Immersed 2-knots with essential singularity

Akio Kawauchi

Osaka City University Advanced Mathematical Institute, Osaka City University, Osaka 558-8585, Japan

Jieon Kim*

Department of Mathematics, Pusan National University, Busan 46241, Republic of Korea

Abstract

It is shown that there are infinitely many immersed 2-knots with more than any previously given number of double point singularities which are not equivalent to the connected sum of any immersed 2-knot and any unknotted immersed sphere.

Keywords: Immersed 2-knot, Immersed surface-link, Essential singularity, Unknotted immersed sphere, Marked graph diagram, Symmetric ideal.

2008 MSC: 57Q45

1. Introduction

An immersed surface-link is a generically immersed closed oriented surface in the 4-space \mathbb{R}^4. When the surface has only one component, it is also called an immersed surface-knot. When the surface consists of 2-spheres, it is also called an immersed sphere-link or simply an immersed 2-link. When the immersion is an embedding, it is also called a surface-link. Two (immersed) surface-links \mathcal{L} and \mathcal{L}' are equivalent if there is an orientation-preserving auto-homeomorphism h of \mathbb{R}^4 sending \mathcal{L} to \mathcal{L}' orientation-preservingly. An immersed 2-link is studied in [9] in relation to a cross-sectional link. A normal

*Corresponding author

Email addresses: kawauchi@sci.osaka-cu.ac.jp (Akio Kawauchi), jieonkim7@gmail.com (Jieon Kim)

Preprint submitted to Topology and its Applications January 22, 2019
form of an immersed surface-link introduced by S. Kamada and K. Kawamura in [5] is used to define a marked graph diagram of an immersed surface-link in [6]. In this paper, with an example obtained from a surface-knot described by a marked graph diagram, it is shown as the main theorem (Theorem 3.6) that for any positive integer \(n \), there are infinitely many immersed 2-knots with at least \(n \) double point singularities every of which is essential double point singularities, that is, infinitely many immersed 2-knots with at least \(n \) double point singularities which are not equivalent to the connected sum of any immersed 2-knot and any unknotted immersed sphere.

This paper is organized as follows: Section 2 is devoted to a review of a marked graph diagram of an immersed surface-link. In particular, an unknotted immersed sphere is defined there. In Section 3, the main theorem is proved.

2. Marked graph representation of immersed surface-links

In this section, we review (oriented) marked graph diagrams representing immersed surface-links described in [6]. A marked graph is a 4-valent graph in \(\mathbb{R}^3 \) each of whose vertices is a vertex with a marker looks like \(\begin{array}{c} \\ \downarrow \end{array} \). Two marked graphs are said to be equivalent if they are ambient isotopic in \(\mathbb{R}^3 \) with keeping the rectangular neighborhoods of markers. As usual, a marked graph in \(\mathbb{R}^3 \) can be described by a link diagram on \(\mathbb{R}^2 \) with some 4-valent vertices equipped with markers, called a marked graph diagram. An orientation of a marked graph \(G \) in \(\mathbb{R}^3 \) is a choice of an orientation for each edge of \(G \). An orientation of a marked graph \(G \) is said to be consistent if every vertex in \(G \) looks like \(\begin{array}{c} \\ \downarrow \end{array} \). A marked graph \(G \) in \(\mathbb{R}^3 \) is said to be orientable if \(G \) admits a consistent orientation. Otherwise, it is said to be non-orientable. By an oriented marked graph we mean an orientable marked graph in \(\mathbb{R}^3 \) with a fixed consistent orientation. Two oriented marked graphs are said to be equivalent if they are ambient isotopic in \(\mathbb{R}^3 \) with keeping the rectangular neighborhood, marker and consistent orientation. For \(t \in \mathbb{R} \), we denote by \(\mathbb{R}^3_t \) the hyperplane of \(\mathbb{R}^4 \) whose fourth coordinate is equal to \(t \in \mathbb{R} \), i.e., \(\mathbb{R}^3_t = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_4 = t\} \). An immersed surface-link \(\mathcal{L} \subset \mathbb{R}^4 = \mathbb{R}^3 \times \mathbb{R} \) can be described in terms of its cross-sections \(\mathcal{L}_t = \mathcal{L} \cap \mathbb{R}^3_t, \ t \in \mathbb{R} \) (cf. [3]). It is shown [5] that any immersed surface-link \(\mathcal{L} \), there is an immersed surface-link \(\mathcal{L}' \subset \mathbb{R}^3 [-2, 2] \) satisfying the following
conditions:

(1) The intersections L'_{1} and L'_{-1} are H-trivial links;

(2) All saddle points of L' are in $\mathbb{R}^3[0]$;

(3) All maximal points of L' are in $\mathbb{R}^3[2]$;

(4) All minimal points of L' are in $\mathbb{R}^3[-2]$;

(5) The intersections $L' \cap (\mathbb{R}^3[1, 2])$ and $L' \cap (\mathbb{R}^3[-2, -1])$ are disjoint unions of a disjoint system of trivial knot cones and a disjoint system of Hopf link cones.

