)

The available data on neutron scattering were reviewed to constrain a hypothetical new short-range interaction. We show that these constraints are several orders of magnitude better than those usually cited in the range between 1 pm and 5 nm. This distance range occupies an intermediate space between collider searches for strongly coupled heavy bosons and searches for new weak macroscopic forces. We emphasize the reliability of the neutron constraints insofar as they provide several independent strategies. We have identified a promising way to improve them.

DOI: 10.1103/PhysRevD.77.034020

PACS numbers: 28.20.Cz, 12.38.Qk

FIG. 1 (color online). Measured scattering lengths as a function of nucleus atomic number.

FIG. 2 (color online). This histogram shows the distribution of measured scattering lengths normalized to the radius of the nuclei. The curve corresponds to the random potential model.

"Magneto-optical Trap"

cold atomic gas at $1 \mu K$!

[M. Kitagawa, et al., PRA 77, 012719(2008)]

$$\bigvee V(r) = \frac{C_{12}}{r^{12}} - \frac{C_6}{r^6} - \frac{C_8}{r^8}$$

 $C_6 = 1931.7 E_h a_0^6$, $C_8 = 1.93 \times 10^6 E_h a_0^8$, $C_{12} = 1.03041 E_h a_0^{12}$

[M. Kitagawa, et al., PRA **77**, 012719(2008)]

 $C_6 = 1931.7 E_h a_0^6$, $C_8 = 1.93 \times 10^6 E_h a_0^8$, $C_{12} = 1.3041 E_h a_0^{12}$

@1nm

Many Advantages of Ytterbium Nice Atomic Species for this experiment !

- Heavy (N~174)
- Single Molecular Potential :No Hyperfine Structure

Contrary to Alkali Dimers

Insensitivity to magnetic field

• Many Isotopes:

¹⁶⁸Yb, ¹⁷⁰Yb, ¹⁷¹Yb, ¹⁷²Yb, ¹⁷³Yb, ¹⁷⁴Yb, ¹⁷⁶Yb

Check the mass dependence

• Ultracold Quantum Gases :

Free from thermal shift and broadening

Quantum Degenerate Gases of Yb

[Y. Takasu *et al.*, PRL **91**, 040404 (2003)] [T. Fukuhara *et al.*, PRA **76**, 051604(R)(2007)] [S. Sugawa *et al.*, PRA **84**, 011610(R)(2011)]

 Fermion
 [T. Fukuhara et al., PRL. 98, 030401 (2007)] [S. Taie et al., PRL105, 190401(2010)]

 171Yb(I=1/2) $T/T_F = 0.3$

 173Yb(I=5/2) $T/T_F = 0.14$
 30 30

Our Approach : Photo-association BEC :~1kHz ! ¹⁷⁴Yb:v=1, J=0 x10⁴ 0 00 00 6.5 Number of Atoms 0000 6.0 8 0 5.5 5.0 E_b 4.5 -10.624 -10.622 -10.620 E_{h}/h [MHz]

Evaluation of Systematic Shifts

Light Shift due to Photoassociation Laser

Light Shift due to Optical Trapping Laser

Atoms and Molecules have slightly different polarizabilities

Collision Shift due to Atom-Dimer Collision

$$\delta_{\rm MF} = 2\pi \hbar^2 \left(\frac{2a_{\rm aa}}{\mu_{\rm aa}} - \frac{a_{\rm am}}{\mu_{\rm am}} \right) n_{\rm atom}(r)$$

 a_{am} : scattering length between atom and molecule $\{V(r) + g | \psi(r) |^2\} \psi(r) = \mu \psi(r)$

Experimental Results

Level	Binding energy[MHz]
¹⁶⁸ Yb(v=2, J=0)	-195.18141(46)
¹⁶⁸ Yb(v=1, J=2)	-145.53196(48)
¹⁷⁰ Yb(v=1, J=0)	-27.70024(44)
¹⁷⁰ Yb(v=2, J=0)	-463.72552(80)
¹⁷⁰ Yb(v=3, J=0)	-1922.01467(504)
¹⁷⁰ Yb(v=1, J=2)	-3.66831(32)
¹⁷⁰ Yb(v=2, J=2)	-398.05626(46)
¹⁷⁰ Yb(v=3, J=2)	-1817.14074(80)
¹⁷⁴ Yb(v=1, J=0)	-10.62513(53)
¹⁷⁴ Yb(v=2, J=0)	-325.66378(98)
¹⁷⁴ Yb(v=3, J=0)	-1527.88543(34)
¹⁷⁴ Yb(v=1, J=2)	-268.63656(56)
¹⁷⁴ Yb(v=2, J=2)	-1432.82493(64)

13 binding energies with about 500Hz accuracy

 $\Delta f/f = 2.6 \times 10^{-7}$

Experimental Results

Level	Binding energy[MHz]	v=1	v=2	v=3
¹⁶⁸ Yb(v=2, J=0)	-195.18141(46)	-27.70024(44)	-463.72552(80)	-1922.01467(505)
¹⁶⁸ Yb(v=1, J=2)	-145.53196(48)	-27.72151	-463.78895	-1920.86562
¹⁷⁰ Yb(v=1, J=0)	-27.70024(44)	-27.22112	-463.77931	-1924.93591
¹⁷⁰ Yb(v=2, J=0)	-463.72552(80)	no	good Fit wit	h
¹⁷⁰ Yb(v=3, J=0)	-1922.01467(504)	Lenard Jones Potential		
¹⁷⁰ Yb(v=1, J=2)	-3.66831(32)			
¹⁷⁰ Yb(v=2, J=2)	-398.05626(46)	v=1	v=2	v=3
¹⁷⁰ Yb(v=3, J=2)	-1817.14074(80)	-10.62513(53)	-325.66378(98)	-1527.88543(34)
¹⁷⁴ Yb(v=1, J=0)	-10.62513(53)			
¹⁷⁴ Yb(v=2, J=0)	-325.66378(98)	-10.66637	-325.94879	-1527.87270
¹⁷⁴ Yb(v=3, J=0)	-1527.88543(34)	-10.20006	-324.59570	-1527.93747
¹⁷⁴ Yb(v=1, J=2)	-268.63656(56)	no good Fit with		th
¹⁷⁴ Yb(v=2, J=2)	-1432.82493(64)	Lena	ard Jones Pol	cential

Conventional Molecular Spectroscopy by M. Baba

Plan to do

 Determination of all molecular vibrational binding energies (N=70) with sub-kHz accuracy

Conventional Spectroscopy using molecular beam: Collaboration with Prof. Baba Resonant Ionization Spectroscopy using cold Photo-associated molecule: New construction

Determination of molecular potential energies with quantum chemical calculation

BO Correction, Nuclear Finite-size effect:	Potential Fitting:
Collaboration with Prof. Hutson,	Collaboration with Dr. P. Julienne
Dr. Abe	Dr. R. Ciulylo, M. Borkowski

Thank you very much for attention

16 August Mount Daimonji at Kyoto