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&8768"T*8B"O96:D4L)*fL"S4:4675"L37576Q84:L96"S67N*8C 
L = K(φ, X)−G3(φ, X)�φ

+G4(φ, X)R+G4X × (field derivatives)

+G5(φ, X)Gµν∇µ∇νφ

−1

6
G5X × (field derivatives)

[Horndeski (1974)] is equiva 
-lent to the Generalized  
Galileon[Deffayet+ (2011);  
Kobayashi, Yamaguchi,  
Yokoyama(2011)] 

&878*3c"LKB46*3755C"LC<<486*3"K468'6@78*9:L"K69D'34D"@C"7":9:Q64578*N*L8*3"<78846 
ds2 = −[1+2Φ(r)]dt2 + [1−2Ψ(r)]δijdx

idxj φ = φ0+ϕ(r)

i'*:8*3"&37576Qj*45D"Wk'78*9: 
X9<@*:*:S"<486*3"Wl>"7:D"^Wl>c"T4"766*N4"78"

x =
1

Λ3

ϕ�

r
, A(r) =

1

MPlΛ3

M(r)

8πr3

P (x,A) := ξA(r) +
�η
2
+ 3ξ2

�
x+ [µ+ 6αξ − 3βA(r)]x2

+
�
ν + 2α2 + 4βξ

�
x3 − 3β2x5 = 0
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x ≈ xf := − 2ξA(r)

η + 6ξ2
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Ψ�/r � Φ�/r ∝ A

A4"B7N4"8B4"U4T89:*7:"@4B7N*96`"

η = µ = ν = 0, ξ = 1, α �= 0, β �= 0
(Proxy theory of massive gravity[de Rham & Heisenberg 2011]) 

[B4"39:D*8*9:"9E"L<998B"<783B*:S"9E"8B4"8T9"L95'8*9:L`�

α < 0 or

√
β

α
≥

�
5 +

√
13

24
∼ 0.6

%&@*L7"48"75-"!e+$-!!d#r"[U"48"75-c"!#+e-e#!!/"

x ≈ x− := −

�
ξ

3β
= const.
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IV. DECOUPLING LIMIT OF MASSIVE
GRAVITY

Let us confirm that the conditions for smooth match-
ing indeed reproduce the previous result obtained in the
context of massive gravity [17, 18]. To do so, we start
with finding out the concrete form of K,G3, G4, G5 cor-
responding to the decoupling limit of massive gravity.
The correspondence can be seen more clearly if we move
to the covariantized version of the decoupling limit La-
grangian, i.e., the “proxy theory” proposed in Ref. [27].
It turns out that the proxy theory corresponds to

K = 0 = G3, G4 =
M2

Pl

2
+MPlφ+

MPl

Λ3
αX,

G5 = −3
MPl

Λ6
βX. (38)

In massive gravity, the strong coupling scale Λ is given
by Λ = (m2MPl)1/3, where m is the graviton mass.
Since the proxy theory contains the Riemann dual ten-

sor while the Lagrangian of the generalized Galileon not,
one may wonder how the former is included in the latter.
Actually, G5 ∝ X corresponds to the term containing
the Riemann dual tensor in the proxy theory. The easi-
est way to verify this is to compare the field equations of
the two theories.
From Eq. (38) one finds

η = µ = ν = 0, ξ = 1, α #= 0, β #= 0, (39)

so that the parameter space collapses to a two-
dimensional space. The inner solution x− exists only
for β > 0 and is given by x− = −1/

√
3β. Let us define

ζ :=
√
β/α. Then, the condition (31) reads

P (x−, A) =
2

3

x−
ζ2

(
1− 3

√
3ζ + 6ζ2

)
< 0. (40)

Solving the equation ∂xP (x∗, A∗) − x∗∂2
xP (x∗, A∗) = 0,

which does not in fact depend on A∗, one finds

x∗ =
1√
5

x−
|ζ|

[
1 + 2ζ2 −

(
1 + 4ζ2 − 11ζ4

)1/2]1/2
. (41)

This exists if

|ζ| ≤

√
2 +

√
15

11
& 0.73. (42)

The equation P (x,A) = 0 has three roots in (x−, 0) for
some interval of A if

P (x∗, A∗) > 0 ⇔ 0 < ζ <

√
5 +

√
13

24
& 0.6. (43)

Therefore, smooth matching of the asymptotically flat
solution and the Vainshtein solution is possible provided
that

α < 0 or

√
β

α
≥

√
5 +

√
13

24
. (44)

FIG. 1: The profile of x as a function of the radial coordi-
nate r. The curves are plotted for (α,β) = (0.5, 0.3) (dot-
ted red), (0.8, 0.34) (dot-dashed green), and (0.985, 0.375)
(dashed blue), respectively. As a halo density profile we
adopt the NFW model with Mvir = 1.34 × 1015M!/h and
cvir = 13.8.

Thus, we have confirmed that the previous result [17, 18]
is reproduced.2

V. GRAVITATIONAL LENSING IN MODIFIED
GRAVITY

In this section, we are going to relate our spherically
symmetric solution to gravitational lensing observations.
To do so, it is instructive to begin with seeing the typical
behavior of the Vainshtein solution in massive gravity,
adopting the Navarro-Frenk-White (NFW) halo density
profile [28, 29] for the source ρ(r) := −T t

t . (See Ap-
pendix B for the detailed description of halo density pro-
files.) Figures 1 and 2 show the profile of x and its deriva-
tive, respectively, as a function of the radial coordinate r
for different values of α and β. The fiducial parameters
of the NFW model we use are Mvir = 1.34× 1015 M#/h
and cvir = 13.8 , which correspond to ρs = 7.16×104 ρcr,0
and rs = 145 kpc/h, respectively. The strong coupling
scale is taken to be Λ3 = (100H0)2MPl = (46.4 km)−3.
Then, the Vainshtein radius determined from Eq. (24) is
rV = 209 kpc/h. (As the parameters characterizing the
profile we choose to use the virial cluster mass Mvir and

2 Note that our notation is different from those in [17, 18]. In
particular, αours = −αSbisa et al..

6

FIG. 2: The radial derivative of x as a function of r. Param-
eters and definitions of curves are the same as in Fig. 1.

the concentration parameter cvir rather than ρs and rs.)
One can see that x(r) can have a sharp transition from
outer to inner solutions, depending on the parameters of
the theory, which leads to a peak in x′(r). This occurs
at around the Vainshtein radius.
Having seen the typical behavior of the radial profile

x(r), we now move to investigate how the lensing sig-
nal is modified in massive gravity. We assume that the
background evolution of the universe does not deviate
much from conventional cosmology and use the ΛCDM
background with Ωm = 0.3 , ΩΛ = 0.7 , and h = 0.7.
The background metric (7) is understood to define the
physical coordinates at the location of the lens object.
The basic quantity in gravitational lensing is the con-

vergence, κ, which is expressed in terms of the sum of
the two metric potentials Φ+ := (Φ+Ψ)/2 as

κ =

∫ χS

0
dχ

(χS − χ)χ

χS
∆⊥Φ+, (45)

with χ, χS, and ∆⊥ being the comoving angular diame-
ter distance, the comoving distance between the observer
and the source, and the comoving transverse Laplacian,
respectively. Using the thin lens approximation, we can
rewrite the convergence as

κ " (χS − χL)χL

χS

∫ χS

0
dχ∆Φ+, (46)

where χL is the comoving distance between the observer
and the lens object and ∆ is the comoving three dimen-
sional Laplacian. Let us now introduce a new spatial
coordinate as Z = aL(χ − χL), whose origin is located
at the center of the lens object. The projected radius is

FIG. 3: The lensing convergence κ as a function of θ for
different values of the parameters of the theory. In these plots,
the NFW profile is used with Mvir = 1.34 × 1015 M!/h and
cvir = 13.8. Parameters and definitions of the curves are the
same as in Fig. 1. The points with the error bars represent the
observational data for the high-mass cluster A1689 provided
by Umetsu et al. [21, 30–33].

written as r⊥ = aLχLθ, where θ is the polar angle from
the axis connecting the observer and the lens object, and
aL is the scale factor at the lens object. In terms of these,
the convergence (46) can be written as

κ(θ) =
2(χS − χL)χLaL

χS

∫ ∞

0
dZ

∆

a2L
Φ+(r), (47)

where r =
√

r2⊥ + Z2. Using Eqs. (21) and (22), we find
that in Horndeski’s theory

∆

a2L
Φ+(r) =

1

r2
d

dr

[
r2Φ+(r)

]

=
Λ3

MPl

[
(
αx2 + 2βx3 + 2A

)
r3]′

2r2
. (48)

Figure 3 shows the lensing convergence for the NFW
profile with different choices of the parameters of the the-
ory. The points with the error bars indicate the observa-
tional data for the high-mass cluster A1689 provided by
Umetsu et al. [21, 30–33]. An interesting feature observed
in Fig. 3 is that a dip appears at a particular polar angle
corresponding to the Vainshtein radius. The dip is most
enhanced for the parameters near the boundary of the re-
gion in which the smooth matching is possible. Clearly,
this is caused by the sharp peak in x′(r) at the Vain-
shtein radius, as seen in Fig. 2. We see from Fig. 4 that
the peak location is certainly determined by the Vain-
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FIG. 2: The radial derivative of x as a function of r. Param-
eters and definitions of curves are the same as in Fig. 1.

the concentration parameter cvir rather than ρs and rs.)
One can see that x(r) can have a sharp transition from
outer to inner solutions, depending on the parameters of
the theory, which leads to a peak in x′(r). This occurs
at around the Vainshtein radius.
Having seen the typical behavior of the radial profile

x(r), we now move to investigate how the lensing sig-
nal is modified in massive gravity. We assume that the
background evolution of the universe does not deviate
much from conventional cosmology and use the ΛCDM
background with Ωm = 0.3 , ΩΛ = 0.7 , and h = 0.7.
The background metric (7) is understood to define the
physical coordinates at the location of the lens object.
The basic quantity in gravitational lensing is the con-

vergence, κ, which is expressed in terms of the sum of
the two metric potentials Φ+ := (Φ+Ψ)/2 as

κ =

∫ χS

0
dχ

(χS − χ)χ

χS
∆⊥Φ+, (45)

with χ, χS, and ∆⊥ being the comoving angular diame-
ter distance, the comoving distance between the observer
and the source, and the comoving transverse Laplacian,
respectively. Using the thin lens approximation, we can
rewrite the convergence as

κ " (χS − χL)χL

χS

∫ χS

0
dχ∆Φ+, (46)

where χL is the comoving distance between the observer
and the lens object and ∆ is the comoving three dimen-
sional Laplacian. Let us now introduce a new spatial
coordinate as Z = aL(χ − χL), whose origin is located
at the center of the lens object. The projected radius is

FIG. 3: The lensing convergence κ as a function of θ for
different values of the parameters of the theory. In these plots,
the NFW profile is used with Mvir = 1.34 × 1015 M!/h and
cvir = 13.8. Parameters and definitions of the curves are the
same as in Fig. 1. The points with the error bars represent the
observational data for the high-mass cluster A1689 provided
by Umetsu et al. [21, 30–33].

written as r⊥ = aLχLθ, where θ is the polar angle from
the axis connecting the observer and the lens object, and
aL is the scale factor at the lens object. In terms of these,
the convergence (46) can be written as

κ(θ) =
2(χS − χL)χLaL

χS

∫ ∞

0
dZ

∆

a2L
Φ+(r), (47)

where r =
√

r2⊥ + Z2. Using Eqs. (21) and (22), we find
that in Horndeski’s theory

∆

a2L
Φ+(r) =

1

r2
d

dr

[
r2Φ+(r)

]

=
Λ3

MPl

[
(
αx2 + 2βx3 + 2A

)
r3]′

2r2
. (48)

Figure 3 shows the lensing convergence for the NFW
profile with different choices of the parameters of the the-
ory. The points with the error bars indicate the observa-
tional data for the high-mass cluster A1689 provided by
Umetsu et al. [21, 30–33]. An interesting feature observed
in Fig. 3 is that a dip appears at a particular polar angle
corresponding to the Vainshtein radius. The dip is most
enhanced for the parameters near the boundary of the re-
gion in which the smooth matching is possible. Clearly,
this is caused by the sharp peak in x′(r) at the Vain-
shtein radius, as seen in Fig. 2. We see from Fig. 4 that
the peak location is certainly determined by the Vain-
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FIG. 2: The radial derivative of x as a function of r. Param-
eters and definitions of curves are the same as in Fig. 1.

the concentration parameter cvir rather than ρs and rs.)
One can see that x(r) can have a sharp transition from
outer to inner solutions, depending on the parameters of
the theory, which leads to a peak in x′(r). This occurs
at around the Vainshtein radius.
Having seen the typical behavior of the radial profile

x(r), we now move to investigate how the lensing sig-
nal is modified in massive gravity. We assume that the
background evolution of the universe does not deviate
much from conventional cosmology and use the ΛCDM
background with Ωm = 0.3 , ΩΛ = 0.7 , and h = 0.7.
The background metric (7) is understood to define the
physical coordinates at the location of the lens object.
The basic quantity in gravitational lensing is the con-

vergence, κ, which is expressed in terms of the sum of
the two metric potentials Φ+ := (Φ+Ψ)/2 as

κ =

∫ χS

0
dχ

(χS − χ)χ

χS
∆⊥Φ+, (45)

with χ, χS, and ∆⊥ being the comoving angular diame-
ter distance, the comoving distance between the observer
and the source, and the comoving transverse Laplacian,
respectively. Using the thin lens approximation, we can
rewrite the convergence as

κ " (χS − χL)χL

χS

∫ χS

0
dχ∆Φ+, (46)

where χL is the comoving distance between the observer
and the lens object and ∆ is the comoving three dimen-
sional Laplacian. Let us now introduce a new spatial
coordinate as Z = aL(χ − χL), whose origin is located
at the center of the lens object. The projected radius is

FIG. 3: The lensing convergence κ as a function of θ for
different values of the parameters of the theory. In these plots,
the NFW profile is used with Mvir = 1.34 × 1015 M!/h and
cvir = 13.8. Parameters and definitions of the curves are the
same as in Fig. 1. The points with the error bars represent the
observational data for the high-mass cluster A1689 provided
by Umetsu et al. [21, 30–33].

written as r⊥ = aLχLθ, where θ is the polar angle from
the axis connecting the observer and the lens object, and
aL is the scale factor at the lens object. In terms of these,
the convergence (46) can be written as