We call L' a normal form of L. Let L be an immersed surface-link in \mathbb{R}^4, and L' a normal form of L. Then L'_0 is a spatial 4-valent regular graph in \mathbb{R}^3_0. We give a marker at each 4-valent vertex (saddle point) that indicates how the saddle point opens up above as illustrated in Fig. 1. We choose an orientation for each edge of L'_0 that coincides with the induced orientation on the boundary of $L' \cap \mathbb{R}^3 \times (-\infty, 0]$ from the orientation of L'. The resulting oriented marked graph G is called an oriented marked graph of L. As usual, G is described by a link diagram D with rigid marked vertices. Such a diagram D is called an oriented marked graph diagram or an oriented ch-diagram (cf. [13]) of L.

Let D be an oriented marked graph diagram. We obtain two links $L_-(D)$ and $L_+(D)$ from D by replacing each marked vertex $\phantom{\text{Marked Vertex}}$ with $\phantom{\text{Marked Vertex}}$ (and $\phantom{\text{Marked Vertex}}$, respectively. Links $L_-(D)$ and $L_+(D)$ are also called the negative
resolution and the positive resolution of D, respectively. By replacing a neighborhood of each marked vertex v_i ($1 \leq i \leq n$) with an oriented band B_i as illustrated in Fig. 2. Denote the disjoint union $B_1 \sqcup \cdots \sqcup B_n$ of bands by $B(D)$. A link L is H-trivial if L is a split union of trivial knots and Hopf links. A marked graph diagram D is said to be H-admissible if both resolutions $L_-(D)$ and $L_+(D)$ are H-trivial classical link diagrams.

From now on, we recall how to construct an immersed surface-link \mathcal{L} in \mathbb{R}^4 from a given H-admissible oriented marked graph diagram (cf. [5, 6]). Let D be an H-admissible oriented marked graph diagram. We define a surface-link $\mathcal{F}(D) \subset \mathbb{R}^3 \times [-1, 1]$, called the proper surface associated with D, by
Let \(A \) be a graph diagram of the oriented immersed surface-link \(\mathcal{L} \) with orientations induced from the orientation of \(D \). It is known that a marked graph diagram \(D \) has a consistent orientation, the resolutions \(L_+(D) \) and \(L_-(D) \) have the orientations induced from the orientation of \(D \). We choose an orientation for the proper surface \(\mathcal{F}(D) \) so that the induced orientation of the cross-section \(L_+(D) = \mathcal{F}(D)_t = \mathcal{F}(D) \cap \mathbb{R}^3_t \) at \(t = 1 \) matches the orientation of \(L_+(D) \).

Let \([a, b]\) be a closed interval with \(a < b \). For a link \(L \), let \(\tilde{L} * [a, b] \) (or \(\tilde{L} * [a, b] \)) be a cone with \(L[a] \) (or \(L[b] \)) as the base and a point in \(\mathbb{R}^3[a] \) (or \(\mathbb{R}^3[a] \)), respectively. Let \(H = (O_1 \cup \cdots \cup O_m) \cup (P_1 \cup \cdots \cup P_n) \) be an H-trivial link in \(\mathbb{R}^3 \), where \(O_i \) is a trivial knot and \(P_j \) is a Hopf link for \(i = 1, \ldots, m \), \(j = 1, \ldots, n \).

- Let \(H_\lambda[a, b] \) be a disjoint union of a disjoint system of trivial knot cones \(\tilde{O}_i * [a, b] \) (\(i = 1, \ldots, m \)) and a disjoint system of Hopf link cones \(\tilde{P}_j * [a, b] \) (\(j = 1, \ldots, n \)) in \(\mathbb{R}^3[a, b] \).

- Let \(H_\vee[a, b] \) be a disjoint union of a disjoint system of trivial knot cones \(\tilde{O}_i * [a, b] \) (\(i = 1, \ldots, m \)) and a disjoint system of Hopf link cones \(\tilde{P}_j * [a, b] \) (\(j = 1, \ldots, n \)) in \(\mathbb{R}^3[a, b] \).

