ON PSEUDO-RIBBON SURFACE-LINKS

AKIO KAWAUCHI \(^1\)

Department of Mathematics, Osaka City University
Sumiyoshi-ku, Osaka 558-8585, Japan
kawauchi@sci.osaka-cu.ac.jp

ABSTRACT

We first introduce the null-homotopically peripheral quadratic function of a surface-link to obtain a lot of pseudo-ribbon, non-ribbon surface-links, generalizing a known property of the turned spun torus-knot of a non-trivial knot. Next, we study the torsion linking of a surface-link to show that the torsion linking of every pseudo-ribbon surface-link is the zero form, generalizing a known property of a ribbon surface-link. Further, we introduce and algebraically estimate the triple point cancelling number of a surface-link.

Keywords: Surface-knot, Surface-link, Pseudo-ribbon, Ribbon, Torsion linking, Triple point cancelling number, Triple point number

0. Introduction

A surface-knot in the 4-space \(\mathbb{R}^4\) is a closed connected oriented surface embedded in \(\mathbb{R}^4\) by a locally flat PL embedding. A surface-link \(F\) in \(\mathbb{R}^4\) (with components \(F_i\) \((i = 1, 2, \ldots, r)\)) is the union \(\bigcup_{i=1}^{r} F_i\) where \(F_i\) \((i = 1, 2, \ldots, r)\) are mutually disjoint surface-knots in \(\mathbb{R}^4\). Let \(\rho : \mathbb{R}^4 \to \mathbb{R}^3\) be the projection sending every point \((x, t)\) (where \(x \in \mathbb{R}^3\) and \(t \in \mathbb{R}\)) to the point \(x\). The singularity of a surface-link \(F\) in \(\mathbb{R}^4\) is the set

\[S(F) = \{x \in F \mid |F \cap \rho^{-1}(\rho(x))| \geq 2\}. \]

A surface-link \(F\) in \(\mathbb{R}^4\) is generic if for every point \(x \in S(F)\), we have either

1. \(\rho(x)\) is a double point, that is, there is a 3-ball neighborhood \(V_{\rho(x)}\) of \(\rho(x)\) in \(\mathbb{R}^3\) such that \(F \cap \rho^{-1}(V_{\rho(x)})\) consists of two disjoint disks whose images by \(\rho\) meet transversely in a line containing \(\rho(x)\), or
2. \(\rho(x)\) is a triple point, that is, there is a 3-ball neighborhood \(V_{\rho(x)}\) of \(\rho(x)\) in \(\mathbb{R}^3\) such that \(F \cap \rho^{-1}(V_{\rho(x)})\) consists of three disjoint disks every pair of whose images by \(\rho\) meet transversely in a line and the resulting three lines meet transversely only at \(\rho(x)\).

\(^1\)Dedicating this paper to Professor Jerome Levine on his 65th birthday.
It is known that every surface-link in R^4 is ambient isotopic to a generic surface-link. In this paper, we concern the following type of surface-link:

Definition 0.1. A surface-link F in R^4 is a pseudo-ribbon surface-link if F is ambient isotopic to a generic surface-link F' in R^4 such that $\rho(F')$ has no triple points, namely $|F' \cap \rho^{-1}(\rho(x))| = 2$ for every point $x \in S(F')$.

In Definition 0.1, we can see further that F' is ambient isotopic to a generic surface F'' such that $S(F'')$ is \emptyset or a closed 1-manifold, namely the singular surface $\rho(F'')$ has no triple points and no branch points (see J. S. Carter-M. Saito [3], D. Roseman [15]). A ribbon surface-link is a surface-link in R^4 obtained from a trivial S^2-link by a surgery along some embedded 1-handles. Every ribbon surface-link is a pseudo-ribbon surface-link, and conversely every pseudo-ribbon S^2-link is a ribbon S^2-link (see T. Yajima [22]). On the other hand, the turned spun T^2-knot $T(k)$ of a non-trivial knot k (see J. Boyle [1], Z. Iwase [4], C. Livingston [13]) is pseudo-ribbon and non-ribbon (see A. Shima [19]), although the spun T^2-knot $T^0(k)$ is ribbon. In §1, we introduce the null-homotopically peripheral quadratic function of a surface-link which is useful in identifying a non-ribbon surface-link. Using this invariant, we can show in §1 that any connected sum of the turned spun T^2-knot of a non-trivial knot and any ribbon (or more generally, any pseudo-ribbon) surface-link is a pseudo-ribbon, non-ribbon surface-link. Next, we discuss the torsion linking ℓ_F of a surface-link F, which is a generalization of the Farber-Levine pairing on S^2-knots as it is mentioned in [7] (see also [8,9,10]). We show that the torsion linking ℓ_F of every pseudo-ribbon surface-link F in $S^4 = R^4 \cup \{\infty\}$ vanishes by studying a canonical Seifert hypersurface of F which is constructed by a method analogous to Seifert’s algorithm on constructing a Seifert surface of a knot. This result is stated in §2 together with an explanation of the torsion linking ℓ_F and proved in §3. We note that if F is a ribbon surface-link, then this result is known. In fact, the ribbon surface-link F bounds a Seifert hypersurface V such that the torsion part $tH_1(V; Z) = 0$ (see [11]). Then the vanishing $\ell_F = 0$ follows from a result of M. Sekine [18] showing that the torsion linking ℓ_F is induced from a singular sublinking of the linking $\ell_V : tH_1(V, \partial V; Z) \times tH_1(V; Z) \to Q/Z$ defined by the Poincaré duality for every Seifert hypersurface V of F. In §4, we introduce the triple point cancellation number $T(F)$ of a surface-link F which measures a distance to the pseudo-ribbon surface-links. Using the vanishing of the torsion linking of a pseudo-ribbon surface-knot, we shall make an algebraic estimate of $T(F)$. This method is similar to S. Kamada’s argument in [5]. As an application of this estimate, we shall show in §4 that every surface-link F is concordant to a surface-link F_* with $T(F_*) = n$ for every previously given integer $n > T(F)$.

