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Abstract

A revised proof is given to an assertion on chord diagrams of a
ribbon surface-link.

Keywords: Chord diagram, Ribbon surface-link, Chord diagram move.

Mathematics Subject Classification 2010: 57Q45, 57M25, 57M05

1 Statement of result

In a previous paper [K], it is shown as the main result (Theorem 4.1) that any
two cord diagrams of faithfully equivalent ribbon surface-links are deformed
into each other by a finite number of the moves M0, M1, M2 on the chord
diagrams. Blake Winter recently suggested that a procedure of increasing
chords in the argument of [K] is not clear for equivalences of one-fusion
ribbon 2-knots, for T. Yasuda in [Y] has given the necessary example to
increase a chord for a one-fusion ribbon 2-knot. The author would like to
thank him for this suggestion.

Corollary 4.7 of [K] was an essential part to obtain the main result of
[K] and is revised as Theorem in this paper. Terminologies, notations and
references are completely borrowed from [K].

A connected chord graph (o;α) is called in a standard shape if it is in
the shape of Fig. 23 of [K], namely the based loop system o consists of the



loops oi (i = 0, 1, 2, . . . , n) and the chord αi spans o0 and oi for every i with
1 ≦ i ≦ n and the chord αj with j > n is a self-connecting chord attached
to o0. A disconnected chord graph (o;α) is said to be in a standard shape if
every connected component of (o;α) is in a standard shape. Unless otherwise
mentioned, a chord graph is in a standard shape.

For a chord diagram C(o;α), assume by the moveM0 that the loops in the
based loop system o are mutually disjoint simple loops with counterclockwise
orientation in the plane so that o bounds the system d of mutually disjoint
oriented disks di (i = 0, 1, 2, . . . , n) in the plane. Then the pair (d, α) is called
a disk chord system. Corollary 4.7 of [K] was stated as follows:.

Corollary 4.7. After a finite number of the moves M0, M1, M2 on the chord
diagrams C(o;α) and C(o;α′), the chords α are homotopic to the chords α′

in R3 by a homotopy relative to the based loops o.

In this paper, the following theorem with the exact assumption of Corol-
lary 4.7 included here for convenience is shown:

Theorem. Let f ′ : R3[−3, 3] → R3[−3, 3] be an orientation-preserving
homeomorphism preserving R3[−3] and R3[3], respectively. Let (ō, ᾱ) and
(ō, ᾱ′) be chord graphs in R3[1] with f ′(ō) = ō such that f ′(ᾱ) is homotopic
to ᾱ′ in R3[−3, 3] by a homotopy relative to o[−3, 3]. Assume that the
restriction f ′|ō∪u[−3,3] is the identity map for a simple arc system ū in ō
containing the attaching points of the homotopically corresponding chord
systems ᾱ, ᾱ′. Then every chord diagram C(o;α) is deformed into a chord
diagram C(o;α′) by a finite number of the moves M0, M1, M2 on C(o;α),
C(o;α′) and homotopic deformations of the chord systems ᾱ, ᾱ′ in R3[−3, 3]
by homotopies relative to o[−3, 3].

Theorem and Corollary 4.7 are the same assertion except that the homo-
topies and the moves M0,M1,M2 are mixed in Theorem. If f ′(ᾱ) is homo-
topic to ᾱ′ in R3[−3, 3] by a homotopy relative to o[−3, 3], then the chord
system f̄ ′(ᾱ) in R3[1] obtained from f ′(ᾱ) by the projection R3[−3, 3] →
R3[1] is homotopic to ᾱ′ in R3[1] by a homotopy relative to ō. Then by
Lemma 4.6 their chord diagrams are deformable into each other by the moves
M0,M1,M2. Thus, Theorem and Corollary 4.7 are equivalent statements.

Proof of Theorem. The proof will be done by assuming that f ′(ᾱ) = ᾱ′.
The following observation is used in our argument:
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Observation 1. If a disk chord system (d̄′, ᾱ′) in R3[1] is obtained from a
disk chord system (d̄, ᾱ) inR3[1] by a homotopic deformation inR4 deforming
the pair (d̄, d̄∩ ᾱ) into the pair (d̄′, d̄′∩ ᾱ′) isotopically, then the chord system
ᾱ′ is homotopic to the chord system ᾱ in R3[−3, 3] by a homotopy relative
to o[−3, 3] by regarding as ∂d = ∂d′ = o.

The proof of Observation 1 is obtained by taking a homotopic deformation
fixing the part (d̄, d̄ ∩ ᾱ). The following observation is a key observation for
the proof of Theorem:

Observation 2. After a finite number of the moves M0, M1, M2 on chord
diagrams C(o;α), C(o;α′), homotopic deformations of the chord systems ᾱ,
ᾱ′ by homotopies relative to o[−3, 3] and isotopic deformations of f ′, the disk
chord systems (d̄; ᾱ) and (d̄; ᾱ′) have the properties

f ′(ᾱ) = ᾱ′ and f ′(ᾱ ∩ d̄i) = ᾱ′ ∩ d̄i (i = 0, 1, 2, . . . , n).