By capping off \(\mathcal{F}(D) \) with \(L_+(D)_\lambda[1, 2] \) and \(L_-(D)_\vee[-2, -1] \), we obtain an oriented immersed surface-link \(\mathcal{S}(D) \) in \(\mathbb{R}^4 \). We call the oriented immersed surface-link \(\mathcal{S}(D) \) the oriented immersed surface-link associated with \(D \). It is straightforward from the construction of \(\mathcal{S}(D) \) that \(D \) is an oriented marked graph diagram of the oriented immersed surface-link \(\mathcal{S}(D) \).

Definition 2.1 (cf. [5]). A positive (or negative) standard singular 2-knot, denoted by \(\mathcal{S}(+) \) (or \(\mathcal{S}(-) \)) is the immersed 2-knot of the marked graph diagram \(D \) (or \(D' \)) in Fig. 4, respectively. An unknotted immersed sphere is defined to be the connected sum \(m\mathcal{S}(+) \# n\mathcal{S}(-) \) for any non-negative integers \(m, n \) with \(m + n > 0 \).

A double point singularity \(p \) of an immersed 2-knot \(\mathcal{S} \) is inessential if \(\mathcal{S} \) is the connected sum of an immersed 2-knot and an unknotted immersed sphere such that \(p \) belongs to the unknotted immersed sphere. Otherwise, \(p \) is essential.
3. Confirming immersed 2-knots with essential singularity

In this section, the main theorem will be shown with an example of infinitely many immersed 2-knots with essential singularity. For an immersed 2-knot K, let $E(K) = \text{Cl}(S^4 \setminus N(K))$. Let $\tilde{E}(K)$ be the infinite cyclic covering of $E(K)$. Then the homology $H(K) = H_1(\tilde{E}(K))$ is a finitely generated Λ-module, where $\Lambda = \mathbb{Z}[t, t^{-1}]$. This module is called the first Alexander module of K (cf. [11]). Let

$$DH(K) = \{x \in H(K) | \exists \{\lambda_i\}_{1 \leq i \leq m} : \text{coprime \,(} m \geq 2) \text{ with } \lambda_i x = 0, \forall i\},$$

called the annihilator Λ-submodule, which is known to be equal to the integral torsion part of the Alexander module $H(K)$ (cf. [7, Section 3]). Let $\epsilon(K)$ be the first elementary ideal of $DH(K)$. A Λ-ideal is symmetric if the ideal is unchanged by replacing t by t^{-1}. Let $DH(K)^* = \text{hom}(DH(K), \mathbb{Q}/\mathbb{Z})$ have the induced Λ-module structure, called the dual Λ-module of $DH(K)$. The following lemma is used in our argument.

Lemma 3.1. If K is a 2-knot such that the dual Λ-module $DH(K)^*$ is Λ-isomorphic to $DH(K)$, then the first elementary ideal $\epsilon(K)$ is symmetric.

This lemma is direct from the t-isometric non-singular symmetric pairing

$$\ell : DH(K) \times DH(K) \to \mathbb{Q}/\mathbb{Z},$$

called the Farber-Levine pairing (see [2, 7, 12]), because this pairing induces a t-anti isomorphism $DH(K) \cong DH(K)^*$, so that the assumption on $DH(K)$ implies that there is a t-anti Λ-isomorphism from $DH(K)$ to itself. For example, if the module $DH(K)$ is given by $\Lambda/(2t - 1, m)$ for a non-zero
integer \(m \), then \(DH(K)^* \) is \(\Lambda \)-isomorphic to \(DH(K) \) and by Lemma 3.1, the ideal \(\epsilon(K) \) is symmetric. To see that \(DH(K)^* \) is \(\Lambda \)-isomorphic to \(DH(K) \), take a \(\Lambda \)-exact sequence

\[
0 \rightarrow \Lambda \xrightarrow{f_3} \Lambda^2 \xrightarrow{f_1} \Lambda \rightarrow DH(K) \rightarrow 0,
\]

where the \(\Lambda \)-homomorphisms \(f_i \) \((i = 1, 2)\) are given by

\[
f_1(e_1) = (2t - 1)e, \quad f_1(e_2) = me \quad \text{and} \quad f_2(e) = -me + (2t - 1)e_2
\]

for the standard bases \(e \in \Lambda \) and \(e_i \in \Lambda^2 \((i = 1, 2)\). Then \(DH(K)^* \) is \(\Lambda \)-isomorphic to \(Ext^2_\Lambda(DH(K), \Lambda) \) by Levine [12] (cf. [7, Section 3]) and \(Ext^2_\Lambda(DH(K), \Lambda) \) is \(\Lambda \)-isomorphic to the cokernel of the \(\Lambda \)-dual homomorphism \(f_2^\# : \Lambda^2 \rightarrow \Lambda \) of \(f_2 \). Thus, it is shown that \(DH(K)^* \) is \(\Lambda \)-isomorphic to \(\Lambda/(2t - 1, m) = DH(K) \).