1. The null-homotopically peripheral quadratic function of a surface-link

By a 2-chain, we mean a simplicial 2-chain C with Z_2-coefficients in a 4-manifold W. This 2-chain C is regular if $|\partial C|$ is a closed 1-manifold. The support of C,
denoted by $|C|$ is the union of all simplices in C with non-zero coefficients. For a 2- or 3-submanifold Y of a 4-manifold W, the 2-chain C in W is Y-proper if $|C| \cap Y = |\partial C|$. A disk-chain is a 2-chain which is obtained from a simplicial map $f: B^2 \to W$ where B^2 is a triangulated disk. Let F be a surface-link in $S^4 = R^4 \cup \{\infty\}$ with components $F_i (i = 1, 2, \ldots, r)$. Let $K(F; Z_2)$ be the subgroup of $H_1 (F; Z_2)$ consisting of an element represented by the boundary of an F-proper 2-chain in S^4. We note that every element of $K(F; Z_2)$ is represented by the boundary of an F-proper regular 2-chain in S^4. The peripheral quadratic function of a surface-link F is the function

$$\Xi: K(F; Z_2) \to Z_2$$

defined by putting $\Xi(x)$ to be the Z_2-intersection number $\text{Int}_{S^4}(C, \tilde{C})$ in S^4 where C and \tilde{C} are F-proper regular 2-chains in S^4 with $x = [\partial C] = [\partial \tilde{C}]$ and $|\partial C| \cap |\partial \tilde{C}| = \emptyset$ such that \tilde{C} is obtained from C by sliding $\partial \tilde{C}$ along F. The function Ξ is well-defined and is a quadratic function with respect to the Z_2-intersection form $\text{Int}_F(\ , \)_2$ on F, that is, Ξ has the identity

$$\Xi(x + y) = \Xi(x) + \Xi(y) + \text{Int}_F(x, y)_2$$

for all $x, y \in K(F; Z_2)$. We note that Ξ may be a singular quadratic function for a general surface-link F, although it is always non-singular when F is a surface-knot. Let $\Delta(F; Z_2)$ be the subgroup of $K(F; Z_2)$ generated by the elements represented by the boundaries of all F-proper disk-chains in S^4. For our purpose, we are interested in the restricted quadratic function

$$\xi = \Xi|_{\Delta(F; Z_2)}: \Delta(F; Z_2) \to Z_2,$$

which we call the null-homotopically peripheral quadratic function of the surface-link F. For a surface-link F in S^4, let N be a tubular neighborhood of F in S^4, and $E = \text{cl}(S^4 - N)$ be the link-exterior of F. Let D^2 be the unit disk in the complex plane. A canonical trivialization of N is an identification $(N, F) = (F \times D^2, F \times 0)$ such that the natural injection $F \times 1 \subset F \times S^1 = \partial N = \partial E \subset E$ induces the trivial composite homomorphism

$$H_1(F \times 1; Z) \to H_1(\partial E; Z) \to H_1(E; Z) \xrightarrow{\gamma} Z,$$

where $\gamma \in \text{hom}(H_1(E; Z), Z) = H^1(E; Z)$ is the epimorphism sending every oriented meridian to $1 \in Z$. The γ-structure on the link-exterior E of a surface-link F is the subset of $H^1(E; Z)$ consisting of the γ’s under all orientation changes of components of F, whose cardinal number is seen to be 2^r for the component number r of F.

Let $\Delta_E(\partial E; Z_2)$ be the subgroup of $H_1(\partial E; Z_2)$ generated by the elements represented by the boundaries of all ∂E-proper disk-chains in E. Similarly, let
\(\Delta_E(F \times 1; Z_2) \) be the subgroup of \(H_1(F \times 1; Z_2) \) generated the elements represented by the boundaries of all \(F \times 1 \)-proper disk-chains in \(E \). The quadratic function

\[
\xi_E : \Delta_E(F \times 1; Z_2) \to Z_2
\]

is defined by a method analogous to the definition of \(\xi \), namely by

\[
\xi_E(x) = \text{Int}_E(C, \tilde{C})_2
\]

where \(C \) and \(\tilde{C} \) are \(F \times 1 \)-proper regular 2-chains in \(E \) with \(x = [\partial C] = [\partial \tilde{C}] \) and \([\partial C] \cap [\partial \tilde{C}] = \emptyset \) such that \(\tilde{C} \) is obtained from \(C \) by sliding \(\partial C \) along \(F \times 1 \). The following lemma concerns the arguments of J. Boyle [1] and Z. Iwase [4] on \(T^2 \)-knots.

Lemma 1.1.

1. The natural composite map

\[
k_* : H_1(F \times 1; Z_2) \to H_1(\partial E; Z_2) \to H_1(N; Z_2) \xrightarrow{\cong} H_1(F \times 0; Z_2) = H_1(F; Z_2)
\]

induces an isomorphism

\[
k_* : \Delta_E(F \times 1; Z_2) \xrightarrow{\cong} \Delta_E(\partial E; Z_2) \xrightarrow{\cong} \Delta(F; Z_2).
\]

2. The isomorphism \(k_* \) induces an isomorphism from the quadratic function \(\xi_E : \Delta_E(F \times 1; Z_2) \to Z_2 \) to the quadratic function \(\xi : \Delta(F; Z_2) \to Z_2 \).

3. The quadratic function \(\xi_E : \Delta_E(F \times 1; Z_2) \to Z_2 \) is invariant (up to isomorphisms) under any \(\gamma \)-structure-preserving homeomorphism between the link-exteriors \(E \) for all surface-links \(F \). In particular, \(\xi_E \) is invariant (up to isomorphisms) under any homeomorphism between the knot-exteriors \(E \) for all surface-knots \(F \).

Proof. To see (1), we take a simplicial map \(f : B^2 \to S^4 \) giving an \(F \)-proper disk-chain \(C \) in \(S^4 \). By a general position argument on \(f \) and the uniqueness of a regular neighborhood, we may consider that the regular neighborhood \(N = F \times D^2 \) of \(F \) in \(S^4 \) meets \(|f(B^2)| \) in a singular annulus \(A \) such that \(L = (\partial N) \cap |f(D^2)| \) is a simple loop bounding a singular disk \(\text{cl}(|f(B^2)| - A) \) in \(E \). For the infinite cyclic covering \(p : \tilde{E} \to E \) associated with \(\gamma \), the boundary \(\partial E = F \times S^1 \) of \(E \) lifts to \(\partial \tilde{E} = F \times R \) and the loop \(L \) lifts to \(F \times R \) trivially. Since any component of \(p^{-1}(L) \) is homotopic in \(\partial \tilde{E} \) to a loop in \(F \times 1 \subset F \times R = \partial \tilde{E} \), we see that \(L \) is homotopic in \(\partial E \) to a loop \(L' \) in \(F \times 1 \subset F \times S^1 = \partial E \). Since the inclusion \(F \times 1 \subset N \) is a homotopy equivalence, we see that \(L' \) is homotopic to the loop \([\partial C] \times 1 \) in \(F \times 1 \). Thus, we have a simplicial map \(f' : B^2 \to E \) giving an \(F \times 1 \)-proper disk-chain \(C' \) in \(E \) such that \(\partial C' = \partial C \times 1 \in F \times 1 \). Conversely, if we are given an \(F \times 1 \)-proper disk-chain \(C' \) in \(E \), then we can construct an \(F \)-proper disk-chain \(C \) in \(S^4 \) with \(\partial C' = \partial C \times 1 \)
by sliding $\partial C'$ along $F \times [0, 1] \subset F \times D^2$ = N. This implies that the map k_* is an isomorphism from $\Delta_E(F \times 1; Z_2)$ onto $\Delta(F; Z_2)$ proving (1), and further that k_* is an isomorphism from ξ_E to ξ proving (2). To see (3), let $E' = \text{cl}(S^4 - N')$ be the exterior of a surface-link F' in S^4 where $N' = F' \times D^2$ is a tubular neighborhood of F' in S^4 with the specified trivialization. Let $\gamma' \in H^1(E'; Z)$ be the cohomology class sending each oriented meridian of F' to 1. Assume that there is a γ-structure preserving homeomorphism $h : E' \cong E$. Since by definition, ξ is invariant under all the choices of the orientations on S^4 and the components of F, we can assume from (2) that h is orientation-preserving and $h^*(\gamma) = \gamma'$.