κ(θ) =
2(χS − χL)χLaL

χS

∫ ∞

0
dZ

∆

a2L
Φ+(r), (47)

where r =
√

r2⊥ + Z2. Using Eqs. (21) and (22), we find
that in Horndeski’s theory

∆

a2L
Φ+(r) =

1

r2
d

dr

[
r2Φ+(r)

]

=
Λ3

MPl

[
(
αx2 + 2βx3 + 2A

)
r3]′

2r2
. (48)

Figure 3 shows the lensing convergence for the NFW
profile with different choices of the parameters of the the-
ory. The points with the error bars indicate the observa-
tional data for the high-mass cluster A1689 provided by
Umetsu et al. [21, 30–33]. An interesting feature observed
in Fig. 3 is that a dip appears at a particular polar angle
corresponding to the Vainshtein radius. The dip is most
enhanced for the parameters near the boundary of the re-
gion in which the smooth matching is possible. Clearly,
this is caused by the sharp peak in x′(r) at the Vain-
shtein radius, as seen in Fig. 2. We see from Fig. 4 that
the peak location is certainly determined by the Vain-
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The Confrontation between General Relativity and Experiment 43

Parameter Effect Limit Remarks

γ − 1 time delay 2.3× 10−5 Cassini tracking
light deflection 4× 10−4 VLBI

β − 1 perihelion shift 3× 10−3 J2 = 10−7 from helioseismology
Nordtvedt effect 2.3× 10−4 ηN = 4β − γ − 3 assumed

ξ Earth tides 10−3 gravimeter data
α1 orbital polarization 10−4 Lunar laser ranging

2× 10−4 PSR J2317+1439
α2 spin precession 4× 10−7 solar alignment with ecliptic
α3 pulsar acceleration 4× 10−20 pulsar Ṗ statistics
ηN Nordtvedt effect 9× 10−4 lunar laser ranging
ζ1 — 2× 10−2 combined PPN bounds
ζ2 binary acceleration 4× 10−5 P̈p for PSR 1913+16
ζ3 Newton’s 3rd law 10−8 lunar acceleration
ζ4 — — not independent (see Equation (58))

Table 4: Current limits on the PPN parameters. Here ηN is a combination of other parameters

given by ηN = 4β − γ − 3− 10ξ/3− α1 + 2α2/3− 2ζ1/3− ζ2/3.

advance in the perihelion of Mercury. The modern value for this discrepancy is 43 arcseconds
per century. A number of ad hoc proposals were made in an attempt to account for this excess,
including, among others, the existence of a new planet Vulcan near the Sun, a ring of planetoids,
a solar quadrupole moment and a deviation from the inverse-square law of gravitation, but none
was successful. General relativity accounted for the anomalous shift in a natural way without
disturbing the agreement with other planetary observations.

The predicted advance per orbit ∆ω̃, including both relativistic PPN contributions and the
Newtonian contribution resulting from a possible solar quadrupole moment, is given by

∆ω̃ =
6πm

p

�
1
3
(2 + 2γ − β) +

1
6
(2α1 − α2 + α3 + 2ζ2)

µ

m
+

J2R2

2mp

�
, (51)

where m ≡ m1 + m2 and µ ≡ m1m2/m are the total mass and reduced mass of the two-body
system respectively; p ≡ a(1− e2) is the semi-latus rectum of the orbit, with the semi-major axis a
and the eccentricity e; R is the mean radius of the oblate body; and J2 is a dimensionless measure
of its quadrupole moment, given by J2 = (C − A)/m1R2, where C and A are the moments of
inertia about the body’s rotation and equatorial axes, respectively (for details of the derivation see
TEGP 7.3 [281]). We have ignored preferred-frame and galaxy-induced contributions to ∆ω̃; these
are discussed in TEGP 8.3 [281].

The first term in Equation (51) is the classical relativistic perihelion shift, which depends upon
the PPN parameters γ and β. The second term depends upon the ratio of the masses of the two
bodies; it is zero in any fully conservative theory of gravity (α1 ≡ α2 ≡ α3 ≡ ζ2 ≡ 0); it is also
negligible for Mercury, since µ/m ≈ mMerc/M⊙ ≈ 2× 10−7. We shall drop this term henceforth.

The third term depends upon the solar quadrupole moment J2. For a Sun that rotates uni-
formly with its observed surface angular velocity, so that the quadrupole moment is produced by
centrifugal flattening, one may estimate J2 to be ∼ 1× 10−7. This actually agrees reasonably well
with values inferred from rotating solar models that are in accord with observations of the nor-
mal modes of solar oscillations (helioseismology); the latest inversions of helioseismology data give
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28 Weisberg and Taylor

Figure 1. Orbital decay of PSR B1913+16. The data points indicate the
observed change in the epoch of periastron with date while the parabola il-
lustrates the theoretically expected change in epoch for a system emitting
gravitational radiation, according to general relativity.
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∇µT (mass)
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2

with ξ ≡ ã/a. The Friedmann equation for the hidden
metric reads as follows

3

c̃2a2

� ˙̃a

ã

�2

=
m2

κ

�
c1
ξ

+ 6c2 + 18ξc3 + 24ξ2c4

�
, (3)

Writing down the first equation in Eq. (1), we have

3Γ(ξ) [c̃aH − ( ˙̃a/ã)] = 0 ,

where Γ(ξ) ≡ c1ξ + 4c2ξ2 + 6c3ξ3. This equation can be
solved by imposing Γ(ξ) = 0 or c̃aH − ( ˙̃a/ã) = 0, which
implies the existence of two branches. In the following
we will discuss the physical branch, defined by the latter
condition, since the other branch is pathological1. Com-
bining this condition with Eqs. (2) and (3), we obtain an
algebraic equation for ξ

ρm
M2

Gm
2

=

�
c1
κξ

+

�
6c2
κ

− c0

�
+

�
18c3
κ

− 3c1

�
ξ

+

�
24c4
κ

− 6c2

�
ξ2 − 6c3ξ

3

�
. (4)

If m2 � ρm/M2
G, the r.h.s of Eq. (4) should be very

small. Denoting a value of ξ at which the right hand side
vanishes by ξc, we focus on a cosmological background
solution for which ξ asymptotes to ξc for ρm → 0. As we
can absorb the constant part of ρV (ξ) into the cosmolog-
ical constant in ρm, we also assume that ρV (ξc) = 0.

For this type of solution, we can expand ξ around ξc
at low energies. Keeping only the linear order in ξ − ξc,
Eq. (4) becomes

ξ − ξc
ξc

≈ − ρm
3m2M2

GΓc

κξ2c
1 + κξ2c

,

where Γc ≡ Γ(ξc). Substituting this relation into Eq. (2),
we recover the usual Friedmann equation as

3H2 ≈ M̃−2
G ρm ,

with the effective gravitational constant given by

M̃2
G ≡ M2

G(1 + κξ2c ) .

On using the definition of ξ, the relation c̃aH = ˙̃a/ã
implies ξ̇ = (c̃ − 1)aHξ. Substituting the differentiation
of Eq. (4) into this relation, we obtain

c̃ ≈ 1 +
κξ2c (ρm + Pm)

Γcm2M̃2
G

,

1 The degrees of freedom of the theory reduce [10]. This will lead
to a similar phenomenology observed in the original ghost-free
single-metric massive gravity, which is characterized by the pres-
ence of a scalar non-perturbative ghost [11].

at low energies, where Pm is the matter pressure density.
The above relation implies that the light cone of the hid-
den metric automatically gets closer to the physical one
as the matter energy density is diluted.
Propagation of the gravitational waves: We now

discuss the propagation of gravitational waves. We in-
troduce tensor-type perturbations as gij = a2(h+ε

+
ij +

h×ε
×
ij), and g̃ij = ã2(h̃+ε

+
ij + h̃×ε

×
ij), with tr(ε+ε+) =

1 = tr(ε×ε×), and tr(ε+ε×) = 0. The gravitational
waves propagate at the speed of light for the physical
sector, whereas at the speed c̃ ≈ 1 + O(H2/m2) for the
hidden sector. However, the physical and hidden gravi-
tons, because of the coupling through the mass term, will
oscillate from one to the other. Keeping only the lead-
ing effect of the deviation of c̃ from unity, and neglecting
the cosmic expansion effects, we write the propagation
equations as [10]

ḧ−�h+m2Γc(h− h̃) = 0, (5)

¨̃h− c̃2�h̃+
m2Γc

κξ2c
(h̃− h) = 0 , (6)

where we have omitted the +/× index. For this set of
equations, we write down the dispersion relation, assum-
ing c̃− 1 � 1 but the magnitude of

x ≡ 2(2πf)2(c̃− 1)

µ2
,

is moderate, where we have defined

µ2 ≡ λ−2
µ =

(1 + κξ2c )Γc m2

κξ2c
.

Then, for a given gravitational wave frequency f , two
eigen wave numbers are given by

k21,2 = (2πf)2 − µ2

2

�
1 + x∓

�

1 + 2x
1− κξ2c
1 + κξ2c

+ x2

�
,

and the corresponding eigen functions h1 and h2 are re-
lated to h and h̃ as

h1 = cos θg h+ sin θg
√
κξc h̃,

h2 = − sin θg h+ cos θg
√
κξc h̃,

with the mixing angle

θg =
1

2
cot−1

�
1 + κξ2c
2
√
κξc

x+
1− κξ2c
2
√
κξc

�
.

We find that µ is the graviton mass of the second mode
in the Minkowski limit (x → 0).
When we consider the propagation over a distance D,

the phase shifts, due to the modified dispersion relation
for their respective modes, are given by

δΦ1,2 = −µD
√
c̃− 1

2
√
2x

�
1 + x∓

�

1 + x2 + 2x
1− κξ2

1 + κξ2

�
.
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H
2 ≈ ρm

3(1 + κξ2c )M
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G

c̃ ≈ 1 +
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FIG. 1: |δΦ1,2| as a function of x for κξ2c = 0.2 (dotted,
black), 1 (blue) and 100 (dashed, red). Thick and thin curves
represent |δΦ1| and |δΦ2|, respectively.

Notice that this factor is symmetric under the replace-
ment x → 1/x. In the limit x → 0, the first mode
becomes massless. Although this mode also has non-
trivial dispersion relation, its magnitude of modifica-
tion tends to be suppressed. The factor µD

√
c̃− 1 =�

3(1 + κξ2c )Ω0HD becomes O(1) only after propagat-
ing over a cosmological distance unless κξ2c is extremely
large, where Ω0 is the energy fraction of the dust matter
at the present epoch. On the other hand, the remaining
factor takes the maximum value 2−1/2 − (2 + 2κξ2)−1/2

at x = 1, which is also at most O(1). In contrast to the
first mode, the phase shift of the second mode can be
significantly large when x is small or large. Here we plot
δΦ1,2 in Fig. 1 for κξ2c = 0.2, 1 and 100.

Gravitational potential around a star in the
Minkowski limit: In the above, we find that, unless
κξ2c is extremely large, a relatively small value of λµ to-
gether with the excitation of the second mode is required
for an observable magnitude of the phase shifts due to the
non-trivial dispersion relation. Here we show that in the
present bi-gravity models even with such a small value of
λµ we can easily evade the solar system constraint from
the precision measurement of gravity.

In the low energy limit, it would be natural to assume
the hierarchy, k2 � µ2 � H2. Since the limit H → 0
is smooth, the H-dependent terms in the action appear
as a positive power in H. Since such terms will not give
any dominant contribution under the assumption of the
above hierarchy, we set H = 0 from the beginning here.

Let us now consider static spherical symmetric per-
turbations for both metrics induced by non-relativistic
matter energy density ρm, which is coupled only to the
physical metric. We can write the respective perturbed
metrics as

ds2 = −eu−vdt2 + eu+v(dr2 + r2dΩ2),

ds̃2 = −ξ2ce
ũ−ṽdt2 + ξ2ce

ũ+ṽ(dr̃2 + r̃2dΩ2),

without loss of generality. Here r̃ is related to r by
r̃ = eR(r)r, and R(r) is another perturbation variable.
We adopted the parametrization such that u vanishes in
the case of general relativity. Now we write down the
equations of motion and eliminate the variables on the
hidden metric side, ũ, ṽ and R. However, doing this is
not so straightforward. In order to simplify the manipu-
lation, we truncate the perturbation equations at second
order and also neglect higher order terms in µ appropri-
ately.
When we compute the terms second order in pertur-

bation, we notice that there are terms enhanced by the
factor 1/µ2. If we scrutinize these terms, some of them
contain the factor

C ≡ d(logΓ)

d log ξ

����
ξ=ξc

.

Our assumption here is that the energy scale of the bi-
gravity theory itself is relatively high but the graviton
mass µ is suppressed by a certain mechanism. Under this
assumption, we pick up only the terms enhanced by the
factor C/µ2 from the second order terms in the equations
of motion. Then, after a little calculation, we obtain

(�− µ2)u− 3[(�u)2 − (∂i∂ju)2]

8

C̄

µ2
=

κξ2cρm

3M̃2
G

, (7)

�v + 3�u− [(�u)2 − (∂i∂ju)
2]
C̄

µ2
= − ρm

M̃2
G

, (8)

where ∂i is the differentiation with respect to the coor-
dinates r(sin θ cosφ, sin θ sinφ, cos θ) and � ≡ ∂i∂i, the
standard three dimensional Laplacian operator, and we
have defined C̄ ≡ C(1+κξ2c )/(κξ

2
c ). At this level, the ex-

pressions were recast into the form that does not assume
spherical symmetry, where there is no ambiguity.
Although we have truncated the equations at second

order for simplicity, the higher order terms will not be
suppressed once the second order terms become impor-
tant. Nevertheless, such higher order terms will not
change the following discussion as to the order of magni-
tude estimate on the correction to the Newton’s law.
First we focus on Eq. (7). Notice that non-vanishing u

is the origin of the vDVZ discontinuity [12]. This equa-
tion tells us that the Vainshtein radius [13], within which
the second term dominates the first term on the left hand
side in Eq. (7), is given by

rV = O((Crgλ
2
µ)

1/3) ,

where rg is the gravitational radius of the star. From
the above estimate, we find that the Vainshtein radius
can be made arbitrarily large even with a large gravi-
ton mass, if C is sufficiently large. Thus, the solar sys-
tem can be easily contained within the Vainshtein ra-
dius, where the second or even higher order terms on
the left hand side of Eq. (7) dominate. Then, we have

B#"F;9'$PL2)*;"EE&'$&CC2#)*;';A0bI%)"FA06'
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with ξ ≡ ã/a. The Friedmann equation for the hidden
metric reads as follows

3

c̃2a2

� ˙̃a

ã

�2

=
m2

κ

�
c1
ξ

+ 6c2 + 18ξc3 + 24ξ2c4

�
, (3)

Writing down the first equation in Eq. (1), we have

3Γ(ξ) [c̃aH − ( ˙̃a/ã)] = 0 ,

where Γ(ξ) ≡ c1ξ + 4c2ξ2 + 6c3ξ3. This equation can be
solved by imposing Γ(ξ) = 0 or c̃aH − ( ˙̃a/ã) = 0, which
implies the existence of two branches. In the following
we will discuss the physical branch, defined by the latter
condition, since the other branch is pathological1. Com-
bining this condition with Eqs. (2) and (3), we obtain an
algebraic equation for ξ

ρm
M2

Gm
2

=

�
c1
κξ

+

�
6c2
κ

− c0

�
+

�
18c3
κ

− 3c1

�
ξ

+

�
24c4
κ

− 6c2

�
ξ2 − 6c3ξ

3

�
. (4)

If m2 � ρm/M2
G, the r.h.s of Eq. (4) should be very

small. Denoting a value of ξ at which the right hand side
vanishes by ξc, we focus on a cosmological background
solution for which ξ asymptotes to ξc for ρm → 0. As we
can absorb the constant part of ρV (ξ) into the cosmolog-
ical constant in ρm, we also assume that ρV (ξc) = 0.