For any marked graph diagram \(D \) of \(K \), the fundamental group \(\pi(K) \) of \(K \) is generated by the connected components of \(D \), namely, the connected components obtained from \(D \) by cutting the under-crossing points and the relations \(s_3 = s_2^{-1}s_1s_2 \) for all crossings as in \((a)\) or \((b)\) in Fig. 5.

\[
\begin{array}{c}
s_1 \\
\downarrow \\
s_2 \\
\downarrow \hspace{0.5cm} c \\
\downarrow \\
s_3 \\
\downarrow \\
(a)
\end{array} \quad \begin{array}{c}
s_1 \\
\downarrow \\
s_2 \\
\downarrow \hspace{0.5cm} c \\
\downarrow \\
s_3 \\
\downarrow \\
(b)
\end{array}
\]

Figure 5: Labels at a crossing

A computation of the Alexander module \(H(K) \) and the ideal \(\epsilon(K) \) is shown in a concrete example as follows:

Example 3.2. Let \(T \) be the ribbon torus-knot of \(D \) in Fig. 6. The fundamental group \(\pi(T) \) is isomorphic to the group \(\langle x_1, x_2 | r_1, r_2 \rangle \), where

\[
r_1 : x_2^{-1}x_1x_2 = x_1^{-1}x_2x_1, \quad r_2 : (x_2x_1^{-1})^3x_2(x_2x_1^{-1})^{-3} = x_1.
\]

Then the following \(\Lambda \)-semi-exact sequence

\[
\Lambda[r_1^*, r_2^*] \xrightarrow{d_2} \Lambda[x_1^*, x_2^*] \xrightarrow{d_1} \Lambda \xrightarrow{\epsilon} \mathbb{Z} \rightarrow 0
\]
of the group presentation of $\pi(T)$ is obtained by using the fundamental formula of the Fox differential calculus in [1], where $\Lambda[r^*_1, r^*_2]$ and $\Lambda[x^*_1, x^*_2]$ are free Λ-modules with bases r^*_i ($i = 1, 2$) and x^*_j ($j = 1, 2$), respectively, and the Λ-homomorphisms ε, d_1 and d_2 are given as follows:

$$\varepsilon(t) = 1, \quad d_1(x^*_j) = t - 1 (j = 1, 2), \quad d_2(r^*_i) = \sum_{j=1}^{u} \frac{\partial r^*_i}{\partial x^*_j} x^*_j (i = 1, 2)$$

for the Fox differential calculus $\frac{\partial r^*_i}{\partial x^*_j}$ regarded as an element of Λ by letting x^*_j to t. The Alexander module $H(T)$ is identified with the quotient Λ-module $\text{Ker}(d_1)/\text{Im}(d_2)$ (see [8, Theorem 7.1.5]). The Alexander matrix $M_T = (m_{ij})$ defined by $m_{ij} = \frac{\partial r^*_i}{\partial x^*_j}$ is a presentation matrix of the Λ-homomorphism d_2 and calculated as follows:

$$M_T = \begin{bmatrix}
-2t^{-1} + t^{-2} & 2t^{-1} - t^{-2} \\
3 - 4t^{-1} & -3 + 4t^{-1}
\end{bmatrix}.$$

Hence we have

$$H(T) \cong \Lambda/(2t - 1, 3t - 4),$$

which is equal to $DH(T)$. Thus, the first elementary ideal $\epsilon(T)$ of T is

$$\epsilon(T) = <2t - 1, 3t - 4> = <2t - 1, 3t - 4, 3(2t - 1) - 2(3t - 4)> = <2t - 1, 5>.$$

The surface-link T represented by the marked graph diagram D is ambient isotopic to the surface-link T' represented by the motion picture in Fig. 7. Let s' be the circle $l_1 \cup l_2 \cup \{(a, b, c, t)|1 < t < 2\} \cup \{(d, e, f, t)|1 < t < 2\}$ in T'. The circle s' bounds a disk d' in \mathbb{R}^4 such that the interior $\text{int}d'$ of d' meets T' with 10 crossings and $\text{Int}(\text{int}d', T') = 0$, where Int denotes the intersection number. Since T and T' are ambient isotopic, there is a disk d such that $\partial d \subset T$ and $\text{int}d$ meets T with 10 crossings and $\text{Int}(\text{int}d, T) = 0$. Let $d \times I$ be a thickening of d. Let K be the immersed 2-knot obtained from T by replacing the annulus $T \cap (d \times I)$ by $d \times \partial I$. Then K is the immersed 2-knot with 20 double point singularities. Since the first elementary ideal $\epsilon(K)$ of K is the same as that of T, $\epsilon(K) = <2t - 1, 5>.$