Let B be an oriented 3-ball in R3[1] containing the disk chord system
(d̄; ᾱ). Let (df

′
;αf ′

) be the disk chord system in the 3-ball f ′(B) obtained
from (d̄; ᾱ) by the homeomorphism f ′, and (d̄f

′
; ᾱf ′

) a disk chord system in
R3[1] obtained from (df

′
;αf ′

) by deforming f ′(B) into R3[1] in R3[−3, 3].
Since f ′|ō∪u[−3,3] = 1 (before deforming f ′), the chord graph (ō; ᾱ) is equiva-

lent to the chord graph (ōf
′
; ᾱf ′

) in R3[1], where ōf
′
= ∂d̄f

′
. Hence a chord

diagram C(ō; ᾱ) is deformed into a chord diagram C(ōf
′
; ᾱf ′

) in by the move
M0 (see [8, 9, 14]). Since Observation 1 can be applied between (d̄; ᾱ′) and
(d̄f

′
; ᾱf ′

), Theorem is obtained.
Observation 2 is shown by an inductive argument on the component num-

ber r of the chord graph (ō; ᾱ) in R3[1], which will be done from now.
Let (ō(i); ᾱ(i)) (i = 1, 2, . . . , r) be the connected components of (ō; ᾱ). Let

d̄(i) be the disk sub-system of d̄ with ∂d̄(i) = ō(i). To show this observation, the
homeomorphism f ′ is regarded as a diffeomorphism on some smooth struc-
tures on R3[−3, 3] with d[−3, 3] as a smooth submanifold (see [2, p. 128]).
Then the intersections d[−3, 3]∩ (f ′)−1(d̄) and d[−3, 3]∩f ′(d̄) are considered
as mutually disjoint simple loops and arcs including ō by a transversality
argument. Deform these simple loops into sets of mutually disjoint intersec-
tion annuli, denoted by a and a′, respectively. Let a and a′ have orientations
induced from (f ′)−1(d̄) and f ′(d̄), respectively. Every annulus in a or a′ is
assumed to have a disk which is orientation-preservingly embedded into d̄ by
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the projection R3[−3, 3] → R3[1]. Let e and e′ be such disk systems in a
and a′ with the projection images ē and ē′ in d̄, respectively. By a choice of
ē and ē′, the disks in f ′(ē) and ē′ are made disjoint in d̄. Let

a(i) = a ∩ d(i)[−3, 3], a′(i) = a′ ∩ d(i)[−3, 3],
e(i) = e ∩ d(i)[−3, 3], e′(i) = e′ ∩ d(i)[−3, 3],
ē(i) = ē ∩ d̄(i), ē′(i) = ē′ ∩ d̄(i).

Consider the connected component (d(1);α(1)). Every point p′ of the finite
set ∆′(1) = f ′(ᾱ(1) ∩ (d̄(1) \ ō(1))) is moved into an e′(1)-part in the first
meeting annuli in a′(1) by a slide of p′ along f ′(d̄(1)) avoiding the simple arcs
in d(1)[−3, 3]∩f ′(d̄(1)) and the finite set o[−3, 3])∩f ′(d̄(1)). Then the set in the
disk system e′(1) obtained from ∆′(1) by these deformations is moved into ē′(1)

vertically. Every point p of the finite set ∆(1) = ᾱ(1)∩((f ′)−1(d̄(1))\ ᾱ(1)∩ d̄(1)

is moved into an e(1)-part in the first meeting annuli in a(1) by a slide of p
along (f ′)−1(d̄(1)) avoiding the simple arcs in d(1)[−3, 3]∩ (f ′)−1(d̄(1)) and the
finite set o[−3, 3])∩(f ′)−1(d̄(1)). Then the set in the disk system e(1) obtained
from ∆(1) by these deformations is moved into ē(1) vertically.

These deformations deform the chord systems ᾱ, f ′(ᾱ) = ᾱ′ into chord
systems α̃, f ′(α̃) = α̃′ in R3[−3, 3] (which may not be in R3[1]) on the based
loop system ō. Then the homeomorphism f ′ is isotopically deformed so that

α̃(1) ∩ d̄(1) = α̃(1) ∩ (f ′)−1(d̄(1)) ⊂ A(1)

by letting A(1) = ē(1) ∪ (f ′)−1(ē′(1)). It is noted from construction that

A(1) ⊂ d̄(1) ∩ (f ′)−1(d̄(1)).

Because the chord systems α̃ and α̃′ meet d(1)[−3, 3] only in A(1), the chord
systems α̃ and α̃′ can be pushed into R3[1] by the projection R3[−3, 3] →
R3[1] and slight modifications of α̃, α̃′ and f ′ to obtain new chord systems on
ō in R3[1], denoted also by ᾱ and ᾱ′, respectively which have an additional
property that

ᾱ(1) ∩ d̄(1) = ᾱ(1) ∩ (f ′)−1(d̄(1)) ⊂ A(1) ⊂ d̄(1) ∩ (f ′)−1(d̄(1)).