For this type of solution, we can expand ξ around ξc
at low energies. Keeping only the linear order in ξ − ξc,
Eq. (4) becomes

ξ − ξc
ξc

≈ − ρm
3m2M2

GΓc

κξ2c
1 + κξ2c

,

where Γc ≡ Γ(ξc). Substituting this relation into Eq. (2),
we recover the usual Friedmann equation as

3H2 ≈ M̃−2
G ρm ,

with the effective gravitational constant given by

M̃2
G ≡ M2

G(1 + κξ2c ) .

On using the definition of ξ, the relation c̃aH = ˙̃a/ã
implies ξ̇ = (c̃ − 1)aHξ. Substituting the differentiation
of Eq. (4) into this relation, we obtain

c̃ ≈ 1 +
κξ2c (ρm + Pm)

Γcm2M̃2
G

,

1 The degrees of freedom of the theory reduce [10]. This will lead
to a similar phenomenology observed in the original ghost-free
single-metric massive gravity, which is characterized by the pres-
ence of a scalar non-perturbative ghost [11].

at low energies, where Pm is the matter pressure density.
The above relation implies that the light cone of the hid-
den metric automatically gets closer to the physical one
as the matter energy density is diluted.
Propagation of the gravitational waves: We now

discuss the propagation of gravitational waves. We in-
troduce tensor-type perturbations as gij = a2(h+ε

+
ij +

h×ε
×
ij), and g̃ij = ã2(h̃+ε

+
ij + h̃×ε

×
ij), with tr(ε+ε+) =

1 = tr(ε×ε×), and tr(ε+ε×) = 0. The gravitational
waves propagate at the speed of light for the physical
sector, whereas at the speed c̃ ≈ 1 + O(H2/m2) for the
hidden sector. However, the physical and hidden gravi-
tons, because of the coupling through the mass term, will
oscillate from one to the other. Keeping only the lead-
ing effect of the deviation of c̃ from unity, and neglecting
the cosmic expansion effects, we write the propagation
equations as [10]

ḧ−�h+m2Γc(h− h̃) = 0, (5)

¨̃h− c̃2�h̃+
m2Γc

κξ2c
(h̃− h) = 0 , (6)

where we have omitted the +/× index. For this set of
equations, we write down the dispersion relation, assum-
ing c̃− 1 � 1 but the magnitude of

x ≡ 2(2πf)2(c̃− 1)

µ2
,

is moderate, where we have defined

µ2 ≡ λ−2
µ =

(1 + κξ2c )Γc m2

κξ2c
.

Then, for a given gravitational wave frequency f , two
eigen wave numbers are given by

k21,2 = (2πf)2 − µ2

2

�
1 + x∓

�

1 + 2x
1− κξ2c
1 + κξ2c

+ x2

�
,

and the corresponding eigen functions h1 and h2 are re-
lated to h and h̃ as

h1 = cos θg h+ sin θg
√
κξc h̃,

h2 = − sin θg h+ cos θg
√
κξc h̃,

with the mixing angle

θg =
1

2
cot−1

�
1 + κξ2c
2
√
κξc

x+
1− κξ2c
2
√
κξc

�
.

We find that µ is the graviton mass of the second mode
in the Minkowski limit (x → 0).
When we consider the propagation over a distance D,

the phase shifts, due to the modified dispersion relation
for their respective modes, are given by

δΦ1,2 = −µD
√
c̃− 1

2
√
2x

�
1 + x∓

�

1 + x2 + 2x
1− κξ2

1 + κξ2

�
.
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with ξ ≡ ã/a. The Friedmann equation for the hidden
metric reads as follows
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ã
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=
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κ
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c1
ξ

+ 6c2 + 18ξc3 + 24ξ2c4

�
, (3)

Writing down the first equation in Eq. (1), we have

3Γ(ξ) [c̃aH − ( ˙̃a/ã)] = 0 ,

where Γ(ξ) ≡ c1ξ + 4c2ξ2 + 6c3ξ3. This equation can be
solved by imposing Γ(ξ) = 0 or c̃aH − ( ˙̃a/ã) = 0, which
implies the existence of two branches. In the following
we will discuss the physical branch, defined by the latter
condition, since the other branch is pathological1. Com-
bining this condition with Eqs. (2) and (3), we obtain an
algebraic equation for ξ
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M2
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=
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c1
κξ

+
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6c2
κ

− c0

�
+

�
18c3
κ

− 3c1

�
ξ

+

�
24c4
κ

− 6c2

�
ξ2 − 6c3ξ

3

�
. (4)

If m2 � ρm/M2
G, the r.h.s of Eq. (4) should be very

small. Denoting a value of ξ at which the right hand side
vanishes by ξc, we focus on a cosmological background
solution for which ξ asymptotes to ξc for ρm → 0. As we
can absorb the constant part of ρV (ξ) into the cosmolog-
ical constant in ρm, we also assume that ρV (ξc) = 0.

For this type of solution, we can expand ξ around ξc
at low energies. Keeping only the linear order in ξ − ξc,
Eq. (4) becomes

ξ − ξc
ξc

≈ − ρm
3m2M2

GΓc

κξ2c
1 + κξ2c

,

where Γc ≡ Γ(ξc). Substituting this relation into Eq. (2),
we recover the usual Friedmann equation as

3H2 ≈ M̃−2
G ρm ,

with the effective gravitational constant given by

M̃2
G ≡ M2

G(1 + κξ2c ) .

On using the definition of ξ, the relation c̃aH = ˙̃a/ã
implies ξ̇ = (c̃ − 1)aHξ. Substituting the differentiation
of Eq. (4) into this relation, we obtain

c̃ ≈ 1 +
κξ2c (ρm + Pm)

Γcm2M̃2
G

,

1 The degrees of freedom of the theory reduce [10]. This will lead
to a similar phenomenology observed in the original ghost-free
single-metric massive gravity, which is characterized by the pres-
ence of a scalar non-perturbative ghost [11].

at low energies, where Pm is the matter pressure density.
The above relation implies that the light cone of the hid-
den metric automatically gets closer to the physical one
as the matter energy density is diluted.
Propagation of the gravitational waves: We now

discuss the propagation of gravitational waves. We in-
troduce tensor-type perturbations as gij = a2(h+ε

+
ij +

h×ε
×
ij), and g̃ij = ã2(h̃+ε

+
ij + h̃×ε

×
ij), with tr(ε+ε+) =

1 = tr(ε×ε×), and tr(ε+ε×) = 0. The gravitational
waves propagate at the speed of light for the physical
sector, whereas at the speed c̃ ≈ 1 + O(H2/m2) for the
hidden sector. However, the physical and hidden gravi-
tons, because of the coupling through the mass term, will
oscillate from one to the other. Keeping only the lead-
ing effect of the deviation of c̃ from unity, and neglecting
the cosmic expansion effects, we write the propagation
equations as [10]

ḧ−�h+m2Γc(h− h̃) = 0, (5)

¨̃h− c̃2�h̃+
m2Γc

κξ2c
(h̃− h) = 0 , (6)

where we have omitted the +/× index. For this set of
equations, we write down the dispersion relation, assum-
ing c̃− 1 � 1 but the magnitude of

x ≡ 2(2πf)2(c̃− 1)

µ2
,

is moderate, where we have defined

µ2 ≡ λ−2
µ =

(1 + κξ2c )Γc m2

κξ2c
.

Then, for a given gravitational wave frequency f , two
eigen wave numbers are given by

k21,2 = (2πf)2 − µ2

2

�
1 + x∓

�

1 + 2x
1− κξ2c
1 + κξ2c

+ x2

�
,

and the corresponding eigen functions h1 and h2 are re-
lated to h and h̃ as

h1 = cos θg h+ sin θg
√
κξc h̃,

h2 = − sin θg h+ cos θg
√
κξc h̃,

with the mixing angle

θg =
1

2
cot−1
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1 + κξ2c
2
√
κξc

x+
1− κξ2c
2
√
κξc

�
.

We find that µ is the graviton mass of the second mode
in the Minkowski limit (x → 0).
When we consider the propagation over a distance D,

the phase shifts, due to the modified dispersion relation
for their respective modes, are given by

δΦ1,2 = −µD
√
c̃− 1

2
√
2x
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1 + x∓
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1 + x2 + 2x
1− κξ2

1 + κξ2
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with ξ ≡ ã/a. The Friedmann equation for the hidden
metric reads as follows

3

c̃2a2

� ˙̃a

ã

�2

=
m2

κ

�
c1
ξ

+ 6c2 + 18ξc3 + 24ξ2c4

�
, (3)

Writing down the first equation in Eq. (1), we have

3Γ(ξ) [c̃aH − ( ˙̃a/ã)] = 0 ,

where Γ(ξ) ≡ c1ξ + 4c2ξ2 + 6c3ξ3. This equation can be
solved by imposing Γ(ξ) = 0 or c̃aH − ( ˙̃a/ã) = 0, which
implies the existence of two branches. In the following
we will discuss the physical branch, defined by the latter
condition, since the other branch is pathological1. Com-
bining this condition with Eqs. (2) and (3), we obtain an
algebraic equation for ξ

ρm
M2

Gm
2

=

�
c1
κξ

+

�
6c2
κ

− c0

�
+

�
18c3
κ

− 3c1

�
ξ

+

�
24c4
κ

− 6c2

�
ξ2 − 6c3ξ

3

�
. (4)

If m2 � ρm/M2
G, the r.h.s of Eq. (4) should be very

small. Denoting a value of ξ at which the right hand side
vanishes by ξc, we focus on a cosmological background
solution for which ξ asymptotes to ξc for ρm → 0. As we
can absorb the constant part of ρV (ξ) into the cosmolog-
ical constant in ρm, we also assume that ρV (ξc) = 0.

For this type of solution, we can expand ξ around ξc
at low energies. Keeping only the linear order in ξ − ξc,
Eq. (4) becomes

ξ − ξc
ξc

≈ − ρm
3m2M2

GΓc

κξ2c
1 + κξ2c

,

where Γc ≡ Γ(ξc). Substituting this relation into Eq. (2),
we recover the usual Friedmann equation as

3H2 ≈ M̃−2
G ρm ,

with the effective gravitational constant given by

M̃2
G ≡ M2

G(1 + κξ2c ) .

On using the definition of ξ, the relation c̃aH = ˙̃a/ã
implies ξ̇ = (c̃ − 1)aHξ. Substituting the differentiation
of Eq. (4) into this relation, we obtain

c̃ ≈ 1 +
κξ2c (ρm + Pm)

Γcm2M̃2
G

,

1 The degrees of freedom of the theory reduce [10]. This will lead
to a similar phenomenology observed in the original ghost-free
single-metric massive gravity, which is characterized by the pres-
ence of a scalar non-perturbative ghost [11].

at low energies, where Pm is the matter pressure density.
The above relation implies that the light cone of the hid-
den metric automatically gets closer to the physical one
as the matter energy density is diluted.
Propagation of the gravitational waves: We now

discuss the propagation of gravitational waves. We in-
troduce tensor-type perturbations as gij = a2(h+ε

+
ij +

h×ε
×
ij), and g̃ij = ã2(h̃+ε

+
ij + h̃×ε

×
ij), with tr(ε+ε+) =

1 = tr(ε×ε×), and tr(ε+ε×) = 0. The gravitational
waves propagate at the speed of light for the physical
sector, whereas at the speed c̃ ≈ 1 + O(H2/m2) for the
hidden sector. However, the physical and hidden gravi-
tons, because of the coupling through the mass term, will
oscillate from one to the other. Keeping only the lead-
ing effect of the deviation of c̃ from unity, and neglecting
the cosmic expansion effects, we write the propagation
equations as [10]

ḧ−�h+m2Γc(h− h̃) = 0, (5)

¨̃h− c̃2�h̃+
m2Γc

κξ2c
(h̃− h) = 0 , (6)

where we have omitted the +/× index. For this set of
equations, we write down the dispersion relation, assum-
ing c̃− 1 � 1 but the magnitude of

x ≡ 2(2πf)2(c̃− 1)

µ2
,

is moderate, where we have defined

µ2 ≡ λ−2
µ =

(1 + κξ2c )Γc m2

κξ2c
.

Then, for a given gravitational wave frequency f , two
eigen wave numbers are given by

k21,2 = (2πf)2 − µ2

2

�
1 + x∓

�

1 + 2x
1− κξ2c
1 + κξ2c

+ x2

�
,

and the corresponding eigen functions h1 and h2 are re-
lated to h and h̃ as

h1 = cos θg h+ sin θg
√
κξc h̃,

h2 = − sin θg h+ cos θg
√
κξc h̃,

with the mixing angle

θg =
1

2
cot−1

�
1 + κξ2c
2
√
κξc

x+
1− κξ2c
2
√
κξc

�
.