We need the following sublemma:

Sublemma 1.1.1. Let F_* be a closed oriented surface of a positive genus. Let h be an orientation-preserving auto-homeomorphism of $F_* \times S^1$ such that $h^*(\gamma) = \gamma$ for the Poincaré dual $\gamma \in H^1(F_* \times S^1; Z)$ of the homology class $[F_* \times 1] \in H_2(F_* \times S^1; Z)$. Then h is isotopic to an auto-homeomorphism h' with $h'(F_* \times 1) = F_* \times 1$.

Let F'_* and F_* be any positive genus surface components of F' and F respectively such that $h(F'_* \times S^1) = F_* \times S^1$. Then we see from Sublemma 1.1.1 and a property of γ', γ that the homeomorphism h is isotopic to a homeomorphism $h' : E' \cong E$ such that $h'(F'_* \times 1) = F_* \times 1$ for all F'_* and F_* with $h(F'_* \times S^1) = F_* \times S^1$. The homeomorphism h' induces an isomorphism from the quadratic function $\xi_{E'} : \Delta_{E'}(F' \times 1; Z_2) \to Z_2$ to the quadratic function $\xi_E : \Delta_E(F \times 1; Z_2) \to Z_2$. we have (3) except the proof of Sublemma 1.1.1. □

Proof of Sublemma 1.1.1. Using that the intersection number of $F_* \times 1$ and every 1-cycle in $F_* \times 1$ in $F_* \times S^1$ is 0, we see that $\gamma|_{F_* \times 1} = 0$. For a point $x \in F_*$, we assume that $h(x, 1) = (x, 1)$ by an isotopic deformation of h. Since $h^*(\gamma) = \gamma$, the automorphism $h_\#$ of $\pi_1(F_* \times S^1, (x, 1))$ preserves the subgroup $\pi_1(F_* \times 1, (x, 1))$. Let f be an auto-homeomorphism of $(F_* \times 1, (x, 1))$ inducing the automorphism $h_\#|_{\pi_1(F_* \times 1, (x, 1))}$ up to an conjugation. Then the auto-homeomorphism $h' = f \times 1$ of $F_* \times S^1$ is homotopic to h since $F_* \times S^1$ is a Haken manifold and $h'_\#$ coincides with $h_\#$ up to a conjugation. By F. Waldhausen’s result in [21], h is isotopic to h' and $h'(F_* \times 1) = F_* \times 1$. □

Let $\zeta(F)$ be the Gauss sum

$$GS(\xi) = \sum_{x \in \Delta(F; Z_2)} \exp(2\pi \sqrt{-1} \xi(x) / 2).$$

The following theorem is useful to obtain a pseudo-ribbon non-ribbon surface-link:

Theorem 1.2.

(1) For every surface-link F of total genus g, the invariant $\zeta(F)$ is 0, 1 or $\pm 2^s$ for an integer s with $1 \leq s \leq g$.

5
(2) If \(F \) is a ribbon surface-link of total genus \(g \), then we have \(\zeta(F) = 2^g \).

(3) For any connected sum \(F = F_1 \# F_2 \) of any surface-links \(F_1 \) and \(F_2 \), we have

\[
\zeta(F) = \zeta(F_1)\zeta(F_2).
\]

It appears unknown whether there is a surface-link \(F \) with \(\zeta(F) = -2^g \).

Proof. If \(\Delta(F; Z_2) = 0 \), then we have \(\zeta(F) = 1 \) since \(\xi(0) = 0 \). Assume \(\Delta(F; Z_2) \neq 0 \). Let \(x_i \) (\(i = 1, 2, \ldots, s \)) and \(y_j \) (\(j = 1, 2, \ldots, u \)) be a \(Z_2 \)-basis for \(\Delta(F; Z_2) \) with \(0 \leq u \leq s \leq g \) such that \(\Int_2(x_i, x_i') = \Int_2(y_j, y_j') = 0 \) and \(\Int_2(x_i, y_j) = \delta_{ij} \) for all \(i, i', j, j' \). Let \(\Delta_i \) (\(i = 1, 2, \ldots, s \)) be the direct summand of \(\Delta(F; Z_2) \) with basis \(x_i, y_i \) for \(i \leq u \) or \(x_i \) for \(i > u \). Let \(\xi_i \) be the restriction of \(\xi \) to \(\Delta_i \). For every \(i \leq u \), we have either \(\xi_i(x_i) = 0 \) and \(\xi_i(x_i + y_i) = \xi_i(y_i) + 1 \) or \(\xi_i(x_i) = \xi_i(y_i) = \xi_i(x_i + y_i) = 1 \), so that \(GS(\xi_i) = \pm 2 \) by noting \(\exp(\pi\sqrt{-1}) = -1 \). For every \(i > s \), it is direct to see that \(GS(\xi_i) \) is 2 or 0 according to whether \(\xi_i(x_i) \) is 0 or 1. Since \(\Delta(F; Z_2) \) splits into \(\Delta_i \) (\(i = 1, 2, \ldots, s \)) orthogonally with respect to the \(Z_2 \)-intersection form on \(F \), we have

\[
\zeta(F) = GS(\xi) = GS(\xi_1)GS(\xi_2) \cdots GS(\xi_s) = 0, 1 \text{ or } \pm 2^s,
\]