The following lemma is useful in a computation for a symmetric ideal.
Lemma 3.3. The following statements are equivalent:

1. The ideal $< 2t - 1, m >$ is symmetric.
2. An integer m is $\pm 2^r$ or $\pm 2^r 3$ for any integer $r \geq 0$.

Proof. First, it is easy to show that $< 2t - 1, 0 > = < 2t - 1 >$ is not symmetric. The ideal $< 2t - 1, \pm 3 > = < -t - 1, \pm 3 >$ is symmetric. It is observed that

$$< 2t - 1, ab > = < t - 2, ab > \Rightarrow < 2t - 1, a > = < t - 2, a > \quad (3.1)$$

for all non-zero integers a, b. Thus, $< 2t - 1, \pm 1 >$ is symmetric. Let m be
even, that is, \(m = 2n \) for some integer \(n \). Then

\[
< 2t - 1, m > = < 2t - 1, 2n >
= < 2t - 1, 2n, n(2t - 1) - 2nt >
= < 2t - 1, n >.
\]

By mathematical induction, if \(m = 2^rn \) for \(r \geq 0 \) and some odd integer \(n \), then

\[
< 2t - 1, m > = < 2t - 1, n >.
\]

Let \(p \) be a prime with \(|p| \geq 5 \). Since \(\mathbb{Z}_p[t, t^{-1}] \) is a principal ideal domain, \(< 2t - 1, p > \neq < t - 2, p > \). By the contraposition of (3.1), for any non-zero
integer m divided by a prime $p \geq 5$, $< 2t - 1, m > \neq < t - 2, m >$. Suppose that $< 2t - 1, 9 >$ is symmetric, i.e., $< 2t - 1, 9 > =< t - 2, 9 >$. Then

$$< t - 2, 9 > =< t - 2, 9, 2t - 1 >$$

$$= < t - 2, 9, 2t - 1 - 2(t - 2) >$$

$$= < t - 2, 3 > =< t - 5, 3 >,$$

$$< 2t - 1, 9 > =< t - 5, 9 >. (\because 2^{-1} \equiv 5 \pmod{9}).$$

Thus $< t - 5, 3 > =< t - 5, 9 >$. Then there are $a(t)$, $b(t) \in \mathbb{Z}[t, t^{-1}]$ such that $3 = a(t)(t - 5) + b(t)$9. For $b(t)$, there are $b'(t) \in \mathbb{Z}[t, t^{-1}]$ and $c \in \mathbb{Z}$ such that $b(t) = b'(t)(t - 5) + c$. Thus

$$3 = a(t)(t - 5) + (b'(t)(t - 5) + c)9.$$

Then $(a(t) + 9b'(t))(t - 5) = 3 - 9c \in \mathbb{Z} \setminus \{0\}$. This is a contradiction. Hence $< 2t - 1, 9 >$ is not symmetric. \hfill \Box

Lemma 3.4. There are infinitely many immersed 2-knots with at least one essential double point singularity whose ideals are mutually distinct.

Proof. Let T_n be the ribbon torus-knot of D_n in Fig. 8 $(n \geq 1)$. Let K_n be the immersed 2-knot obtained from T_n analogously to the method in Example 3.2. By the same calculation as in Example 3.2, we have $DH(K_n) = H(K_n) \cong \Lambda/(2t - 1, n)$. Suppose that the immersed 2-knot K^* is equivalent to the connected sum of a 2-knot K and an unknotted immersed sphere S_0. By Lemma 3.1, the first elementary ideal $\epsilon(K)$ is symmetric for any 2-knot K. Then the identity $\epsilon(K^*) = \epsilon(K)$ is obtained since $\epsilon(S(+)) = \epsilon(S(-)) =< 1 >$, so that the ideal $\epsilon(K^*)$ is symmetric. On the other hand, by Lemma 3.3, $< 2t - 1, m >$ is not symmetric except that m is 0, $\pm 2r$ or $\pm 2r3$ $(r \geq 0)$. Therefore, the immersed 2-knot K_n obtained from D_n is an immersed 2-knot with at least one essential singularity except that n is $2r + 2$ or $2r3$ $(r \geq 0)$. Infiniteness of the immersed 2-knots under consideration is seen from infiniteness of the ideals $< 2t - 1, m >$ for all m. \hfill \Box

Let J be one of the immersed 2-knots $K_n(n = 1, 2, 3, \ldots)$ such that the first elementary ideal $\epsilon(J)$ is asymmetric. Then the following corollary is obtained.