We find that µ is the graviton mass of the second mode
in the Minkowski limit (x → 0).
When we consider the propagation over a distance D,

the phase shifts, due to the modified dispersion relation
for their respective modes, are given by

δΦ1,2 = −µD
√
c̃− 1

2
√
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1 + x2 + 2x
1− κξ2
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�
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with ξ ≡ ã/a. The Friedmann equation for the hidden
metric reads as follows

3

c̃2a2

� ˙̃a

ã

�2

=
m2

κ

�
c1
ξ

+ 6c2 + 18ξc3 + 24ξ2c4

�
, (3)

Writing down the first equation in Eq. (1), we have

3Γ(ξ) [c̃aH − ( ˙̃a/ã)] = 0 ,

where Γ(ξ) ≡ c1ξ + 4c2ξ2 + 6c3ξ3. This equation can be
solved by imposing Γ(ξ) = 0 or c̃aH − ( ˙̃a/ã) = 0, which
implies the existence of two branches. In the following
we will discuss the physical branch, defined by the latter
condition, since the other branch is pathological1. Com-
bining this condition with Eqs. (2) and (3), we obtain an
algebraic equation for ξ

ρm
M2

Gm
2
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+

�
6c2
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+

�
18c3
κ
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+
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− 6c2
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ξ2 − 6c3ξ

3

�
. (4)

If m2 � ρm/M2
G, the r.h.s of Eq. (4) should be very

small. Denoting a value of ξ at which the right hand side
vanishes by ξc, we focus on a cosmological background
solution for which ξ asymptotes to ξc for ρm → 0. As we
can absorb the constant part of ρV (ξ) into the cosmolog-
ical constant in ρm, we also assume that ρV (ξc) = 0.

For this type of solution, we can expand ξ around ξc
at low energies. Keeping only the linear order in ξ − ξc,
Eq. (4) becomes

ξ − ξc
ξc

≈ − ρm
3m2M2

GΓc

κξ2c
1 + κξ2c

,

where Γc ≡ Γ(ξc). Substituting this relation into Eq. (2),
we recover the usual Friedmann equation as

3H2 ≈ M̃−2
G ρm ,

with the effective gravitational constant given by

M̃2
G ≡ M2

G(1 + κξ2c ) .

On using the definition of ξ, the relation c̃aH = ˙̃a/ã
implies ξ̇ = (c̃ − 1)aHξ. Substituting the differentiation
of Eq. (4) into this relation, we obtain

c̃ ≈ 1 +
κξ2c (ρm + Pm)

Γcm2M̃2
G

,

1 The degrees of freedom of the theory reduce [10]. This will lead
to a similar phenomenology observed in the original ghost-free
single-metric massive gravity, which is characterized by the pres-
ence of a scalar non-perturbative ghost [11].

at low energies, where Pm is the matter pressure density.
The above relation implies that the light cone of the hid-
den metric automatically gets closer to the physical one
as the matter energy density is diluted.
Propagation of the gravitational waves: We now

discuss the propagation of gravitational waves. We in-
troduce tensor-type perturbations as gij = a2(h+ε

+
ij +

h×ε
×
ij), and g̃ij = ã2(h̃+ε

+
ij + h̃×ε

×
ij), with tr(ε+ε+) =

1 = tr(ε×ε×), and tr(ε+ε×) = 0. The gravitational
waves propagate at the speed of light for the physical
sector, whereas at the speed c̃ ≈ 1 + O(H2/m2) for the
hidden sector. However, the physical and hidden gravi-
tons, because of the coupling through the mass term, will
oscillate from one to the other. Keeping only the lead-
ing effect of the deviation of c̃ from unity, and neglecting
the cosmic expansion effects, we write the propagation
equations as [10]

ḧ−�h+m2Γc(h− h̃) = 0, (5)

¨̃h− c̃2�h̃+
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(h̃− h) = 0 , (6)

where we have omitted the +/× index. For this set of
equations, we write down the dispersion relation, assum-
ing c̃− 1 � 1 but the magnitude of

x ≡ 2(2πf)2(c̃− 1)
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,

is moderate, where we have defined

µ2 ≡ λ−2
µ =
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.

Then, for a given gravitational wave frequency f , two
eigen wave numbers are given by

k21,2 = (2πf)2 − µ2
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lated to h and h̃ as
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We find that µ is the graviton mass of the second mode
in the Minkowski limit (x → 0).
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with ξ ≡ ã/a. The Friedmann equation for the hidden
metric reads as follows
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, (3)

Writing down the first equation in Eq. (1), we have

3Γ(ξ) [c̃aH − ( ˙̃a/ã)] = 0 ,

where Γ(ξ) ≡ c1ξ + 4c2ξ2 + 6c3ξ3. This equation can be
solved by imposing Γ(ξ) = 0 or c̃aH − ( ˙̃a/ã) = 0, which
implies the existence of two branches. In the following
we will discuss the physical branch, defined by the latter
condition, since the other branch is pathological1. Com-
bining this condition with Eqs. (2) and (3), we obtain an
algebraic equation for ξ
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If m2 � ρm/M2
G, the r.h.s of Eq. (4) should be very

small. Denoting a value of ξ at which the right hand side
vanishes by ξc, we focus on a cosmological background
solution for which ξ asymptotes to ξc for ρm → 0. As we
can absorb the constant part of ρV (ξ) into the cosmolog-
ical constant in ρm, we also assume that ρV (ξc) = 0.

For this type of solution, we can expand ξ around ξc
at low energies. Keeping only the linear order in ξ − ξc,
Eq. (4) becomes

ξ − ξc
ξc

≈ − ρm
3m2M2

GΓc

κξ2c
1 + κξ2c

,

where Γc ≡ Γ(ξc). Substituting this relation into Eq. (2),
we recover the usual Friedmann equation as

3H2 ≈ M̃−2
G ρm ,

with the effective gravitational constant given by

M̃2
G ≡ M2

G(1 + κξ2c ) .

On using the definition of ξ, the relation c̃aH = ˙̃a/ã
implies ξ̇ = (c̃ − 1)aHξ. Substituting the differentiation
of Eq. (4) into this relation, we obtain

c̃ ≈ 1 +
κξ2c (ρm + Pm)

Γcm2M̃2
G

,

1 The degrees of freedom of the theory reduce [10]. This will lead
to a similar phenomenology observed in the original ghost-free
single-metric massive gravity, which is characterized by the pres-
ence of a scalar non-perturbative ghost [11].

at low energies, where Pm is the matter pressure density.
The above relation implies that the light cone of the hid-
den metric automatically gets closer to the physical one
as the matter energy density is diluted.
Propagation of the gravitational waves: We now

discuss the propagation of gravitational waves. We in-
troduce tensor-type perturbations as gij = a2(h+ε

+
ij +

h×ε
×
ij), and g̃ij = ã2(h̃+ε

+
ij + h̃×ε

×
ij), with tr(ε+ε+) =

1 = tr(ε×ε×), and tr(ε+ε×) = 0. The gravitational
waves propagate at the speed of light for the physical
sector, whereas at the speed c̃ ≈ 1 + O(H2/m2) for the
hidden sector. However, the physical and hidden gravi-
tons, because of the coupling through the mass term, will
oscillate from one to the other. Keeping only the lead-
ing effect of the deviation of c̃ from unity, and neglecting
the cosmic expansion effects, we write the propagation
equations as [10]

ḧ−�h+m2Γc(h− h̃) = 0, (5)

¨̃h− c̃2�h̃+
m2Γc

κξ2c
(h̃− h) = 0 , (6)

where we have omitted the +/× index. For this set of
equations, we write down the dispersion relation, assum-
ing c̃− 1 � 1 but the magnitude of

x ≡ 2(2πf)2(c̃− 1)

µ2
,

is moderate, where we have defined

µ2 ≡ λ−2
µ =

(1 + κξ2c )Γc m2

κξ2c
.

Then, for a given gravitational wave frequency f , two
eigen wave numbers are given by

k21,2 = (2πf)2 − µ2

2

�
1 + x∓

�

1 + 2x
1− κξ2c
1 + κξ2c

+ x2

�
,

and the corresponding eigen functions h1 and h2 are re-
lated to h and h̃ as

h1 = cos θg h+ sin θg
√
κξc h̃,

h2 = − sin θg h+ cos θg
√
κξc h̃,

with the mixing angle

θg =
1

2
cot−1

�
1 + κξ2c
2
√
κξc

x+
1− κξ2c
2
√
κξc

�
.

We find that µ is the graviton mass of the second mode
in the Minkowski limit (x → 0).
When we consider the propagation over a distance D,

the phase shifts, due to the modified dispersion relation
for their respective modes, are given by

δΦ1,2 = −µD
√
c̃− 1

2
√
2x

�
1 + x∓

�

1 + x2 + 2x
1− κξ2

1 + κξ2

�
.
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with ξ ≡ ã/a. The Friedmann equation for the hidden
metric reads as follows

3

c̃2a2

� ˙̃a

ã

�2

=
m2

κ

�
c1
ξ

+ 6c2 + 18ξc3 + 24ξ2c4

�
, (3)

Writing down the first equation in Eq. (1), we have

3Γ(ξ) [c̃aH − ( ˙̃a/ã)] = 0 ,

where Γ(ξ) ≡ c1ξ + 4c2ξ2 + 6c3ξ3. This equation can be
solved by imposing Γ(ξ) = 0 or c̃aH − ( ˙̃a/ã) = 0, which
implies the existence of two branches. In the following
we will discuss the physical branch, defined by the latter
condition, since the other branch is pathological1. Com-
bining this condition with Eqs. (2) and (3), we obtain an
algebraic equation for ξ

ρm
M2

Gm
2

=

�
c1
κξ

+

�
6c2
κ

− c0

�
+

�
18c3
κ

− 3c1

�
ξ

+

�
24c4
κ

− 6c2

�
ξ2 − 6c3ξ

3

�
. (4)

If m2 � ρm/M2
G, the r.h.s of Eq. (4) should be very

small. Denoting a value of ξ at which the right hand side
vanishes by ξc, we focus on a cosmological background
solution for which ξ asymptotes to ξc for ρm → 0. As we
can absorb the constant part of ρV (ξ) into the cosmolog-
ical constant in ρm, we also assume that ρV (ξc) = 0.

For this type of solution, we can expand ξ around ξc
at low energies. Keeping only the linear order in ξ − ξc,
Eq. (4) becomes

ξ − ξc
ξc

≈ − ρm
3m2M2

GΓc

κξ2c
1 + κξ2c

,

where Γc ≡ Γ(ξc). Substituting this relation into Eq. (2),
we recover the usual Friedmann equation as

3H2 ≈ M̃−2
G ρm ,

with the effective gravitational constant given by

M̃2
G ≡ M2

G(1 + κξ2c ) .

On using the definition of ξ, the relation c̃aH = ˙̃a/ã
implies ξ̇ = (c̃ − 1)aHξ. Substituting the differentiation
of Eq. (4) into this relation, we obtain

c̃ ≈ 1 +
κξ2c (ρm + Pm)

Γcm2M̃2
G

,

1 The degrees of freedom of the theory reduce [10]. This will lead
to a similar phenomenology observed in the original ghost-free
single-metric massive gravity, which is characterized by the pres-
ence of a scalar non-perturbative ghost [11].

at low energies, where Pm is the matter pressure density.
The above relation implies that the light cone of the hid-
den metric automatically gets closer to the physical one
as the matter energy density is diluted.
Propagation of the gravitational waves: We now

discuss the propagation of gravitational waves. We in-
troduce tensor-type perturbations as gij = a2(h+ε

+
ij +

h×ε
×
ij), and g̃ij = ã2(h̃+ε

+
ij + h̃×ε

×
ij), with tr(ε+ε+) =

1 = tr(ε×ε×), and tr(ε+ε×) = 0. The gravitational
waves propagate at the speed of light for the physical
sector, whereas at the speed c̃ ≈ 1 + O(H2/m2) for the
hidden sector. However, the physical and hidden gravi-
tons, because of the coupling through the mass term, will
oscillate from one to the other. Keeping only the lead-
ing effect of the deviation of c̃ from unity, and neglecting
the cosmic expansion effects, we write the propagation
equations as [10]

ḧ−�h+m2Γc(h− h̃) = 0, (5)

¨̃h− c̃2�h̃+
m2Γc

κξ2c
(h̃− h) = 0 , (6)

where we have omitted the +/× index. For this set of
equations, we write down the dispersion relation, assum-
ing c̃− 1 � 1 but the magnitude of

x ≡ 2(2πf)2(c̃− 1)

µ2
,

is moderate, where we have defined

µ2 ≡ λ−2
µ =

(1 + κξ2c )Γc m2

κξ2c
.

Then, for a given gravitational wave frequency f , two
eigen wave numbers are given by

k21,2 = (2πf)2 − µ2

2

�
1 + x∓

�

1 + 2x
1− κξ2c
1 + κξ2c

+ x2

�
,

and the corresponding eigen functions h1 and h2 are re-
lated to h and h̃ as

h1 = cos θg h+ sin θg
√
κξc h̃,

h2 = − sin θg h+ cos θg
√
κξc h̃,

with the mixing angle

θg =
1

2
cot−1

�
1 + κξ2c
2
√
κξc

x+
1− κξ2c
2
√
κξc

�
.

We find that µ is the graviton mass of the second mode
in the Minkowski limit (x → 0).
When we consider the propagation over a distance D,

the phase shifts, due to the modified dispersion relation
for their respective modes, are given by

δΦ1,2 = −µD
√
c̃− 1

2
√
2x

�
1 + x∓

�

1 + x2 + 2x
1− κξ2

1 + κξ2

�
.
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with ξ ≡ ã/a. The Friedmann equation for the hidden
metric reads as follows

3

c̃2a2

� ˙̃a

ã

�2

=
m2

κ

�
c1
ξ

+ 6c2 + 18ξc3 + 24ξ2c4

�
, (3)

Writing down the first equation in Eq. (1), we have

3Γ(ξ) [c̃aH − ( ˙̃a/ã)] = 0 ,

where Γ(ξ) ≡ c1ξ + 4c2ξ2 + 6c3ξ3. This equation can be
solved by imposing Γ(ξ) = 0 or c̃aH − ( ˙̃a/ã) = 0, which
implies the existence of two branches. In the following
we will discuss the physical branch, defined by the latter
condition, since the other branch is pathological1. Com-
bining this condition with Eqs. (2) and (3), we obtain an
algebraic equation for ξ

ρm
M2

Gm
2

=

�
c1
κξ

+

�
6c2
κ

− c0

�
+

�
18c3
κ

− 3c1

�
ξ

+

�
24c4
κ

− 6c2

�
ξ2 − 6c3ξ

3

�
. (4)

If m2 � ρm/M2
G, the r.h.s of Eq. (4) should be very

small. Denoting a value of ξ at which the right hand side
vanishes by ξc, we focus on a cosmological background
solution for which ξ asymptotes to ξc for ρm → 0. As we
can absorb the constant part of ρV (ξ) into the cosmolog-
ical constant in ρm, we also assume that ρV (ξc) = 0.