showing (1). To show (2), let \(F \) be a ribbon surface-link of total genus \(g \). By [11], \(F \) admits a Seifert hypersurface \(V \) which is homeomorphic to the connected sum of handlebodies \(V_i \) (\(i = 1, 2, \ldots, r \)) of total genus \(g \) and some copies of \(S^1 \times S^2 \). Let \(O(F; Z_2) \) be the subgroup of \(\Delta(F; Z_2) \) generated by a half \(Z_2 \)-basis of \(H_1(F; Z_2) \) which are represented by meridian loops of \(V_i \) (\(i = 1, 2, \ldots, r \)). It is direct to see that \(\xi(x) = 0 \) for all \(x \in O(F; Z_2) \). We take a \(Z_2 \)-basis \(x_i \) (\(i = 1, 2, \ldots, g \)), \(y_j \) (\(j = 1, 2, \ldots, u \)) of \(\Delta(F; Z_2) \) with \(0 \leq u \leq g \) such that \(x_i \) (\(i = 1, 2, \ldots, g \)) are a \(Z_2 \)-basis of \(O \), and \(\Int_2(y_j, y_j') = 0 \) and \(\Int_2(x_i, y_j) = \delta_{ij} \) for all \(i, j, j' \). As in the argument of the first half, we denote by \(\xi_i \) (\(i = 1, 2, \ldots, g \)) the restriction of \(\xi \) to the direct summand with basis \(x_i, y_i \) for \(i \leq u \) or \(x_i \) for \(i > u \). For every \(i \leq u \), the identity \(\xi_i(x_i) = 0 \) implies \(\xi_i(x_i + y_j) = \xi_i(y_j) + 1 \), so that \(GS(\xi_i) = 2 \). For every \(i > u \), it is direct to see that \(GS(\xi_i) \) is 2 since \(\xi_i(x_i) = 0 \). Thus, we have

\[
\zeta(F) = GS(\xi) = GS(\xi_1)GS(\xi_2) \cdots GS(\xi_g) = 2^g,
\]

showing (2). To show (3), we first show that \(\Delta(F; Z_2) = \Delta(F_1; Z_2) \oplus \Delta(F_2; Z_2) \) under the identification \(H_1(F; Z_2) = H_1(F_1; Z_2) \oplus H_1(F_2; Z_2) \). Since \(\Delta(F; Z_2) \supset \Delta(F_1; Z_2) \oplus \Delta(F_2; Z_2) \) is obvious, it suffices to show that \(\Delta(F; Z_2) \subset \Delta(F_1; Z_2) \oplus \Delta(F_2; Z_2) \). For the infinite cyclic covering \(p : \tilde{E} \to E \) associated with \(\gamma \), we consider an embedding

\[
e : F = F \times 1 \xrightarrow{\subseteq} F \times R^1 = \partial \tilde{E} \subseteq \tilde{E}.
\]

For \(F_i \) (\(i = 1, 2 \)) instead of \(F \), we have a similar embedding

\[
e_i : F_i \to \tilde{E}_i.
\]

6
We regard F as the union $F_1^0 \cup F_2^0$ where F_i^0 is a compact punctured surface of F_i with $\partial F_1^0 = \partial F_2^0$. We note that every (possibly singular) loop $L \subset F$ is homotopic in F to a bouquet

$$B_L = L_1^1 \lor L_2^1 \lor \cdots \lor L_1^r \lor L_2^r$$

such that L_i^j is a (possibly singular) loop in F_i^0 and the base point is sent to a point $b \in e(\partial F_i^0) = e(\partial F_1^0)$ by e. Since $\pi_1(\tilde{E},b)$ is the free product $\pi_1(\tilde{E}_1,b) \ast \pi_1(\tilde{E}_2,b)$ and each loop L_i^j represents an element of $\pi_1(\tilde{E}_i,b)$, we see from a result of W. Magnus-A. Karrass-D. Solitar [14;p.182] that if L is null-homotopic in \tilde{E}, then some loop L_i^j represents a trivial element of $\pi_1(\tilde{E}_i,b)$. The bouquet obtained from B_L by removing this loop L_i^j is homotopic in F to a bouquet

$$B_{L'} = (L')_1^1 \lor (L')_2^1 \lor \cdots \lor (L')_1^{r-1} \lor (L')_2^{r-1}$$

such that $(L')_i^j$ is a loop in F_i^0 and the base point is sent to the point b by e. Then we note that L is homologous to $L_i^j + B_{L'}$ in F. Since $B_{L'}$ is null-homotopic in \tilde{E}, we can conclude by induction on r that L is homologous in F to the sum $L_1 + L_2$ where L_i is the sum of loops in F_i^0 which are null-homotopic in \tilde{E}_i. This implies that

$$\Delta(F;Z_2) \subset \Delta(F_1;Z_2) \oplus \Delta(F_2;Z_2)$$

and hence

$$\Delta(F;Z_2) = \Delta(F_1;Z_2) \oplus \Delta(F_2;Z_2).$$

For every element $x_i \in \Delta(F_i;Z_2)$ ($i = 1, 2$), we have $\text{Int}_2(x_1, x_2) = 0$, so that

$$\xi(x_1 + x_2) = \xi(x_1) + \xi(x_2).$$

By this identity, we have

$$\exp(2\pi \sqrt{-1} \frac{\xi(x_1 + x_2)}{2}) = \exp(2\pi \sqrt{-1} \frac{\xi(x_1)}{2}) \exp(2\pi \sqrt{-1} \frac{\xi(x_2)}{2}),$$

which implies the identity $\xi(F) = \xi(F_1)\xi(F_2)$. \square

Let D^2 be the disk, and $\rho_D : D^2 \times [0, 1] \rightarrow D^2$ the projection to the first factor. Let k be a knot in $D^2 \times [0, 1]$ such that $\rho_D(k)$ be a transversely immersed loop in D^2. We consider an unknotted embedding $f^1 : D^2 \times S^1 \rightarrow R^3$ with +1-framing. Let

$$\tilde{f}^1 : (D^2 \times S^1) \times [0, 1] \xrightarrow{f^1 \times id} R^3 \times [0, 1] \subset R^4$$

be the associated embedding. Under the identification

$$(D^2 \times [0, 1]) \times S^1 = (D^2 \times S^1) \times [0, 1],$$

we obtain the torus $k \times S^1$ in $(D^2 \times S^1) \times [0, 1]$. The turned spun T^2-knot of the knot k is the T^2-knot $T(k) = \tilde{f}^1(k \times S^1)$ in $R^4 \subset R^4 \cup \{\infty\} = S^4$ (see J. Boyle.
can see also that the knot-exteriors of an observation due to F. Gonzalez-Acuña found in J. Boyle’s paper [1], the knot-
On the other hand, we have lent. However, from Lemma 1.1(3), we see that the knot-exteriors of 2. The torsion linking of a pseudo-ribbon surface-link

Corollary 1.3. Any connected sum \(F \# T(k)\) of a surface-link \(F\) and the turned spun \(T^2\)-knot \(T(k)\) of a non-trivial knot \(k\) is a non-ribbon surface-link.