Corollary 3.5. The connected sum $J \# U$ of J and any immersed 2-knot U such that the group orders $|DH(J)|$ and $|DH(U)|$ are coprime is an immersed 2-knot with at least one essential double point singularity.
Proof. Suppose that the immersed 2-knot $J#U$ is a connected sum of a 2-knot K and an unknotted immersed sphere S_0. Since $DH(K) = DH(J#U) = DH(J) \otimes DH(U)$ and $|DH(J)|$ and $|DH(U)|$ are coprime, the Farber-Levine pairing $\ell : DH(K) \times DH(K) \to \mathbb{Q}/\mathbb{Z}$ induces the nonsingular t-isometric symmetric pairing on the direct summand $DH(J) = \Lambda/(2t - 1, m)$ for some m, so that as in the proof of Lemma 3.4, the ideal $\epsilon(J) = < 2t - 1, m >$ must be symmetric, which is a contradiction. \hfill \Box

Finally, the ideal $(2t - 1, 5)$ is known to be the first elementary ideal of a ribbon torus-knot in [4].

By using an immersed 2-knot in Lemma 3.4, the following main theorem is proved.

Theorem 3.6. Let $K = nK_m$ be the connected sum of n copies of an immersed 2-knot K_m with at least one essential double point singularity whose first elementary ideal is $< 2t - 1, m >$ for any integer $m \geq 5$ without
factors 2 and 3. Then K gives infinitely many immersed 2-knots with at least n double point singularities every of which is essential.

Proof. Assume that there is an immersed 2-knot K' with only $d(< n)$ essential double point singularities such that $K = K' \# S_0$, where S_0 is an unknotted singular 2-knot. We know that $DH_1(S_0) = 0$. Thus

$$DH(K') \cong DH(K') \oplus DH(S_0) \cong DH(K) \cong \oplus \left(\Lambda/(2t - 1, m) \right).$$

Therefore

$$e(DH(K)) = e(DH(K')) = n,$$ \hspace{1cm} (3.2)

where $e(H)$ is the minimum number of Λ-generators of a finitely generated Λ-module H.

Now, for simplicity, we denote $E(K')$ or $\tilde{E}(K')$ by E or \tilde{E}, respectively. By Wang exact sequence, there is an exact sequence

$$\cdots \rightarrow H_d(\tilde{E}) \xrightarrow{t^{-1}} H_d(\tilde{E}) \xrightarrow{\nu} H_d(E) \xrightarrow{\delta_d} H_{d-1}(\tilde{E}) \rightarrow \cdots.$$

We have $H_1(E) = H_0(\tilde{E}) = H_0(E) = \mathbb{Z}$, so that we obtain

$$\cdots \rightarrow H_1(\tilde{E}) \xrightarrow{t^{-1}} H_1(\tilde{E}) \xrightarrow{0} \mathbb{Z} \xrightarrow{\delta_1} \mathbb{Z} \rightarrow 0.$$

Then $t - 1 : H_1(\tilde{E}) \rightarrow H_1(\tilde{E})$ is onto. Since $H_1(\tilde{E})$ is a finitely generated Λ-module, the map $t - 1$ is an isomorphism by Noetherian property.

Suppose that $H_1(\tilde{E}; \mathbb{Q}) = H_1(\tilde{E}) \otimes \mathbb{Q} \cong \Lambda_\mathbb{Q} \oplus M$, where $\Lambda_\mathbb{Q} = \mathbb{Q}[t, t^{-1}]$ which is a principal ideal domain, k is a non-negative integer, and M is the $\Lambda_\mathbb{Q}$-torsion part. We have an isomorphism $t - 1 : H_1(\tilde{E}; \mathbb{Q}) \rightarrow H_1(\tilde{E}; \mathbb{Q})$. By the $\Lambda_\mathbb{Q}$-exact sequence

$$0 \rightarrow \Lambda_\mathbb{Q} \xrightarrow{t^{-1}} \Lambda_\mathbb{Q} \rightarrow \Lambda_\mathbb{Q}/(t - 1) \cong \mathbb{Q} \rightarrow 0,$$