For this type of solution, we can expand ξ around ξc
at low energies. Keeping only the linear order in ξ − ξc,
Eq. (4) becomes

ξ − ξc
ξc

≈ − ρm
3m2M2

GΓc

κξ2c
1 + κξ2c

,

where Γc ≡ Γ(ξc). Substituting this relation into Eq. (2),
we recover the usual Friedmann equation as

3H2 ≈ M̃−2
G ρm ,

with the effective gravitational constant given by

M̃2
G ≡ M2

G(1 + κξ2c ) .

On using the definition of ξ, the relation c̃aH = ˙̃a/ã
implies ξ̇ = (c̃ − 1)aHξ. Substituting the differentiation
of Eq. (4) into this relation, we obtain

c̃ ≈ 1 +
κξ2c (ρm + Pm)

Γcm2M̃2
G

,

1 The degrees of freedom of the theory reduce [10]. This will lead
to a similar phenomenology observed in the original ghost-free
single-metric massive gravity, which is characterized by the pres-
ence of a scalar non-perturbative ghost [11].

at low energies, where Pm is the matter pressure density.
The above relation implies that the light cone of the hid-
den metric automatically gets closer to the physical one
as the matter energy density is diluted.
Propagation of the gravitational waves: We now

discuss the propagation of gravitational waves. We in-
troduce tensor-type perturbations as gij = a2(h+ε

+
ij +

h×ε
×
ij), and g̃ij = ã2(h̃+ε

+
ij + h̃×ε

×
ij), with tr(ε+ε+) =

1 = tr(ε×ε×), and tr(ε+ε×) = 0. The gravitational
waves propagate at the speed of light for the physical
sector, whereas at the speed c̃ ≈ 1 + O(H2/m2) for the
hidden sector. However, the physical and hidden gravi-
tons, because of the coupling through the mass term, will
oscillate from one to the other. Keeping only the lead-
ing effect of the deviation of c̃ from unity, and neglecting
the cosmic expansion effects, we write the propagation
equations as [10]

ḧ−�h+m2Γc(h− h̃) = 0, (5)

¨̃h− c̃2�h̃+
m2Γc

κξ2c
(h̃− h) = 0 , (6)

where we have omitted the +/× index. For this set of
equations, we write down the dispersion relation, assum-
ing c̃− 1 � 1 but the magnitude of

x ≡ 2(2πf)2(c̃− 1)

µ2
,

is moderate, where we have defined

µ2 ≡ λ−2
µ =

(1 + κξ2c )Γc m2

κξ2c
.

Then, for a given gravitational wave frequency f , two
eigen wave numbers are given by

k21,2 = (2πf)2 − µ2

2

�
1 + x∓

�

1 + 2x
1− κξ2c
1 + κξ2c

+ x2

�
,

and the corresponding eigen functions h1 and h2 are re-
lated to h and h̃ as

h1 = cos θg h+ sin θg
√
κξc h̃,

h2 = − sin θg h+ cos θg
√
κξc h̃,

with the mixing angle

θg =
1

2
cot−1

�
1 + κξ2c
2
√
κξc

x+
1− κξ2c
2
√
κξc

�
.

We find that µ is the graviton mass of the second mode
in the Minkowski limit (x → 0).
When we consider the propagation over a distance D,

the phase shifts, due to the modified dispersion relation
for their respective modes, are given by

δΦ1,2 = −µD
√
c̃− 1

2
√
2x

�
1 + x∓

�

1 + x2 + 2x
1− κξ2

1 + κξ2

�
.
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u ≤ O
�
[κξ2c/(1 + κξ2c )]

�
rgr/Cλ2

µ

�
. Even if we require

u to be smaller than 10−9 in the solar system r ≈ 1013cm,
λ2
µ can be left arbitrarily small depending on the value

of C [14].
Once u is suppressed on the scale of the solar sys-

tem, Eq. (8) tells us that the equation for v does not
largely deviate from the one in the Newtonian case:
�v = −M̃−2

G ρm, and the gravitational constant is not
different from the cosmological one. In Eq. (8) the terms
second order in u are eliminated with the aid of Eq. (7) to
make the effective gravitational source for v to be mani-
fest. Solving the equation, we find that the correction to
v is at most of O(u). Notice that the mass term for v in
Eq. (8) is absent. Therefore, v does not suffer from the
Yukawa-type correction.

Hence, one can conclude that the correction to the

Newtonian potential is at most O
��

κξ2c rgr/Cλ2
µ

�
.

Namely, we can avoid the constraint from the test in
the solar system, keeping the graviton mass sufficiently
large. In the above we assumed that C is large. On the
other hand, in constructing the cosmological background
we have used the linear approximation for the deviation
from the conformal equivalence between the two metrics,
i.e. c̃−1 � 1. If we further expand the background equa-
tions in terms of c̃−1, we find terms enhanced by the fac-
tor C at second order. However, as long as Cλ2

µ < H−2,
is satisfied, we can verify that the formulæ for the back-
ground metric remain approximately valid. In the early
universe, where H is larger, the non-linear terms become
necessarily important. However, the terms second order
in ξ − ξc do not alter the effective Newton constant for
the homogeneous background cosmology.

The equations for ũ and ṽ can be obtained similarly as

ũ = − u

κξ2c
, ṽ = v +

3(1 + κξ2c )

κξ2c
u .

Once u is suppressed, i.e. if the Vainshtein mechanism
is at work, we find ṽ ≈ v, which implies that metric
perturbations on both sides are equally excited by the
matter fields.

Graviton oscillations and inverse chirp sig-
nal: Here we begin with discussing the generation of
gravitational waves. We found that the metric excita-
tions are almost conformal within the Vainshtein radius
of a star. If we consider the junction between the near-
zone metric perturbation with the far-zone metric de-
scribed as gravitational waves, both h and h̃ are excited
exactly as in the case of general relativity. This implies
that both eigen modes h1 and h2 are excited unless x = 0.
(Recall that h2 ∝ h− h̃ when x = 0.)

One may suspect that the linear approximation to the
gravitational wave perturbation equations (6) is not valid
within the Vainshtein radius. However, the effective en-
ergy momentum tensor coming from the variation of the
mass term, which gives corrections to the case of general

FIG. 2: B1,2 as a function of x for κξ2c = 0.2 (dotted, black),
1(blue) and 100(dashed, red). Thick and thin curves represent
B1 and B2, respectively.

relativity, is largely enhanced only for the terms purely
composed of u (or equivalently ũ), which behave as clouds
around localized matter sources. Namely, it just con-
tributes as the source of gravitational waves but does
not change the wave propagation. The other corrections
are suppressed as long as the amplitude of the deviation
of the metric from the case of general relativity remains
small.
Next, we analyze the gravitational waveform from in-

spirals of NS-NS binaries at a distance. For the current
bi-gravity model, our detector signal becomes a linear
combination of two components, whose relative ampli-
tudes are determined by the mixing angle θg. For sim-
plicity, we here neglect the time dependence of θg as well
as all the cosmological effects. Using the stationary phase
approximation and flux conservation, the observed signal
is given in Fourier space as

h(f) = A(f)eiΦ(f)
�
B1e

iδΦ1(f) +B2e
iδΦ2(f)

�
, (9)

where the amplitude A(f) (after angular average), B1,2

and the phase function Φ(f, g) (truncated at 1.5PN or-
der) are given by

A(f) =

�
π

30

M2

D
u−7/6,

B1 = cos θg(cos θg +
√
κξc sin θg),

B2 = sin θg(sin θg −
√
κξc cos θg),

Φ(f) ≡ 2πftc − Φc − π/4 +
3

128
y−5/3

+
5

96

�
743

336
+

11

4
η

�
η−2/5y−1 − 3π

8
η−3/5y−2/3 ,

with y ≡ πMf , the chirp mass M ≡
(m1m2)3/5/(m1 + m2)1/5 and the reduced mass ra-
tio η = m1m2/(m1 +m2)2. The first and second
terms in Eq. (9) show the contributions of h1 and h2,
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with ξ ≡ ã/a. The Friedmann equation for the hidden
metric reads as follows

3

c̃2a2

� ˙̃a

ã

�2

=
m2

κ

�
c1
ξ

+ 6c2 + 18ξc3 + 24ξ2c4

�
, (3)

Writing down the first equation in Eq. (1), we have

3Γ(ξ) [c̃aH − ( ˙̃a/ã)] = 0 ,

where Γ(ξ) ≡ c1ξ + 4c2ξ2 + 6c3ξ3. This equation can be
solved by imposing Γ(ξ) = 0 or c̃aH − ( ˙̃a/ã) = 0, which
implies the existence of two branches. In the following
we will discuss the physical branch, defined by the latter
condition, since the other branch is pathological1. Com-
bining this condition with Eqs. (2) and (3), we obtain an
algebraic equation for ξ

ρm
M2

Gm
2

=

�
c1
κξ

+

�
6c2
κ

− c0

�
+

�
18c3
κ

− 3c1

�
ξ

+

�
24c4
κ

− 6c2

�
ξ2 − 6c3ξ

3

�
. (4)

If m2 � ρm/M2
G, the r.h.s of Eq. (4) should be very

small. Denoting a value of ξ at which the right hand side
vanishes by ξc, we focus on a cosmological background
solution for which ξ asymptotes to ξc for ρm → 0. As we
can absorb the constant part of ρV (ξ) into the cosmolog-
ical constant in ρm, we also assume that ρV (ξc) = 0.

For this type of solution, we can expand ξ around ξc
at low energies. Keeping only the linear order in ξ − ξc,
Eq. (4) becomes

ξ − ξc
ξc

≈ − ρm
3m2M2

GΓc

κξ2c
1 + κξ2c

,

where Γc ≡ Γ(ξc). Substituting this relation into Eq. (2),
we recover the usual Friedmann equation as

3H2 ≈ M̃−2
G ρm ,

with the effective gravitational constant given by

M̃2
G ≡ M2

G(1 + κξ2c ) .

On using the definition of ξ, the relation c̃aH = ˙̃a/ã
implies ξ̇ = (c̃ − 1)aHξ. Substituting the differentiation
of Eq. (4) into this relation, we obtain

c̃ ≈ 1 +
κξ2c (ρm + Pm)

Γcm2M̃2
G

,

1 The degrees of freedom of the theory reduce [10]. This will lead
to a similar phenomenology observed in the original ghost-free
single-metric massive gravity, which is characterized by the pres-
ence of a scalar non-perturbative ghost [11].

at low energies, where Pm is the matter pressure density.
The above relation implies that the light cone of the hid-
den metric automatically gets closer to the physical one
as the matter energy density is diluted.
Propagation of the gravitational waves: We now

discuss the propagation of gravitational waves. We in-
troduce tensor-type perturbations as gij = a2(h+ε

+
ij +

h×ε
×
ij), and g̃ij = ã2(h̃+ε

+
ij + h̃×ε

×
ij), with tr(ε+ε+) =

1 = tr(ε×ε×), and tr(ε+ε×) = 0. The gravitational
waves propagate at the speed of light for the physical
sector, whereas at the speed c̃ ≈ 1 + O(H2/m2) for the
hidden sector. However, the physical and hidden gravi-
tons, because of the coupling through the mass term, will
oscillate from one to the other. Keeping only the lead-
ing effect of the deviation of c̃ from unity, and neglecting
the cosmic expansion effects, we write the propagation
equations as [10]

ḧ−�h+m2Γc(h− h̃) = 0, (5)

¨̃h− c̃2�h̃+
m2Γc

κξ2c
(h̃− h) = 0 , (6)

where we have omitted the +/× index. For this set of
equations, we write down the dispersion relation, assum-
ing c̃− 1 � 1 but the magnitude of

x ≡ 2(2πf)2(c̃− 1)

µ2
,

is moderate, where we have defined

µ2 ≡ λ−2
µ =

(1 + κξ2c )Γc m2

κξ2c
.

Then, for a given gravitational wave frequency f , two
eigen wave numbers are given by

k21,2 = (2πf)2 − µ2

2

�
1 + x∓

�

1 + 2x
1− κξ2c
1 + κξ2c

+ x2

�
,

and the corresponding eigen functions h1 and h2 are re-
lated to h and h̃ as

h1 = cos θg h+ sin θg
√
κξc h̃,

h2 = − sin θg h+ cos θg
√
κξc h̃,

with the mixing angle

θg =
1

2
cot−1

�
1 + κξ2c
2
√
κξc

x+
1− κξ2c
2
√
κξc

�
.

We find that µ is the graviton mass of the second mode
in the Minkowski limit (x → 0).
When we consider the propagation over a distance D,

the phase shifts, due to the modified dispersion relation
for their respective modes, are given by

δΦ1,2 = −µD
√
c̃− 1

2
√
2x

�
1 + x∓

�

1 + x2 + 2x
1− κξ2

1 + κξ2

�
.
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with ξ ≡ ã/a. The Friedmann equation for the hidden
metric reads as follows

3

c̃2a2

� ˙̃a

ã

�2

=
m2

κ

�
c1
ξ

+ 6c2 + 18ξc3 + 24ξ2c4

�
, (3)

Writing down the first equation in Eq. (1), we have

3Γ(ξ) [c̃aH − ( ˙̃a/ã)] = 0 ,

where Γ(ξ) ≡ c1ξ + 4c2ξ2 + 6c3ξ3. This equation can be
solved by imposing Γ(ξ) = 0 or c̃aH − ( ˙̃a/ã) = 0, which
implies the existence of two branches. In the following
we will discuss the physical branch, defined by the latter
condition, since the other branch is pathological1. Com-
bining this condition with Eqs. (2) and (3), we obtain an
algebraic equation for ξ

ρm
M2

Gm
2

=

�
c1
κξ

+

�
6c2
κ

− c0

�
+

�
18c3
κ

− 3c1

�
ξ

+

�
24c4
κ

− 6c2

�
ξ2 − 6c3ξ

3

�
. (4)

If m2 � ρm/M2
G, the r.h.s of Eq. (4) should be very

small. Denoting a value of ξ at which the right hand side
vanishes by ξc, we focus on a cosmological background
solution for which ξ asymptotes to ξc for ρm → 0. As we
can absorb the constant part of ρV (ξ) into the cosmolog-
ical constant in ρm, we also assume that ρV (ξc) = 0.

For this type of solution, we can expand ξ around ξc
at low energies. Keeping only the linear order in ξ − ξc,
Eq. (4) becomes

ξ − ξc
ξc

≈ − ρm
3m2M2

GΓc

κξ2c
1 + κξ2c

,

where Γc ≡ Γ(ξc). Substituting this relation into Eq. (2),
we recover the usual Friedmann equation as

3H2 ≈ M̃−2
G ρm ,

with the effective gravitational constant given by

M̃2
G ≡ M2

G(1 + κξ2c ) .