Proof. First, we show the Gauss sum invariant \(\zeta(T(k)) = 0\). By the unknotted embedding \(f^1 : D^2 \times S^1 \to R^3\) with 0-framing instead of \(f^1\), we obtain the spun \(T^2\)-knot \(T^0(k)\) of the knot \(k\), which is directly seen to be a ribbon \(T^2\)-knot. We have the following corollary to Theorem 1.2, generalizing a result of A. Shima [19]:

For any integer sequence \(g_1 \geq g_2 \geq \cdots \geq g_r \geq 0\) with \(g_1 > 0\), we take any pseudo-ribbon (e.g. trivial or ribbon) surface-link with components \(F_i\) \((i = 1, 2, \ldots, r)\) such that genus\((F_1) = g_1 - 1\) and genus\((F_i) = g_i\) \((i = 2, 3, \ldots, r)\). Then we see from Corollary 1.3 that the connected sum \(F_1 \# T(k) \cup F_2 \cup \ldots F_r\) is a pseudo-ribbon, non-ribbon surface-link of genera \(g_i\) \((i = 1, 2, \ldots, r)\). For a surface-knot, we have a result on the knot-exterior as follows:

Example 1.4 Let \(F\) be a surface-knot \(F\) with \(\zeta(F) \neq 0\). Since the spun \(T^2\)-knot \(T^0(k)\) of a non-trivial knot \(k\) is a ribbon \(T^2\)-knot, we see from Theorem 1.2 that

\[
\zeta(F \# T^0(k)) = 2 \zeta(F) \neq 0.
\]

On the other hand, we have \(\zeta(F \# T(k)) = 0\), for \(\zeta(T(k)) = 0\) by Corollary 1.3. By an observation due to F. González-Acuña found in J. Boyle’s paper [1], the knot-exteriors of \(T(k)\) and \(T^0(k)\) are homotopy equivalent. Examining it carefully, we can see also that the knot-exteriors of \(F \# T^0(k)\) and \(F \# T(k)\) are homotopy equivalent. However, from Lemma 1.1(3), we see that the knot-exteriors of \(F \# T^0(k)\) and \(F \# T(k)\) are not homeomorphic, generalizing the property between the \(T^2\)-knots \(T(k)\) and \(T^0(k)\) known by J. Boyle [1] and Z. Iwase [4].

2. The torsion linking of a pseudo-ribbon surface-link

Let \(p : \tilde{W} \to W\) be the infinite cyclic covering of a compact oriented 4-manifold \(W\) belonging to an element \(\gamma \in H^1(W; Z)\). Let \(A\) and \(A'\) be \(0\) or compact 3-submanifolds of \(\partial W\) such that \(A' = \text{cl}(\partial W - A)\). Let \(\tilde{A} = p^{-1}(A)\) and \(\tilde{A}' = p^{-1}(A')\). We briefly explain the torsion linking of \((\tilde{W}, \tilde{A}, \tilde{A}')\) which has been done in [7]. For
a \Lambda\text{-module } H, \text{ let } TH \text{ be the } \Lambda\text{-torsion part of } H, \text{ and } BH = H/TH. \text{ (Unless otherwise stated, abelian groups are regarded as } \Lambda\text{-modules on which } t \text{ operates as the identity.) Let } tH \text{ be the } Z\text{-torsion part of } H, \text{ and } bH = H/tH. \text{ Let } E^q(H) = \text{Ext}^q_\Lambda(H, \Lambda). \text{ For a finitely generated } \Lambda\text{-module } H, \text{ we have a unique maximal finite } \Lambda\text{-submodule } DH \text{ of } H. \text{ Then we have a } t\text{-anti epimorphism }

\theta_{A,A'} : DH_1(\tilde{W}, \tilde{A}; Z) \rightarrow E^1(BH_2(\tilde{W}, \tilde{A}'; Z))

which is an invariant of \((\tilde{W}, \tilde{A}, \tilde{A}')\) or \((W, A, A', \gamma)\). We denote the kernels of \(\theta_{A,A'}\) and \(\theta_{A',A}\) by \(DH_1(\tilde{W}, \tilde{A}; Z)\) and \(DH_1(\tilde{W}, \tilde{A}'; Z)\), respectively. Let \(\mu \in TH_3(\tilde{W}, \partial W; Z)\) be the fundamental class of the covering \(p : \tilde{W} \rightarrow W\), which is characterized by \(t\mu = \mu\) and \(p_*(\mu) = \gamma \cap [W]\) for the fundamental class \([W]\) of \(W\). Let \(\tau H^2(\tilde{W}, \tilde{A}; Z)\) be the image of the Bockstein coboundary map

\(\delta_{Q/Z} : H^1(\tilde{W}, \tilde{A}; Z) \rightarrow H^2(\tilde{W}, \tilde{A}; Z).\)

The second duality in [7] is equivalent to the following lemma (see [7; Theorem 6.5]):

Lemma 2.1. The cap product map \(\cap \mu : \tau H^2(\tilde{W}, \tilde{A}; Z) \rightarrow tH_1(\tilde{W}, \tilde{A}'; Z)\) induces an isomorphism

\(\cap \mu : \text{hom}(DH_1(\tilde{W}, \tilde{A}; Z), Q/Z) \cong DH_1(\tilde{W}, \tilde{A}'; Z).\)

In fact, by Lemma 2.1 we have a \(t\)\text{-isometric non-singular bilinear form

\(\ell : DH_1(\tilde{W}, \tilde{A}; Z) \times DH_1(\tilde{W}, \tilde{A}'; Z) \rightarrow Q/Z\)

by taking \(\ell(x, y) = f_y(x) \in Q/Z\) for \(x \in DH_1(\tilde{W}, \tilde{A}; Z), y \in DH_1(\tilde{W}, \tilde{A}'; Z), f_y \in \text{hom}(DH_1(\tilde{W}, \tilde{A}; Z), Q/Z)\) with \(f_y \cap \mu = y\). This bilinear form \(\ell\) is an invariant of \((\tilde{W}, \tilde{A}, \tilde{A}')\) or \((W, A, A', \gamma)\) and called the **torsion linking** of \((\tilde{W}, \tilde{A}, \tilde{A}')\) or \((W, A, A', \gamma)\). Let \(F\) be a surface-link in \(S^4 = R^4 \cup \{\infty\}\), and \(E\) the compact exterior \(\text{cl}(S^4 - N)\) where \(N\) denotes a normal disk bundle of \(F\) in \(S^4\). Taking \(W = E, A = \partial E, A' = \emptyset\) and the element \(\gamma \in H^1(E; Z) = \text{hom}(H_1(E; Z), Z)\) sending each oriented meridian of \(F\) to 1 \(\in Z\), we have, as a surface-link type invariant, the **torsion linking**

\(\ell = \ell_F : DH_1(\tilde{E}, \partial \tilde{E}; Z) \times DH_1(\tilde{E}; Z) \rightarrow Q/Z\)

of the surface-link \(F\). The following theorem is proved in §3:

Theorem 2.2. If \(F\) is a pseudo-ribbon surface-link, then the torsion linking \(\ell_F\) vanishes. In other words,

\(DH_1(\tilde{E}, \partial \tilde{E}; Z) = DH_1(\tilde{E}; Z) = 0.\)
The linking signature $\sigma(F)$ and the local linking signatures $\sigma_i(F)$ are defined as modulo 4 integers in [10] by using the Gauss sum of the quadratic function associated with the torsion linking ℓ_F. The following corollary is direct from Theorem 2.2:

Corollary 2.3. If F is a pseudo-ribbon surface-link, then we have

$$\sigma(F) = \sigma_p^i(F) = 0$$

for all prime numbers p and all positive integers i.