Let d̄∗(1) be a disk system in A(1), and β̄∗(1) a simple chord system for the
based loop system ō∗(1) = ∂d̄∗(1) in the disk system d̄(1) such that

(1) ᾱ ∩ d̄(1) = ᾱ ∩ d̄∗(1),
(2) d̄∗(1) ∩ β̄∗(1) = ō∗(1) ∩ β̄∗(1) = ∂β̄∗(1),
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(3) there is a strong deformation retraction d̄(1) → d̄∗(1) ∪ β̄∗(1).

By the move M1, a chord diagram C(ō; ᾱ) is deformed into a chord dia-
gram of a chord graph (ō∗(1) ∪ (ō \ ō(1)); ᾱ ∪ β̄∗(1)) in a non-standard shape,
which is made in a standard shape by the chord slide moveM1,1 on the simple
chord system β̄∗(1).

Let d∗∗(1) = f ′(d̄∗(1)) be a disk system in f ′(A(1)) ⊂ d̄(1). Let β̄∗∗(1) be a
simple chord system for the based loop system ō∗∗(1) = ∂d̄∗∗(1) in d̄(1) such
that

(1)′ ᾱ′ ∩ d̄(1) = ᾱ′ ∩ d̄∗∗(1)),
(2)′ d̄∗∗(1) ∩ β̄∗∗(1) = ō∗∗(1) ∩ β̄∗∗(1) = ∂β̄∗∗(1),
(3)′ there is a strong deformation retraction d̄(1) → d̄∗∗(1) ∪ β̄∗∗(1).

By the move M1, a chord diagram C(ō; ᾱ′) is also deformed into a chord
diagram of a chord graph (ō∗∗(1)∪(ō\ō(1)); ᾱ′∪β̄∗∗(1)) in a non-standard shape,
which is made in a standard shape with the identical based loop system by
the chord slide move M1,1 on the simple chord system β̄∗∗(1).

Let f̄ ′(β̄∗(1)) be the projection of f ′(β̄∗(1))(⊂ R3[−3, 3]) into R3[1] which
is a chord system on ō∗∗(1) not meeting the interior of the disk system d̄∗∗(1)

by construction.
Using the properties (1), (2), (1)′, (2)′, one can deform a chord diagram of

a chord graph (ō∗∗(1)∪(ō\ ō(1)); ᾱ′∪ f̄ ′(β̄∗(1)) in a standard shape into a chord
diagram of a chord graph (ō∗∗(1) ∪ (ō \ ō(1)); ᾱ′ ∪ β̄∗∗(1)) in a standard shape
by the moves M1, M2 and M3 without changing the intersection data on ᾱ′

and d̄∗∗(1) (although the chord system ᾱ′ may be deformed homotopically).
By this deformation, the homeomorphism f ′ is isotopically deformed to send
the intersection data on ᾱ and d̄∗(1) to the intersection data on ᾱ and d̄∗∗(1)

identically and the chord graph (ō∗(1)∪ (ō\ ō(1)); ᾱ∪ β̄∗(1)) to the chord graph
(ō∗∗(1) ∪ (ō \ ō(1)); ᾱ′ ∪ β̄∗∗(1)).

Next, apply the same argument to the connected component (d(2);α(2))
in the chord graph (ō∗(1) ∪ (ō \ ō(1)); ᾱ ∪ β̄∗(1)). Since we have

d∗(1)[−3, 3] ∩ (f ′)−1(d̄(2)) = ∅ and d∗∗(1)[−3, 3] ∩ f ′(d̄(2)) = ∅

by choosing smaller disk systems d∗(1) and d∗∗(1), the homeomorphism f ′ is
isotopically deformed to send the intersection data on ᾱ and d̄∗(1) ∪ d̄∗(2) to
the intersection data on ᾱ′ and d̄∗∗(1) ∪ d̄∗∗(2), and the chord graph (ō∗(1) ∪
ō∗(2) ∪ (ō \ ō(1) ∪ ō(2)); ᾱ∪ β̄∗(1) ∪ β̄∗(2)) to the chord graph (ō∗(1) ∪ ō∗(2) ∪ (ō \
ō(1) ∪ ō(2)); ᾱ′ ∪ β̄∗∗(1) ∪ β̄∗∗(2)).

By continuing this process, the homeomorphism f ′ is isotopically de-
formed to send the intersection data on ᾱ and d̄∗(1) ∪ d̄∗(2) ∪ · · · ∪ d̄∗(r) to the
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intersection data on ᾱ′ and d̄∗∗(1) ∪ d̄∗∗(2) ∪ · · · ∪ d̄∗∗(r), and the chord graph

(ō∗(1) ∪ ō∗(2) ∪ · · · ∪ ō∗(r); ᾱ ∪ β̄∗(1) ∪ β̄∗(2) ∪ · · · ∪ β̄∗(r))

to the chord graph

(ō∗(1) ∪ ō∗(2) ∪ · · · ∪ ō∗(r); ᾱ′ ∪ β̄∗∗(1) ∪ β̄∗∗(2) ∪ · · · ∪ β̄∗∗(r)).

Thus, Observation 2 is obtained and the proof of Theorem is completed. □
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