On using the definition of ξ, the relation c̃aH = ˙̃a/ã
implies ξ̇ = (c̃ − 1)aHξ. Substituting the differentiation
of Eq. (4) into this relation, we obtain

c̃ ≈ 1 +
κξ2c (ρm + Pm)

Γcm2M̃2
G

,

1 The degrees of freedom of the theory reduce [10]. This will lead
to a similar phenomenology observed in the original ghost-free
single-metric massive gravity, which is characterized by the pres-
ence of a scalar non-perturbative ghost [11].

at low energies, where Pm is the matter pressure density.
The above relation implies that the light cone of the hid-
den metric automatically gets closer to the physical one
as the matter energy density is diluted.
Propagation of the gravitational waves: We now

discuss the propagation of gravitational waves. We in-
troduce tensor-type perturbations as gij = a2(h+ε

+
ij +

h×ε
×
ij), and g̃ij = ã2(h̃+ε

+
ij + h̃×ε

×
ij), with tr(ε+ε+) =

1 = tr(ε×ε×), and tr(ε+ε×) = 0. The gravitational
waves propagate at the speed of light for the physical
sector, whereas at the speed c̃ ≈ 1 + O(H2/m2) for the
hidden sector. However, the physical and hidden gravi-
tons, because of the coupling through the mass term, will
oscillate from one to the other. Keeping only the lead-
ing effect of the deviation of c̃ from unity, and neglecting
the cosmic expansion effects, we write the propagation
equations as [10]

ḧ−�h+m2Γc(h− h̃) = 0, (5)

¨̃h− c̃2�h̃+
m2Γc

κξ2c
(h̃− h) = 0 , (6)

where we have omitted the +/× index. For this set of
equations, we write down the dispersion relation, assum-
ing c̃− 1 � 1 but the magnitude of

x ≡ 2(2πf)2(c̃− 1)

µ2
,

is moderate, where we have defined

µ2 ≡ λ−2
µ =

(1 + κξ2c )Γc m2

κξ2c
.

Then, for a given gravitational wave frequency f , two
eigen wave numbers are given by

k21,2 = (2πf)2 − µ2

2

�
1 + x∓

�

1 + 2x
1− κξ2c
1 + κξ2c

+ x2

�
,

and the corresponding eigen functions h1 and h2 are re-
lated to h and h̃ as

h1 = cos θg h+ sin θg
√
κξc h̃,

h2 = − sin θg h+ cos θg
√
κξc h̃,

with the mixing angle

θg =
1

2
cot−1

�
1 + κξ2c
2
√
κξc

x+
1− κξ2c
2
√
κξc

�
.

We find that µ is the graviton mass of the second mode
in the Minkowski limit (x → 0).
When we consider the propagation over a distance D,

the phase shifts, due to the modified dispersion relation
for their respective modes, are given by

δΦ1,2 = −µD
√
c̃− 1

2
√
2x

�
1 + x∓

�

1 + x2 + 2x
1− κξ2

1 + κξ2

�
.
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u ≤ O
�
[κξ2c/(1 + κξ2c )]

�
rgr/Cλ2

µ

�
. Even if we require

u to be smaller than 10−9 in the solar system r ≈ 1013cm,
λ2
µ can be left arbitrarily small depending on the value

of C [14].
Once u is suppressed on the scale of the solar sys-

tem, Eq. (8) tells us that the equation for v does not
largely deviate from the one in the Newtonian case:
�v = −M̃−2

G ρm, and the gravitational constant is not
different from the cosmological one. In Eq. (8) the terms
second order in u are eliminated with the aid of Eq. (7) to
make the effective gravitational source for v to be mani-
fest. Solving the equation, we find that the correction to
v is at most of O(u). Notice that the mass term for v in
Eq. (8) is absent. Therefore, v does not suffer from the
Yukawa-type correction.

Hence, one can conclude that the correction to the

Newtonian potential is at most O
��

κξ2c rgr/Cλ2
µ

�
.

Namely, we can avoid the constraint from the test in
the solar system, keeping the graviton mass sufficiently
large. In the above we assumed that C is large. On the
other hand, in constructing the cosmological background
we have used the linear approximation for the deviation
from the conformal equivalence between the two metrics,
i.e. c̃−1 � 1. If we further expand the background equa-
tions in terms of c̃−1, we find terms enhanced by the fac-
tor C at second order. However, as long as Cλ2

µ < H−2,
is satisfied, we can verify that the formulæ for the back-
ground metric remain approximately valid. In the early
universe, where H is larger, the non-linear terms become
necessarily important. However, the terms second order
in ξ − ξc do not alter the effective Newton constant for
the homogeneous background cosmology.

The equations for ũ and ṽ can be obtained similarly as

ũ = − u

κξ2c
, ṽ = v +

3(1 + κξ2c )

κξ2c
u .

Once u is suppressed, i.e. if the Vainshtein mechanism
is at work, we find ṽ ≈ v, which implies that metric
perturbations on both sides are equally excited by the
matter fields.

Graviton oscillations and inverse chirp sig-
nal: Here we begin with discussing the generation of
gravitational waves. We found that the metric excita-
tions are almost conformal within the Vainshtein radius
of a star. If we consider the junction between the near-
zone metric perturbation with the far-zone metric de-
scribed as gravitational waves, both h and h̃ are excited
exactly as in the case of general relativity. This implies
that both eigen modes h1 and h2 are excited unless x = 0.
(Recall that h2 ∝ h− h̃ when x = 0.)

One may suspect that the linear approximation to the
gravitational wave perturbation equations (6) is not valid
within the Vainshtein radius. However, the effective en-
ergy momentum tensor coming from the variation of the
mass term, which gives corrections to the case of general

FIG. 2: B1,2 as a function of x for κξ2c = 0.2 (dotted, black),
1(blue) and 100(dashed, red). Thick and thin curves represent
B1 and B2, respectively.

relativity, is largely enhanced only for the terms purely
composed of u (or equivalently ũ), which behave as clouds
around localized matter sources. Namely, it just con-
tributes as the source of gravitational waves but does
not change the wave propagation. The other corrections
are suppressed as long as the amplitude of the deviation
of the metric from the case of general relativity remains
small.
Next, we analyze the gravitational waveform from in-

spirals of NS-NS binaries at a distance. For the current
bi-gravity model, our detector signal becomes a linear
combination of two components, whose relative ampli-
tudes are determined by the mixing angle θg. For sim-
plicity, we here neglect the time dependence of θg as well
as all the cosmological effects. Using the stationary phase
approximation and flux conservation, the observed signal
is given in Fourier space as

h(f) = A(f)eiΦ(f)
�
B1e

iδΦ1(f) +B2e
iδΦ2(f)

�
, (9)

where the amplitude A(f) (after angular average), B1,2

and the phase function Φ(f, g) (truncated at 1.5PN or-
der) are given by

A(f) =

�
π

30

M2

D
u−7/6,

B1 = cos θg(cos θg +
√
κξc sin θg),

B2 = sin θg(sin θg −
√
κξc cos θg),

Φ(f) ≡ 2πftc − Φc − π/4 +
3

128
y−5/3

+
5

96

�
743

336
+

11

4
η

�
η−2/5y−1 − 3π

8
η−3/5y−2/3 ,

with y ≡ πMf , the chirp mass M ≡
(m1m2)3/5/(m1 + m2)1/5 and the reduced mass ra-
tio η = m1m2/(m1 +m2)2. The first and second
terms in Eq. (9) show the contributions of h1 and h2,

2

with ξ ≡ ã/a. The Friedmann equation for the hidden
metric reads as follows

3

c̃2a2

� ˙̃a

ã

�2

=
m2

κ

�
c1
ξ

+ 6c2 + 18ξc3 + 24ξ2c4

�
, (3)

Writing down the first equation in Eq. (1), we have

3Γ(ξ) [c̃aH − ( ˙̃a/ã)] = 0 ,

where Γ(ξ) ≡ c1ξ + 4c2ξ2 + 6c3ξ3. This equation can be
solved by imposing Γ(ξ) = 0 or c̃aH − ( ˙̃a/ã) = 0, which
implies the existence of two branches. In the following
we will discuss the physical branch, defined by the latter
condition, since the other branch is pathological1. Com-
bining this condition with Eqs. (2) and (3), we obtain an
algebraic equation for ξ

ρm
M2

Gm
2

=

�
c1
κξ

+

�
6c2
κ

− c0

�
+

�
18c3
κ

− 3c1

�
ξ

+

�
24c4
κ

− 6c2

�
ξ2 − 6c3ξ

3

�
. (4)

If m2 � ρm/M2
G, the r.h.s of Eq. (4) should be very

small. Denoting a value of ξ at which the right hand side
vanishes by ξc, we focus on a cosmological background
solution for which ξ asymptotes to ξc for ρm → 0. As we
can absorb the constant part of ρV (ξ) into the cosmolog-
ical constant in ρm, we also assume that ρV (ξc) = 0.

For this type of solution, we can expand ξ around ξc
at low energies. Keeping only the linear order in ξ − ξc,
Eq. (4) becomes

ξ − ξc
ξc

≈ − ρm
3m2M2

GΓc

κξ2c
1 + κξ2c

,

where Γc ≡ Γ(ξc). Substituting this relation into Eq. (2),
we recover the usual Friedmann equation as

3H2 ≈ M̃−2
G ρm ,

with the effective gravitational constant given by

M̃2
G ≡ M2

G(1 + κξ2c ) .

On using the definition of ξ, the relation c̃aH = ˙̃a/ã
implies ξ̇ = (c̃ − 1)aHξ. Substituting the differentiation
of Eq. (4) into this relation, we obtain

c̃ ≈ 1 +
κξ2c (ρm + Pm)

Γcm2M̃2
G

,

1 The degrees of freedom of the theory reduce [10]. This will lead
to a similar phenomenology observed in the original ghost-free
single-metric massive gravity, which is characterized by the pres-
ence of a scalar non-perturbative ghost [11].

at low energies, where Pm is the matter pressure density.
The above relation implies that the light cone of the hid-
den metric automatically gets closer to the physical one
as the matter energy density is diluted.
Propagation of the gravitational waves: We now

discuss the propagation of gravitational waves. We in-
troduce tensor-type perturbations as gij = a2(h+ε

+
ij +

h×ε
×
ij), and g̃ij = ã2(h̃+ε

+
ij + h̃×ε

×
ij), with tr(ε+ε+) =

1 = tr(ε×ε×), and tr(ε+ε×) = 0. The gravitational
waves propagate at the speed of light for the physical
sector, whereas at the speed c̃ ≈ 1 + O(H2/m2) for the
hidden sector. However, the physical and hidden gravi-
tons, because of the coupling through the mass term, will
oscillate from one to the other. Keeping only the lead-
ing effect of the deviation of c̃ from unity, and neglecting
the cosmic expansion effects, we write the propagation
equations as [10]

ḧ−�h+m2Γc(h− h̃) = 0, (5)

¨̃h− c̃2�h̃+
m2Γc

κξ2c
(h̃− h) = 0 , (6)

where we have omitted the +/× index. For this set of
equations, we write down the dispersion relation, assum-
ing c̃− 1 � 1 but the magnitude of

x ≡ 2(2πf)2(c̃− 1)

µ2
,

is moderate, where we have defined

µ2 ≡ λ−2
µ =

(1 + κξ2c )Γc m2

κξ2c
.

Then, for a given gravitational wave frequency f , two
eigen wave numbers are given by

k21,2 = (2πf)2 − µ2

2

�
1 + x∓

�

1 + 2x
1− κξ2c
1 + κξ2c

+ x2

�
,

and the corresponding eigen functions h1 and h2 are re-
lated to h and h̃ as

h1 = cos θg h+ sin θg
√
κξc h̃,

h2 = − sin θg h+ cos θg
√
κξc h̃,

with the mixing angle

θg =
1

2
cot−1

�
1 + κξ2c
2
√
κξc

x+
1− κξ2c
2
√
κξc

�
.

We find that µ is the graviton mass of the second mode
in the Minkowski limit (x → 0).
When we consider the propagation over a distance D,

the phase shifts, due to the modified dispersion relation
for their respective modes, are given by

δΦ1,2 = −µD
√
c̃− 1

2
√
2x

�
1 + x∓

�

1 + x2 + 2x
1− κξ2

1 + κξ2

�
.
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Before turning to matched filtering, we must address our
approximation of the motion and gravitational radiation
damping as being general relativistic up to corrections of
order (r/�g)2. In the radiation-reaction formula Eq. �3.7�, we
included corrections to the quadrupole formula at 1.5PN or-
der, corresponding to corrections of order v3. Thus our ne-
glect of massive graviton effects amounts to assuming that
r2�g

�2v�3�1 for all systems of interest. Because v2�m/r
for circular orbits, we can rewrite this condition as
(m/�g)v�5/2�1. Since typically v�10�2 for all systems of
interest, and �g�1012 km from solar-system bounds, this
condition is easily satisfied.