3. Constructing a canonical Seifert hypersurface for a pseudo-ribbon surface-link

We assume that the singularity image $\rho S(F)$ in R^3 of a pseudo-ribbon surface-link F in R^4 consists of mutually disjoint simple loops C_i ($i = 1, 2, \ldots, r$). Let N_i be a regular neighborhood of C_i in $\rho(F)$, so that we have a homeomorphism

$$h_i : (X, v) \times S^1 \cong (N_i, C_i) \quad (i = 1, 2, \ldots, r),$$

where X denotes a cone over a four-point set with v as the vertex. We regard X as the subgraph of the 1-skeleton $J^{(1)}$ of a bouquet J of two 2-simplices at a vertex such that the complement graph is the union of two disjoint 1-simplices I and I'. In this case, v is the vertex of the bouquet J. Then h_i extends to an embedding $\tilde{h}_i : J \times S^1 \to R^3$. We note that there are two choices on regarding X as such a subgraph of $J^{(1)}$. Our choice is made to satisfy the condition that

$$P = \text{cl}(\rho(F) - \cup_{i=1}^r N_i) \cup (\cup_{i=1}^r \tilde{h}_i((I \cup I') \times S^1))$$

is an orientable 2-manifold with an orientation induced from $\rho(F) - \cup_{i=1}^r N_i$. The 2-manifold P is referred to as a 2-manifold obtained from $\rho(F)$ by orientation-preserving cut along the C_i’s. Let P_j ($j = 1, 2, \ldots, s$) be the components of P such that the compact 3-manifold V_j in R^3 bounded by P_j satisfies the condition that $P_j \subset V_{j'}$ implies $j < j'$.

Let T be a four-sided disk, and I_0 a proper interval in T splitting T into two four-sided disks. We identify the quotient space T/I_0 with J so that the quotient map $q : T \to J = T/I_0$ is a half-twist band projection with $q(I_0) = v$. For a subset A of R^3 and an interval $[a, b]$ granting $a = b$, we denote the subset $\{(x, t) | x \in A, t \in [a, b]\}$ of R^4 by $A[a, b]$. We choose real numbers t_j ($j = 1, 2, \ldots, s$) so that $t_1 < t_2 < \cdots < t_s$. After an ambient deformation of F, we have a Seifert hypersurface V for F so that

$$V = \left(\bigsqcup_{j=1}^s V_j[t_j] \right) \cup \left(\bigsqcup_{i=1}^r \tilde{h}_i^* (T \times S^1) \right).$$
where h_i^* denotes an embedding $h_i^* : T \times S^1 \to R^4$ such that the composite

$$\rho h_i^* : T \times S^1 \to R^4 \xrightarrow{\rho} R^3$$

is equal to the composite

$$T \times S^1 \xrightarrow{q \times 1} J \times S^1 \to R^3.$$

By construction, we have

$$\rho(V) = \left(\prod_{j=1}^s V_j \right) \cup \left(\prod_{i=1}^r \bar{h}_i(J \times S^1) \right).$$

Further, we can assume that $V \subset \rho(V)[t_1, t_s]$. We call this hypersurface V a *canonical Seifert hypersurface* of the pseudo-ribbon surface-link F. Let E_V be the compact oriented 4-manifold obtained from the exterior E of F in $S^4 = R^4 \cup \{\infty\}$ by splitting along $V \cap E(\equiv V)$. Let $V^\pm(\equiv V)$ be the two copies of V in $\partial E_V \subset E_V$. Let $i^\pm : V \cong V^\pm \subset E_V$ be the composite injections. The following theorem is a key to our argument:

Theorem 3.1. For a canonical Seifert hypersurface V of a pseudo-ribbon surface-link F, the induced homomorphisms

$$i^\pm_* : tH_1(V; Z) \to tH_1(E_V; Z)$$

on the torsion part of the first integral homology are trivial.

To prove this theorem, we need some preliminaries. First we show the following lemma:

Lemma 3.2. For the inclusion $k : \coprod_{j=1}^s V_j[t_j] \subset V$, we have

$$tH_1(V; Z) \subset \text{image}[H_1(\coprod_{j=1}^s V_j[t_j]; Z) \xrightarrow{k_*} H_1(V; Z)].$$

Proof. Let $A_i = \bar{h}_i^*(I \times S^1) (i = 1, 2, \ldots, r)$ be proper annuli with any orientations in V. Then we have

$$\text{Int}([A_i], x) = 0$$

for all $x \in tH_1(V; Z)$ with respect to the intersection form

$$\text{Int} : H_2(V, \partial V; Z) \times H_1(V; Z) \to Z.$$
This means that every element \(x \in tH_1(V; Z) \) is represented by an embedded closed oriented 1-manifold \(L \) with \(L \cap A_i = \emptyset \) for all \(i \), so that \(L \) is isotopically deformed into \(\coprod_{j=1}^s V_j[t_j] \). \(\square \)

We also need the following lemma:

Lemma 3.3. For every polyhedron \(V \) in \(R^3 \), we have \(tH_1(V; Z) = 0 \).

Proof. We may assume that \(V \) is compact and connected. Further, we may assume that \(V \) is a compact connected 3-submanifold of \(R^3 \) by taking a regular neighborhood of \(V \) instead of \(V \). For any elements \(x \in tH_1(V, \partial V; Z) \) and \(y \in tH_1(V; Z) \), we can represent \(x \) and \(y \) by disjoint closed oriented 1-manifolds \(L \) and \(L_y \) in \(V \). Then there are a non-zero integer \(m \) and a 2-chain \(c_y \) in \(V \) such that \(\partial c_y = mL_y \) and the torsion linking

\[
\ell_V : tH_1(V, \partial V; Z) \times tH_1(V; Z) \longrightarrow Q/Z
\]

is computed by the identity \(\ell_V(x, y) = \text{Int}(L_x, c_y)/m \pmod{1} \). Since the linking number \(\text{Link}(L_x, L_y) \in Z \) in \(R^3 \) is defined, we have

\[
\text{Int}(L_x, c_y)/m = \text{Link}(L_x, mL_y)/m = \text{Link}(L_x, L_y) \in Z
\]

and hence \(\ell_V(x, y) = 0 \in Q/Z \). Using that the torsion linking \(\ell_V \) is non-singular, we obtain \(tH_1(V, \partial V; Z) = tH_1(V; Z) = 0 \). \(\square \)