the map $t - 1 : \Lambda_\mathbb{Q} \rightarrow \Lambda_\mathbb{Q}$ cannot be an epimorphism. Therefore, $k = 0$ and $H_1(\tilde{E}; \mathbb{Q})$ is a $\Lambda_\mathbb{Q}$-torsion module, which is a Λ-torsion module. The homology $H_2(\tilde{E}; \mathbb{Q}/\mathbb{Z})$ is a \mathbb{Z}-torsion Λ-module. From the short exact sequence $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Q} \rightarrow \mathbb{Q}/\mathbb{Z} \rightarrow 0$, we obtain a long Λ-exact sequence

$$\cdots \rightarrow H_2(\tilde{E}; \mathbb{Q}/\mathbb{Z}) \xrightarrow{h_2} H_1(\tilde{E}; \mathbb{Z}) \xrightarrow{f_1} H_1(\tilde{E}; \mathbb{Q}) \xrightarrow{g_1} H_1(\tilde{E}; \mathbb{Q}/\mathbb{Z}) \rightarrow \cdots.$$
Let \(x \in H_1(\tilde{E}) = H_1(\tilde{E}; \mathbb{Z}) \). Since \(H_1(\tilde{E}; \mathbb{Q}) \) is a \(\Lambda \)-torsion module, there is a non-zero element \(\lambda \in \Lambda \) such that \(\lambda f_1(x) = 0 \). Then \(\lambda x \in \text{Ker}(f_1) = \text{Im}(h_2) \).

There is an element \(y \in H_2(\tilde{E}; \mathbb{Q}/\mathbb{Z}) \) such that \(\lambda x = h_2(y) \). Since \(H_2(\tilde{E}; \mathbb{Q}/\mathbb{Z}) \) is a \(\mathbb{Z} \)-torsion \(\Lambda \)-module, there is a non-zero \(k \in \mathbb{Z} \) such that \(ky = 0 \). Then \(0 \neq k\lambda \in \Lambda \) and \(k\lambda x = kh_2(y) = 0 \). Therefore \(H_1(\tilde{E}) \) is a \(\Lambda \)-torsion module.

For a finitely generated \(\Lambda \)-module \(H \), we define \(TH = \{ x \in H | \lambda x = 0 \text{ for a non-zero } \lambda \in \Lambda \} \), \(BH = H/TH \), and \(TDH = TH/DH \). Since \(H_1(\tilde{E}) = TH_1(\tilde{E}) \), the \(\Lambda \)-torsion-free part \(BH_1(\tilde{E}) = 0 \). By the second duality theorem in \([7]\), there are \(t \)-anti \(\Lambda \)-epimorphisms

\[
\theta : DH_2(\tilde{E}) \to E^1BH_1(\tilde{E}, \partial \tilde{E}) = E^1BH_1(\tilde{E}) = 0 \quad \text{and} \\
\theta' : DH_0(\tilde{E}, \partial \tilde{E}) = DH_0(\tilde{E}) = 0 \to E^1BH_3(\tilde{E}),
\]

where \(E^kH = \text{Ext}^k_\Lambda(H, \Lambda) \) for any non-negative integer \(k \) and any \(\Lambda \)-module \(H \), and there is a \(t \)-isometric non-singular \(\Lambda \)-pairing

\[
\ell : \text{Ker}(\theta) \times \text{Ker}(\theta') = DH_2(\tilde{E}) \times 0 \to \mathbb{Q}/\mathbb{Z}.
\]

Thus, \(DH_2(\tilde{E}) = 0 \). By the first duality theorem in \([7]\), there is a \(t \)-Hermitian non-singular pairing

\[
L : TDH_2(\tilde{E}) \times TDH_1(\tilde{E}, \partial \tilde{E}) \to \mathbb{Q}(\Lambda)/\Lambda.
\]

Since there is a \(\Lambda \)-epimorphism from \(H_1(\tilde{E}) = H_1(\tilde{E}, \partial \tilde{E}) \) to \(TDH_1(\tilde{E}, \partial \tilde{E}) \) and \(t-1 : H_1(\tilde{E}) \to H_1(\tilde{E}) \) is a \(\Lambda \)-isomorphism, the map \(t-1 : TDH_1(\tilde{E}, \partial \tilde{E}) \to TDH_1(\tilde{E}, \partial \tilde{E}) \) is a \(\Lambda \)-epimorphism. The fact that \(TDH_1(\tilde{E}, \partial \tilde{E}) \) is a finitely generated \(\Lambda \)-module implies that \(t-1 : TDH_1(\tilde{E}, \partial \tilde{E}) \to TDH_1(\tilde{E}, \partial \tilde{E}) \) is a \(\Lambda \)-isomorphism. Thus we have a \(\Lambda \)-isomorphism \(t-1 : T_2H_2(\tilde{E}) \to T_2H_2(\tilde{E}) \).