IV. BOUNDS ON THE GRAVITON MASS USING
MATCHED FILTERING

A. Matched-filter analysis

To obtain a more reliable estimate of the bound that can
be placed on the graviton mass, we carry out a full matched-
filter analysis following the method outlined for compact bi-
nary inspiral by Cutler and Flanagan �23� and Finn and Cher-
noff �24�. The details here parallel those of �25�.
With a given noise spectrum Sn( f ), one defines the inner

product of signals h1 and h2 by

�h1�h2��2�
0

� h̃ 1* h̃ 2� h̃ 2* h̃ 1
Sn� f �

d f , �4.1�

where h̃ a is the Fourier transform of the waveform defined in
Eqs. �3.8a�–�3.8c� �henceforth, we drop the tilde on frequen-
cies�. The signal-to-noise ratio for a given signal h is given
by

��h��S/N�h���h�h �1/2. �4.2�

If the signal depends on a set of parameters �a which are to
be estimated by the matched filter, then the rms error in �a in
the limit of large S/N is given by

��a��Š��a���a��2‹���aa, �4.3�

where �aa is the corresponding component of the inverse of
the covariance matrix or Fisher information matrix �ab de-
fined by

�ab�� �h
��a� �h

��b� . �4.4�

The correlation coefficient between two parameters �a and
�b is

cab��ab/��aa�bb. �4.5�

We estimate the following six parameters, lnA, �c , f 0tc ,
lnM, ln�, and � , where f 0 is a frequency characteristic of
the detector, typically a ‘‘knee’’ frequency, or a frequency at
which Sn( f ) is a minimum. The corresponding partial de-
rivatives of h̃ ( f ) are

� h̃ � f �
�lnA� h̃ � f �, �4.6a�

� h̃ � f �
��c

��i h̃ � f �, �4.6b�

� h̃ � f �
� f 0tc

�2�i� f / f 0� h̃ � f �, �4.6c�

� h̃ � f �
�lnM��� 5i128u�5/3�

5i
96����u�1

�
i�
4 ��3/5u�2/3� h̃ � f �, �4.6d�

� h̃ � f �
�ln� �� 5i96������u�1

�
9i�
40 ��3/5u�2/3� h̃ � f �, �4.6e�

� h̃ � f �
��

��iu�1 h̃ � f �, �4.6f�

where �(�)�(743/336�11�/4)��2/5, and ���d�/d� .
Since we plan to derive the error in estimating � about the
nominal or a priori GR value ��0, we have set ��0 in all
the partial derivatives.
We assume that the detector noise curve can be approxi-

mated by an amplitude S0, which sets the overall scale of the
noise, and a function of the ratio f / f 0�x , which may include
additional parameters, that is Sn( f )�S0g�(x), where the
subscript � denotes a set of parameters. Then from Eqs.
�3.8a�–�3.8c� and �4.2� we find that the signal-to-noise ratio
is given by

��2Af 0
�2/3�I�7 �/S0�1/2�� 2

15
M5/6

DL
�� f 0��2/3� I�7 �

S0
� 1/2,
�4.7�

where we define the integrals

I�q ���
0

� x�q/3

g��x �
dx . �4.8�

Note that any frequency cutoffs are to be incorporated ap-
propriately into the endpoints of the integrals I(q). If we
define the coefficients Iq�I(q)/I(7), then all elements of the
covariance matrix turn out to be proportional to �2 times
linear combinations of terms of the form u0

�n/3Iq for various
integers n and q , where u0��Mf 0. This overall � depen-
dence is characteristic of the large S/N limit. As a result, the
rms errors ��a are inversely proportional to � , while the
correlation coefficients are independent of � . Defining ��
��1/2/� , viewing �� as an upper bound on � , and combin-
ing this definition with Eqs. �3.9� and �4.7� we obtain the
lower bound on �g :

�g�� 215 I�7 �

S0
� 1/4� D

�1�Z �DL
� 1/2�2/3M11/12

f 0
1/3�1/4 . �4.9�
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Before turning to matched filtering, we must address our
approximation of the motion and gravitational radiation
damping as being general relativistic up to corrections of
order (r/�g)2. In the radiation-reaction formula Eq. �3.7�, we
included corrections to the quadrupole formula at 1.5PN or-
der, corresponding to corrections of order v3. Thus our ne-
glect of massive graviton effects amounts to assuming that
r2�g

�2v�3�1 for all systems of interest. Because v2�m/r
for circular orbits, we can rewrite this condition as
(m/�g)v�5/2�1. Since typically v�10�2 for all systems of
interest, and �g�1012 km from solar-system bounds, this
condition is easily satisfied.

IV. BOUNDS ON THE GRAVITON MASS USING
MATCHED FILTERING

A. Matched-filter analysis

To obtain a more reliable estimate of the bound that can
be placed on the graviton mass, we carry out a full matched-
filter analysis following the method outlined for compact bi-
nary inspiral by Cutler and Flanagan �23� and Finn and Cher-
noff �24�. The details here parallel those of �25�.
With a given noise spectrum Sn( f ), one defines the inner

product of signals h1 and h2 by

�h1�h2��2�
0

� h̃ 1* h̃ 2� h̃ 2* h̃ 1
Sn� f �

d f , �4.1�

where h̃ a is the Fourier transform of the waveform defined in
Eqs. �3.8a�–�3.8c� �henceforth, we drop the tilde on frequen-
cies�. The signal-to-noise ratio for a given signal h is given
by

��h��S/N�h���h�h �1/2. �4.2�

If the signal depends on a set of parameters �a which are to
be estimated by the matched filter, then the rms error in �a in
the limit of large S/N is given by

��a��Š��a���a��2‹���aa, �4.3�

where �aa is the corresponding component of the inverse of
the covariance matrix or Fisher information matrix �ab de-
fined by

�ab�� �h
��a� �h

��b� . �4.4�

The correlation coefficient between two parameters �a and
�b is

cab��ab/��aa�bb. �4.5�

We estimate the following six parameters, lnA, �c , f 0tc ,
lnM, ln�, and � , where f 0 is a frequency characteristic of
the detector, typically a ‘‘knee’’ frequency, or a frequency at
which Sn( f ) is a minimum. The corresponding partial de-
rivatives of h̃ ( f ) are

� h̃ � f �
�lnA� h̃ � f �, �4.6a�

� h̃ � f �
��c

��i h̃ � f �, �4.6b�

� h̃ � f �
� f 0tc

�2�i� f / f 0� h̃ � f �, �4.6c�

� h̃ � f �
�lnM��� 5i128u�5/3�

5i
96����u�1

�
i�
4 ��3/5u�2/3� h̃ � f �, �4.6d�

� h̃ � f �
�ln� �� 5i96������u�1

�
9i�
40 ��3/5u�2/3� h̃ � f �, �4.6e�

� h̃ � f �
��

��iu�1 h̃ � f �, �4.6f�

where �(�)�(743/336�11�/4)��2/5, and ���d�/d� .
Since we plan to derive the error in estimating � about the
nominal or a priori GR value ��0, we have set ��0 in all
the partial derivatives.
We assume that the detector noise curve can be approxi-

mated by an amplitude S0, which sets the overall scale of the
noise, and a function of the ratio f / f 0�x , which may include
additional parameters, that is Sn( f )�S0g�(x), where the
subscript � denotes a set of parameters. Then from Eqs.
�3.8a�–�3.8c� and �4.2� we find that the signal-to-noise ratio
is given by

��2Af 0
�2/3�I�7 �/S0�1/2�� 2

15
M5/6

DL
�� f 0��2/3� I�7 �

S0
� 1/2,
�4.7�

where we define the integrals

I�q ���
0

� x�q/3

g��x �
dx . �4.8�

Note that any frequency cutoffs are to be incorporated ap-
propriately into the endpoints of the integrals I(q). If we
define the coefficients Iq�I(q)/I(7), then all elements of the
covariance matrix turn out to be proportional to �2 times
linear combinations of terms of the form u0

�n/3Iq for various
integers n and q , where u0��Mf 0. This overall � depen-
dence is characteristic of the large S/N limit. As a result, the
rms errors ��a are inversely proportional to � , while the
correlation coefficients are independent of � . Defining ��
��1/2/� , viewing �� as an upper bound on � , and combin-
ing this definition with Eqs. �3.9� and �4.7� we obtain the
lower bound on �g :

�g�� 215 I�7 �

S0
� 1/4� D

�1�Z �DL
� 1/2�2/3M11/12

f 0
1/3�1/4 . �4.9�

57 2065BOUNDING THE MASS OF THE GRAVITON USING . . .

Before turning to matched filtering, we must address our
approximation of the motion and gravitational radiation
damping as being general relativistic up to corrections of
order (r/�g)2. In the radiation-reaction formula Eq. �3.7�, we
included corrections to the quadrupole formula at 1.5PN or-
der, corresponding to corrections of order v3. Thus our ne-
glect of massive graviton effects amounts to assuming that
r2�g

�2v�3�1 for all systems of interest. Because v2�m/r
for circular orbits, we can rewrite this condition as
(m/�g)v�5/2�1. Since typically v�10�2 for all systems of
interest, and �g�1012 km from solar-system bounds, this
condition is easily satisfied.

IV. BOUNDS ON THE GRAVITON MASS USING
MATCHED FILTERING

A. Matched-filter analysis

To obtain a more reliable estimate of the bound that can
be placed on the graviton mass, we carry out a full matched-
filter analysis following the method outlined for compact bi-
nary inspiral by Cutler and Flanagan �23� and Finn and Cher-
noff �24�. The details here parallel those of �25�.
With a given noise spectrum Sn( f ), one defines the inner

product of signals h1 and h2 by
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Sn� f �

d f , �4.1�

where h̃ a is the Fourier transform of the waveform defined in
Eqs. �3.8a�–�3.8c� �henceforth, we drop the tilde on frequen-
cies�. The signal-to-noise ratio for a given signal h is given
by
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If the signal depends on a set of parameters �a which are to
be estimated by the matched filter, then the rms error in �a in
the limit of large S/N is given by
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where �aa is the corresponding component of the inverse of
the covariance matrix or Fisher information matrix �ab de-
fined by
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The correlation coefficient between two parameters �a and
�b is
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We estimate the following six parameters, lnA, �c , f 0tc ,
lnM, ln�, and � , where f 0 is a frequency characteristic of
the detector, typically a ‘‘knee’’ frequency, or a frequency at
which Sn( f ) is a minimum. The corresponding partial de-
rivatives of h̃ ( f ) are
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where �(�)�(743/336�11�/4)��2/5, and ���d�/d� .
Since we plan to derive the error in estimating � about the
nominal or a priori GR value ��0, we have set ��0 in all
the partial derivatives.
We assume that the detector noise curve can be approxi-

mated by an amplitude S0, which sets the overall scale of the
noise, and a function of the ratio f / f 0�x , which may include
additional parameters, that is Sn( f )�S0g�(x), where the
subscript � denotes a set of parameters. Then from Eqs.
�3.8a�–�3.8c� and �4.2� we find that the signal-to-noise ratio
is given by
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where we define the integrals
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0
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Note that any frequency cutoffs are to be incorporated ap-
propriately into the endpoints of the integrals I(q). If we
define the coefficients Iq�I(q)/I(7), then all elements of the
covariance matrix turn out to be proportional to �2 times
linear combinations of terms of the form u0

�n/3Iq for various
integers n and q , where u0��Mf 0. This overall � depen-
dence is characteristic of the large S/N limit. As a result, the
rms errors ��a are inversely proportional to � , while the
correlation coefficients are independent of � . Defining ��
��1/2/� , viewing �� as an upper bound on � , and combin-
ing this definition with Eqs. �3.9� and �4.7� we obtain the
lower bound on �g :
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smaller the more averse we are to falsely claiming AG
detection, and its choice in practice should be guided by the
prior PðAGÞ. Now, for a given Othr, the efficiency E of
detection is the fraction of observations in which the under-
lying signal is AG, and O passes the threshold, so AG is
detected correctly.2 Away of understanding the strength of
a test of GR is then to choose a reasonably low F (say,
10#4) and ask how strong an AG effect and how loud a GW
signal we would need to detect AG with reasonably high E
(say, 1=2, but it turns out in practice that E rises sharply
after that).

In Ref. [25], Cornish and colleagues point out that the
odds ratio for AG over GR grows with the signal-to-noise
ratio (henceforth, SNR) of the residual obtained after the
best-fit GR waveform has been subtracted from the data;
thus, alternative models that are not fit well by varying the
GR parameters can be detected more easily than models
that are. Indeed, Cornish and colleagues show that in the
limit of large signal SNR and small AG deviations the
logarithm of the odds ratio scales as ð1# FFÞSNR2,
with FF the fitting factor [36] between the GR and AG
waveforms:

FF ð!AGÞ ¼ max
!GR

ðhGRð!GRÞ; hAGð!AGÞÞ
jhGRð!GRÞjjhAGð!AGÞj

: (2)

Here hGRð!GRÞ and hAGð!AGÞ are the GR and AG wave-
form families (so !GR % !i and !AG % !i;a), and ð&; &Þ is
the standard noise-weighted inner product, such that the
sampling probability of a Gaussian-noise realization n is
/ e#ðn;nÞ=2, and the optimal matched-filtering SNR of an
observed signal h is its norm jhj%ðh;hÞ1=2 (see, e.g., [37]).
In the FF, the parameters !AG are fixed by the AG wave-
form contained in the data, and the inner product is maxi-
mized over !GR. The FF is by definition independent of
SNR, and it tends to one when the AG corrections vanish or
can be completely reabsorbed by varying !GR.

In this paper, I formalize and generalize this scaling
statement by deriving the full expression of the odds ratio
for the AG and GR hypotheses, in the limit of large SNR;
the result is valid when AG embeds GR, which is the case
for all classes of tests discussed above3 (see Sec. II).
Moreover, I derive the decision-scheme statistics for the
resultingO, and show that the efficiency EðFÞ is a remark-
ably simple function [Eq. (19), a combination of the error

function and its inverse] of the effective signal-to-noise
ratio SNR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1# FF

p
(see Sec. III). No other information

about the waveforms is needed.
Thus, AG detection by model comparison allows us to

characterize very generally both kinds of tests discussed
above, by computing the SNR required to positively detect
an AG correction as a function of its FF. Given the sensi-
tivity curve of the detector and the projected detection rates
for a source class, we can then derive the magnitude of the
AG corrections that we expect to be able to constrain in our
observation campaigns. The FF can be computed from the
GRFishermatrix using the formulas ofRef. [38], or directly
by maximizing the normalized product (2) over !GR.
The AG-detection SNR is shown in Fig. 1 for

F ¼ 10#8–10#4, and it is a rather exacting function of
1# FF. For the typical observations produced by volume-
limited searches, which have SNRs at the event-detection
threshold ( ’ 8), only 10% AG corrections (1# FF ¼ 0:1)
would be detectable, although for most waveform families
the strong-signal approximationwould not be appropriate at
such low SNRs [39]. The required SNR grows roughly
threefold for each decade of 1# FF, to SNR * 30 for 1%
effects, SNR * 100 for one-in-a-thousand effects, and
SNR * 1; 000 for one-in-ten-thousand effects.
We can also compute easily the total volume-limited

detection rates that would yield one event strong enough
(on the median) to detect AG corrections with a given
1# FF (see Sec. III); these are shown on the right-side
vertical axis of Fig. 1. Comparison with the expected
binary-inspiral detection rates for second-generation
ground-based detectors [40] suggests that precise tests of
GR would have to wait for the much higher rates afforded
by third-generation detectors [41]. Even pooling together
the evidence from all observed events [42] may not help
much, reducing the number of required detections by a
factor of only a few, because the evidence is dominated by
the few loudest sources (see again Sec. III). By contrast,
space-based observatories such as the LISA concept [43]

FIG. 1 (color online). SNR required for AG detection with
efficiency E ¼ 1=2, with false-alarm probability F ¼ 10#4 and
10#8, as a function of FF. The right-side vertical axis shows the
number of events required in a volume-limited search with
detection threshold of 8 to yield a loudest event with the
(median) SNR on the left-side vertical axis.

2The performance of decision schemes is characterized by
their receiver operating characteristic EðFÞ [35]. Note that the
term ‘‘fraction,’’ used above in defining F and E, is ideally the
fraction of an infinite number of observations of the same GW
signal immersed in different realizations of noise. This charac-
terization of decision schemes is therefore a frequentist state-
ment (about the Bayesian statistic O), but one that this Bayesian
author finds very reasonable.