By using Lemmas 3.2 and 3.3, Theorem 3.1 is proved as follows:

Proof of Theorem 3.1. We regard \([t_1, t_s] \subset R^1 \cup \{ \infty \} = S^1 \). Let \(f : \rho(V) \times S^1 \longrightarrow R^4 \subset R^4 \cup \{ \infty \} = S^4 \) be an embedding sending \(\rho(V) \times [t_1, t_s] \) to \(\rho(V)[t_1, t_s] \) identically. We represent any element \(x \in tH_1(V; Z) \) by a closed oriented 1-manifold \(L \) in \(\coprod_{j=1}^s V_j[t_j] \). Let \(L_j[t_j] = L \cap V_j[t_j] \) for a closed 1-manifold \(L \) or \(\emptyset \) in \(V \). We take a point \(t_0 \in S^1 - [t_1, t_s] \). For any \(j \) with \(L_j \neq \emptyset \), we further take a subarc \(\alpha_j^+ \subset S^1 \) with \(\partial \alpha_j^+ = \{ t_0, t_j \} \) so that \(L_j \times \alpha_j^+ \) meets \(V_j[t_j] \) from the positive side of \(V_j[t_j] \). Then the image \(f(\coprod_{j=1}^s L_j \times \alpha_j^+) \) is a disjoint union of annuli which is contained in \(E_V \) and whose boundary consists of \(L \) in \(V^+ \) and \(L'_x = f(\coprod_{j=1}^s L_j \times t_0) \) in \(f(\rho(V) \times t_0) \subset E_V \). Since

\[
H_1(\rho(V) \times S^1; Z) \cong H_1(\rho(V); Z) \oplus H_1(S^1; Z),
\]

we see from Lemma 3.3 that \([L_x] = 0 \in H_1(\rho(V) \times S^1; Z) \). Using that the natural homomorphism \(H_1(\rho(V) \times t_0; Z) \longrightarrow H_1(\rho(V) \times S^1; Z) \) is injective, we see that \(L'_x \) bounds a 2-chain \(c' \) in \(f(\rho(V) \times t_0) \). Thus, \(L_x \subset V^+ \) bounds a 2-chain \(f(\coprod_{j=1}^s L_j \times \alpha_j^+) + c' \) in \(E_V \), which means that \(i^+_x(x) = 0 \). Similarly, \(i^-_x(x) = 0 \). \(\square \)
The following corollary is direct from Theorem 3.1 since the infinite cyclic covering space \tilde{E} is constructed from the copies $((E_V)_i; (V^+_i), (V^-_i))$ of the triplet $(E_V; V^+, V^-)$ by pasting $(V^-)_i$ to (V^+_i) for all i.

Corollary 3.4. For any canonical Seifert hypersurface V of a pseudo-ribbon surface-link F, every lift $\tilde{i} : V \to \tilde{E}$ of the natural injection $i : V \to E$ induces the trivial homomorphism

$$\tilde{i}_* = 0 : tH_1(V; Z) \to tH_1(\tilde{E}; Z).$$

By using Corollary 3.4, Theorem 2.2 is proved as follows:

Proof of Theorem 2.2. We consider the following commutative diagram:

$$
\begin{array}{ccc}
\tau H^2(\tilde{E}, \partial \tilde{E}; Z) & \xrightarrow{\cap \mu} & tH_1(\tilde{E}; Z) \\
\tilde{i}^* \downarrow & & \tilde{i}_* \\
tH^2(V, \partial V; Z) & \cong & tH_1(V; Z).
\end{array}
$$

In this diagram, we have

$$\tilde{i}_* = 0 : tH_1(V; Z) \to tH_1(\tilde{E}; Z)$$

by Corollary 3.4 and hence

$$\cap \mu = 0 : \tau H^2(\tilde{E}, \partial \tilde{E}; Z) \to tH_1(\tilde{E}; Z).$$

By Lemma 2.1, we have

$$\cap \mu = 0 : \text{hom}(DH_1(\tilde{E}, \partial \tilde{E}; Z)^\theta, Q/Z) \cong DH_1(\tilde{E}; Z)^\theta,$$

which implies $DH_1(\tilde{E}, \partial \tilde{E}; Z)^\theta = DH_1(\tilde{E}; Z)^\theta = 0$. \Box

Here is another corollary to Theorem 3.1.

Corollary 3.5. For any canonical Seifert hypersurface V of a pseudo-ribbon surface-link F, the natural homomorphism $j_* : tH_1(V; Z) \to tH_1(V, \partial V; Z)$ is trivial.

Proof. From the boundary isomorphism $\partial : H_2(S^4, V \times I; Z) \cong H_1(V \times I; Z)$ and the excision isomorphism $H_2(E_V, V^+ \cup V^-; Z) \cong H_2(S^4, V \times I; Z)$, the composite of the natural homomorphisms

$$tH_2(E_V, \partial E_V; Z) \xrightarrow{\partial} tH_1(\partial E_V; Z) \xrightarrow{i_*} tH_1(V \times I; Z)$$
is an isomorphism. Since $\partial E_V = \partial (V \times I)$, the Poincaré duality implies that the composite of the natural homomorphisms
\[
\hom(t H_1(E_V; Z), Q/Z) \xrightarrow{i^\#} \hom(t H_1(\partial E_V; Z), Q/Z) \xrightarrow{\partial'^\#} \hom(t H_2(V \times I, \partial(V \times I); Z), Q/Z)
\]
is an isomorphism and hence the composite of the natural homomorphisms
\[
t H_2(V \times I, \partial(V \times I); Z) \xrightarrow{\partial} t H_1(\partial E_V; Z) \xrightarrow{i} t H_1(E_V; Z)
\]
is an isomorphism by applying $\hom(\ , Q/Z)$ to the homomorphisms above. Further, composing a suspension isomorphism
\[
\sigma : t H_1(V, \partial V; Z) \cong H_2((V, \partial V) \times (I, \partial I); Z) = t H_2(V \times I, \partial(V \times I); Z)
\]
to this composite isomorphism, we obtain an isomorphism
\[
\theta = i_* \partial \sigma : t H_1(V, \partial V; Z) \cong t H_1(E_V; Z).
\]
For the natural homomorphism $j_* : t H_1(V; Z) \longrightarrow t H_1(V, \partial V; Z)$, the composite $j_* \theta : t H_1(V; Z) \longrightarrow t H_1(E_V; Z)$ is equal to the map $i^+_* - i^-_*$ which is the zero map. Thus, $j_* = 0$. \qed

We note that Corollary 3.5 does not mean that $t H_1(V; Z) = 0$. It is unknown whether every pseudo-ribbon surface-link F admits a Seifert hypersurface V with $t H_1(V; Z) = 0$.