Since \(DH_2(\tilde{E}) = 0 \), the map \(t-1 : T_2H_2(\tilde{E}) \to T_2H_2(\tilde{E}) \) is a \(\Lambda \)-isomorphism. For \(x \in T_2H(\tilde{E}) \), there is an element \(x' \in T_2H(\tilde{E}) \) such that \(x = (t-1)x' \). Then \(p_*(x) = (1-1)p_*(x') = 0 \). The module \(T_2H(\tilde{E}) \) is a submodule of the kernel of \(p_* : H_2(\tilde{E}) \to H_2(E) \). So, we obtain the short \(\Lambda \)-exact sequence

\[
0 \to BH_2(\tilde{E}) \xrightarrow{t-1} BH_2(\tilde{E}) \xrightarrow{p_*} H_2(E) \cong \mathbb{Z}^d \to 0.
\]

We obtain the long exact sequence

\[
E^0(\mathbb{Z}^d) \to E^0BH_2(\tilde{E}) \to E^0BH_2(\tilde{E}) \to E^1(\mathbb{Z}^d) \to E^1BH_2(\tilde{E}) \to \cdots.
\]
Since E^0H is a Λ-free module for a finitely generated Λ-module H, we have $E^0BH_2(\tilde{E}) \cong \Lambda^k$ for some non-negative integer k. So, the long exact sequence is as follows:

$$0 \to \Lambda^k \xrightarrow{t^{-1}} \Lambda^k \to (\Lambda/(t-1))^d \to G \to \cdots,$$

where $G = E^1BH_2(\tilde{E})$ is a finite Λ-module. Then we have

$$0 \to (\Lambda/(t-1))^k \to (\Lambda/(t-1))^d \to G \to \cdots.$$

Thus, $E^0BH_2(\tilde{E}) \cong \Lambda^d$.

By the second duality theorem in [7], there are a t-anti Λ-epimorphism $\theta : DH_1(\tilde{E}, \partial \tilde{E}) = DH_1(\tilde{E}) \to E^1BH_2(\tilde{E})$ and a t-isometric symmetric non-singular pairing $\phi : D \times D \to \mathbb{Q}/\mathbb{Z}$, where $D = \text{Ker}(\theta)$. For every prime p and every positive integer i, let $\tilde{D}_p^i = \{x \in D | p^ix = 0\}$ and $\bar{D}_p^i = \tilde{D}_p^i/(\tilde{D}_p^{i-1} + p\tilde{D}_p^{i+1})$. The t-isometric symmetric non-singular pairing ϕ induces a t-isometric symmetric non-singular pairing $\tilde{\phi}_p^i : \tilde{D}_p^i \times \bar{D}_p^i \to \mathbb{Q}/\mathbb{Z}$ for all prime p and all i (see [10]). Suppose $D \neq 0$. Then there are $p \geq 5$ and i with $\bar{D}_p^i \neq 0$, so that $\bar{D}_p^i \cong (\Lambda/(p, 2t-1))^r_i$ for some $r_i > 0$. The t-isometric symmetric non-singular pairing $\tilde{\phi}_p^i$ induces a t-anti automorphism of \tilde{D}_p^i, so that all the elementary ideals of \tilde{D}_p^i are symmetric. This means that the ideal $(p, 2t-1)$ is symmetric, for it is the $(r_i - 1)$th elementary ideal of \tilde{D}_p^i.

This contradicts Lemma 3.3. Thus, $D = \text{Ker}(\theta) = 0$. Therefore $DH_1(\tilde{E})$ and $E^1BH_2(\tilde{E})$ are t-anti isomorphic. Then $DH_1(\tilde{E}) \cong E^2DH_1(\tilde{E})$ and $E^2E^1BH_2(\tilde{E})$ are t-anti isomorphic.

By Lemma 3.6 of [7], there is an exact sequence

$$0 \to BH_2(\tilde{E}) \to E^0E^0BH_2(\tilde{E}) \cong \Lambda^d \to E^2E^1BH_2(\tilde{E}) \to 0.$$

This means that $DH_1(\tilde{E}) \cong E^2E^1BH_2(\tilde{E})$ is generated by d elements over Λ. Combining with (3.2), we obtain $n = e(DH_1(\tilde{E})) \leq d$, which is a contradiction. Thus, there is no immersed 2-knot K' such that $K = K'\#S_0$. Infiniteness of the immersed 2-knots under consideration is seen from infiniteness of the ideals $<2t-1, m>$ for all m. This completes the proof of Theorem 3.6.

□

Acknowledgment.

The first author was supported by JSPS KAKENHI Grant Number 24244005. The second author was supported by Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2018R1C1B6007021).