3I thank Curt Cutler for pointing out that this is true also for
the PN-coefficient tests.
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Testing general relativity with gravitational waves: A reality check
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The observations of gravitational-wave signals from astrophysical sources such as binary inspirals will

be used to test general relativity for self-consistency and against alternative theories of gravity. I describe a

simple formula that can be used to characterize the prospects of such tests, by estimating the matched-

filtering signal-to-noise ratio required to detect non-general-relativistic corrections of a given magnitude.

The formula is valid for sufficiently strong signals; it requires the computation of a single number, the

fitting factor between the general-relativistic and corrected waveform families; and it can be applied to all

tests that embed general relativity in a larger theory, including tests of individual theories such as Brans-

Dicke gravity, as well as the phenomenological schemes that introduce corrections and extra terms in the

post-Newtonian phasing expressions of inspiral waveforms. The formula suggests that the volume-limited

gravitational-wave searches performed with second-generation ground-based detectors would detect

alternative-gravity corrections to general-relativistic waveforms no smaller than 1%–10% (corresponding

to fitting factors of 0.9 to 0.99).

DOI: 10.1103/PhysRevD.86.082001 PACS numbers: 04.80.Nn, 04.25.Nx, 04.30.Db, 95.55.Ym

I. INTRODUCTION AND MAIN RESULTS

The possibility of performing high-precision tests of
general relativity (GR) in its dynamical, strong-gravity
regime [1] is perhaps the most exciting prospect of the
budding field of gravitational-wave (GW) astronomy [2].
Several authors have carried out detailed analyses of such
tests for both ground-based and space-based GW detectors
[3–25]; by and large, the tests proposed so far belong in
two classes.

In the first, GR is tested against specific alternative
theories, such as scalar-tensor or massive-graviton theo-
ries, which recover GR for particular value of one or more
additional parameters, such as the Brans-Dicke coupling
constant, or the graviton mass [3–18]. Thus, the strength of
the tests is characterized by the accuracy with which the
alternative-theory parameters can be measured and either
found to be consistent with GR, or to deviate from it.

In the second class of tests, GR is tested for self-
consistency by treating some of the coefficients in the
post-Newtonian (PN) expansion of the phasing as free
variables rather than deterministic functions of the source
parameters, and verifying whether the recovered values
are consistent with GR predictions [19–22]. The strength
of these tests is characterized by the amplitude of the
deviations from GR that could be discerned in the PN
coefficients. More general tests are possible with the
parametrized post-Einstein (ppE) formalism [23,26],
which, in addition to modifying the PN coefficients, adds
extra terms to the PN amplitude and phasing and to the
merger and ringdown waveforms, and recovers individual
alternative theories for specific forms of the extra terms.

As advocated in [24,25], GR-by-GW tests find a more
satisfying formulation in Bayesian model selection
[27,28], which compares the Bayesian evidence, given

the observed data s, for the alternative-theory/modified-
GR scenario (henceforth ‘‘AG,’’ for ‘‘alternative gravity’’)
and for the Einstein-GR hypothesis. Model selection was
applied to the PN consistency tests in Refs. [24,29,30], and
to ppE inspiral waveforms in [25]. (For a comprehensive
discussion of model selection in the context of GW detec-
tion, rather than GR tests, see also Refs. [31–34].) To wit,
in model selection we compute the Bayesian odds ratio,

O ¼ PðAGjsÞ
PðGRjsÞ ¼

PðAGÞRpðsj!i;aÞpð!i;aÞd!i;a
PðGRÞRpðsj!iÞpð!iÞd!i ; (1)

where PðAGÞ and PðGRÞ are the prior probabilities
assigned to the AG and GR hypotheses; !i and !a are the
source parameters (masses, spins, etc.) and additional AG
parameters, respectively; pðsj!Þ is the likelihood of the
observed data s given !; and pð!Þ is the prior probability
distribution for !.1 The odds ratio describes the degree to
which we should prefer one hypothesis over the other after
having observed the data, and it incorporates the Bayesian
law of parsimony (also known as Occam’s razor)—
although models with additional parameters will always
fit the data better, they will be relatively disfavored by the
improbability that more parameters assume particular
values in their prior ranges [27,28].
A cogent way of understanding the statistical signifi-

cance of odds ratios is to set up a decision scheme based on
the value of O [30,31]. Namely, we declare that we have
detected AG whenever O is greater than a set threshold
Othr. We set Othr by requiring a given false-alarm rate F:
this is the fraction of observations in which the underlying
signal is GR, but O happens to pass the threshold. F gets

1In this paper we forgo annotating probabilities with the
customary conditional dependence on ‘‘all other’’ assumptions,
usually denoted as I.
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smaller the more averse we are to falsely claiming AG
detection, and its choice in practice should be guided by the
prior PðAGÞ. Now, for a given Othr, the efficiency E of
detection is the fraction of observations in which the under-
lying signal is AG, and O passes the threshold, so AG is
detected correctly.2 Away of understanding the strength of
a test of GR is then to choose a reasonably low F (say,
10#4) and ask how strong an AG effect and how loud a GW
signal we would need to detect AG with reasonably high E
(say, 1=2, but it turns out in practice that E rises sharply
after that).

In Ref. [25], Cornish and colleagues point out that the
odds ratio for AG over GR grows with the signal-to-noise
ratio (henceforth, SNR) of the residual obtained after the
best-fit GR waveform has been subtracted from the data;
thus, alternative models that are not fit well by varying the
GR parameters can be detected more easily than models
that are. Indeed, Cornish and colleagues show that in the
limit of large signal SNR and small AG deviations the
logarithm of the odds ratio scales as ð1# FFÞSNR2,
with FF the fitting factor [36] between the GR and AG
waveforms:

FF ð!AGÞ ¼ max
!GR

ðhGRð!GRÞ; hAGð!AGÞÞ
jhGRð!GRÞjjhAGð!AGÞj

: (2)

Here hGRð!GRÞ and hAGð!AGÞ are the GR and AG wave-
form families (so !GR % !i and !AG % !i;a), and ð&; &Þ is
the standard noise-weighted inner product, such that the
sampling probability of a Gaussian-noise realization n is
/ e#ðn;nÞ=2, and the optimal matched-filtering SNR of an
observed signal h is its norm jhj%ðh;hÞ1=2 (see, e.g., [37]).
In the FF, the parameters !AG are fixed by the AG wave-
form contained in the data, and the inner product is maxi-
mized over !GR. The FF is by definition independent of
SNR, and it tends to one when the AG corrections vanish or
can be completely reabsorbed by varying !GR.

In this paper, I formalize and generalize this scaling
statement by deriving the full expression of the odds ratio
for the AG and GR hypotheses, in the limit of large SNR;
the result is valid when AG embeds GR, which is the case
for all classes of tests discussed above3 (see Sec. II).
Moreover, I derive the decision-scheme statistics for the
resultingO, and show that the efficiency EðFÞ is a remark-
ably simple function [Eq. (19), a combination of the error

function and its inverse] of the effective signal-to-noise
ratio SNR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1# FF

p
(see Sec. III). No other information

about the waveforms is needed.
Thus, AG detection by model comparison allows us to

characterize very generally both kinds of tests discussed
above, by computing the SNR required to positively detect
an AG correction as a function of its FF. Given the sensi-
tivity curve of the detector and the projected detection rates
for a source class, we can then derive the magnitude of the
AG corrections that we expect to be able to constrain in our
observation campaigns. The FF can be computed from the
GRFishermatrix using the formulas ofRef. [38], or directly
by maximizing the normalized product (2) over !GR.
The AG-detection SNR is shown in Fig. 1 for

F ¼ 10#8–10#4, and it is a rather exacting function of
1# FF. For the typical observations produced by volume-
limited searches, which have SNRs at the event-detection
threshold ( ’ 8), only 10% AG corrections (1# FF ¼ 0:1)
would be detectable, although for most waveform families
the strong-signal approximationwould not be appropriate at
such low SNRs [39]. The required SNR grows roughly
threefold for each decade of 1# FF, to SNR * 30 for 1%
effects, SNR * 100 for one-in-a-thousand effects, and
SNR * 1; 000 for one-in-ten-thousand effects.
We can also compute easily the total volume-limited

detection rates that would yield one event strong enough
(on the median) to detect AG corrections with a given
1# FF (see Sec. III); these are shown on the right-side
vertical axis of Fig. 1. Comparison with the expected
binary-inspiral detection rates for second-generation
ground-based detectors [40] suggests that precise tests of
GR would have to wait for the much higher rates afforded
by third-generation detectors [41]. Even pooling together
the evidence from all observed events [42] may not help
much, reducing the number of required detections by a
factor of only a few, because the evidence is dominated by
the few loudest sources (see again Sec. III). By contrast,
space-based observatories such as the LISA concept [43]

FIG. 1 (color online). SNR required for AG detection with
efficiency E ¼ 1=2, with false-alarm probability F ¼ 10#4 and
10#8, as a function of FF. The right-side vertical axis shows the
number of events required in a volume-limited search with
detection threshold of 8 to yield a loudest event with the
(median) SNR on the left-side vertical axis.

2The performance of decision schemes is characterized by
their receiver operating characteristic EðFÞ [35]. Note that the
term ‘‘fraction,’’ used above in defining F and E, is ideally the
fraction of an infinite number of observations of the same GW
signal immersed in different realizations of noise. This charac-
terization of decision schemes is therefore a frequentist state-
ment (about the Bayesian statistic O), but one that this Bayesian
author finds very reasonable.

3I thank Curt Cutler for pointing out that this is true also for
the PN-coefficient tests.
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smaller the more averse we are to falsely claiming AG
detection, and its choice in practice should be guided by the
prior PðAGÞ. Now, for a given Othr, the efficiency E of
detection is the fraction of observations in which the under-
lying signal is AG, and O passes the threshold, so AG is
detected correctly.2 Away of understanding the strength of
a test of GR is then to choose a reasonably low F (say,
10#4) and ask how strong an AG effect and how loud a GW
signal we would need to detect AG with reasonably high E
(say, 1=2, but it turns out in practice that E rises sharply
after that).

In Ref. [25], Cornish and colleagues point out that the
odds ratio for AG over GR grows with the signal-to-noise
ratio (henceforth, SNR) of the residual obtained after the
best-fit GR waveform has been subtracted from the data;
thus, alternative models that are not fit well by varying the
GR parameters can be detected more easily than models
that are. Indeed, Cornish and colleagues show that in the
limit of large signal SNR and small AG deviations the
logarithm of the odds ratio scales as ð1# FFÞSNR2,
with FF the fitting factor [36] between the GR and AG
waveforms:

FF ð!AGÞ ¼ max
!GR

ðhGRð!GRÞ; hAGð!AGÞÞ
jhGRð!GRÞjjhAGð!AGÞj

: (2)

Here hGRð!GRÞ and hAGð!AGÞ are the GR and AG wave-
form families (so !GR % !i and !AG % !i;a), and ð&; &Þ is
the standard noise-weighted inner product, such that the
sampling probability of a Gaussian-noise realization n is
/ e#ðn;nÞ=2, and the optimal matched-filtering SNR of an
observed signal h is its norm jhj%ðh;hÞ1=2 (see, e.g., [37]).
In the FF, the parameters !AG are fixed by the AG wave-
form contained in the data, and the inner product is maxi-
mized over !GR. The FF is by definition independent of
SNR, and it tends to one when the AG corrections vanish or
can be completely reabsorbed by varying !GR.

In this paper, I formalize and generalize this scaling
statement by deriving the full expression of the odds ratio
for the AG and GR hypotheses, in the limit of large SNR;
the result is valid when AG embeds GR, which is the case
for all classes of tests discussed above3 (see Sec. II).
Moreover, I derive the decision-scheme statistics for the
resultingO, and show that the efficiency EðFÞ is a remark-
ably simple function [Eq. (19), a combination of the error

function and its inverse] of the effective signal-to-noise
ratio SNR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1# FF

p
(see Sec. III). No other information

about the waveforms is needed.
Thus, AG detection by model comparison allows us to

characterize very generally both kinds of tests discussed
above, by computing the SNR required to positively detect
an AG correction as a function of its FF. Given the sensi-
tivity curve of the detector and the projected detection rates
for a source class, we can then derive the magnitude of the
AG corrections that we expect to be able to constrain in our
observation campaigns. The FF can be computed from the
GRFishermatrix using the formulas ofRef. [38], or directly
by maximizing the normalized product (2) over !GR.
The AG-detection SNR is shown in Fig. 1 for

F ¼ 10#8–10#4, and it is a rather exacting function of
1# FF. For the typical observations produced by volume-
limited searches, which have SNRs at the event-detection
threshold ( ’ 8), only 10% AG corrections (1# FF ¼ 0:1)
would be detectable, although for most waveform families
the strong-signal approximationwould not be appropriate at
such low SNRs [39]. The required SNR grows roughly
threefold for each decade of 1# FF, to SNR * 30 for 1%
effects, SNR * 100 for one-in-a-thousand effects, and
SNR * 1; 000 for one-in-ten-thousand effects.
We can also compute easily the total volume-limited

detection rates that would yield one event strong enough
(on the median) to detect AG corrections with a given
1# FF (see Sec. III); these are shown on the right-side
vertical axis of Fig. 1. Comparison with the expected
binary-inspiral detection rates for second-generation
ground-based detectors [40] suggests that precise tests of
GR would have to wait for the much higher rates afforded
by third-generation detectors [41]. Even pooling together
the evidence from all observed events [42] may not help
much, reducing the number of required detections by a
factor of only a few, because the evidence is dominated by
the few loudest sources (see again Sec. III). By contrast,
space-based observatories such as the LISA concept [43]

FIG. 1 (color online). SNR required for AG detection with
efficiency E ¼ 1=2, with false-alarm probability F ¼ 10#4 and
10#8, as a function of FF. The right-side vertical axis shows the
number of events required in a volume-limited search with
detection threshold of 8 to yield a loudest event with the
(median) SNR on the left-side vertical axis.

2The performance of decision schemes is characterized by
their receiver operating characteristic EðFÞ [35]. Note that the
term ‘‘fraction,’’ used above in defining F and E, is ideally the
fraction of an infinite number of observations of the same GW
signal immersed in different realizations of noise. This charac-
terization of decision schemes is therefore a frequentist state-
ment (about the Bayesian statistic O), but one that this Bayesian
author finds very reasonable.

3I thank Curt Cutler for pointing out that this is true also for
the PN-coefficient tests.
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