4. The triple point cancelling number of a surface-link

The triple point number of a surface-link F in R^4, denoted by $T(F)$ is the minimum on the triple point number of the singular surface $\rho(F')$ for all generic surface-links F' ambient isotopic to F. In this section, we shall discuss a similar but distinct concept on a surface-link F. Let F' be a generic surface-link ambient isotopic to F. By an ambient deformation of F' without changing $\rho(F')$, we can consider that the set $F' \cap \rho^{-1}(B_x)$ for a 3-ball neighborhood B_x of every triple point $x \in \rho(F')$ in R^3 is the union $D_1[t_1] \cup D_2[t_2] \cup D_3[t_3]$ where D_i is a proper disk in B_x and $t_1 < t_2 < t_3$. Then we make an orientation-preserving cut on $D_i \cup D_{i+1} \subset B_x$ for $i = 1$ or 2 to obtain from F' a new generic surface-link F'_1 in R^4 (see J. S. Carter-M. Saito [2,Figure N]). When we compare $\rho(F'_1)$ with $\rho(F')$, $\rho(F'_1)$ has the triple points decreased by one point and the branch points increased by two points. We call the operation $F' \Rightarrow F'_1$ a triple point cancelling operation on $\rho(F')$. The triple point cancelling number of the singular surface $\rho(F')$ is the minimum of the number of triple point cancelling operations on $\rho(F')$ needed to obtain a pseudo-ribbon surface-link $F'_* \subset R^4$.
Definition 4.1. The triple point cancelling number of a surface-link F in R^4, denoted by $\mathcal{T}(F)$ is the minimum on the triple point cancelling number of the singular surface $\rho(F')$ for all generic surface-links F' ambient isotopic to F.

If we compare $\mathbb{T}(F)$ to the crossing number of a classical knot, then we could compare $\mathcal{T}(F)$ to the unknotting number of a classical knot. The following lemma is useful to understand a triple point cancelling operation:

Lemma 4.2. Let F'_* be a surface-link obtained by doing m triple point cancelling operations on $\rho(F')$ for a generic surface-link F' ambient isotopic to a surface-link F in R^4. Then F'_* is ambient isotopic to a surface-link F_* obtained from F by an embedded surgery along m mutually disjoint 1-handles on F. Conversely, if F_* is a surface-link obtained from F by an embedded surgery along m mutually disjoint 1-handles on F, then F_* and F are respectively ambient isotopic to generic surface-links F'_* and F' such that F'_* is a surface-link obtained by doing m triple point cancelling operations on $\rho(F')$.

Proof. The proof of the first half part is obvious from the definition of a triple point cancelling operation. To prove the second half part, we use three 2-spheres $S_i \subset R^3[t_i]$ ($i = 1, 2, 3$) with $t_1 < t_2 < t_3$ such that the singularity image $\rho S(S_1 \cup S_2 \cup S_2)$ is homeomorphic to a suspension of a three point set and hence has just two triple points. Let B^3 be a 3-ball in R^3 such that $D_i = S_i \cap B^3[t_i]$ is a disk with $\rho(\text{cl}(S_i - D_i))$ ($i = 1, 2, 3$) mutually disjoint disks in R^3. We find a 1-handle $h \subset B^3[t_1, t_2]$ on $D_1 \cup D_2 \cup D_3$ connecting D_1 and D_2 such that $\rho(h)$ induces a triple point cancelling operation on $\rho(S_1 \cup S_2 \cup S_3)$. Let h_i ($i = 1, 2, \ldots, m$) be mutually disjoint 1-handles on F to produce a surface-link F_*. Then F is ambient isotopic to a generic surface-link F' such that $F' \cap B^3[t_1, t_3] = F' \cap \rho^{-1}(B^3_i)$ and $(B^3_i[t_1, t_3]; F' \cap B^3_i[t_1, t_3], h_i)$ is $[t_1, t_3]$-level-preservingly homeomorphic to $(B^3_i[t_1, t_3]; D_1 \cup D_2 \cup D_3, h)$ for some m mutually disjoint 3-balls $B^3_i (i = 1, 2, \ldots, m)$ in R^3. The surface-link F_* is ambient isotopic to a surface-link F'_* obtained by doing m triple point cancelling operations on $\rho(F')$. \square

We use the following result later:

Corollary 4.3. Let F be an S^2-knot obtained from any non-trivial 2-bridge knot by the 2-twist spinning. Then $\mathcal{T}(F) = 1$.

Proof. Since $DH_1(\tilde{E}; Z) = H_1(\tilde{E}; Z) \cong \Lambda/(p, t + 1)$ for an integer $p \geq 3$ (see M. Teragaito [20]) and $BH_2(\tilde{E}, \partial \tilde{E}; Z) = 0$, the torsion linking ℓ_F is not zero by [7]. Hence we have $\mathcal{T}(F) \geq 1$ by Theorem 2.2. On the other hand, the S^2-knot F has a Seifert hypersurface V homeomorphic to a punctured Lens space. Then there is a 1-handle h on F such that $h \subset V$ with $\text{cl}(V - h)$ is a solid torus, so that the surface F_1 obtained from F by the embedded surgery along h is a trivial T^2-surface which is a pseudo-ribbon surface-knot. Hence $\mathcal{T}(F) \leq 1$ and $\mathcal{T}(F) = 1$. \square
The following remark concerns the difference $\mathcal{T}(F) - \mathcal{T}(F)$:

Remark 4.4. For a surface-link F, $\mathcal{T}(F) = 0$ if and only if $\mathcal{T}(F) = 0$ if and only if F is pseudo-ribbon by the definitions. S. Satoh observed that the difference $\mathcal{T}(F) - \mathcal{T}(F)$ is positive for every non-pseudo-ribbon surface-link F. In fact, we have $\mathcal{T}(F) \geq \mathcal{T}(F) > 0$ by the definitions. If $\mathcal{T}(F) = \mathcal{T}(F) > 0$, then we have a generic surface-link F' with $\mathcal{T}(F') = \mathcal{T}(F') = 1$ by taking $\mathcal{T}(F) - 1$ times of triple point cancelling operations. Then we see from a result of S. Satoh [16] that we find a simple double line connecting to the triple point and a branch point in $\rho(F')$, so that we can eliminate the triple point by moving this branch point along this double line, meaning that F' is a pseudo-ribbon surface-link, contradicting to $\mathcal{T}(F') = 1$. Hence $\mathcal{T}(F) - \mathcal{T}(F) > 0$. S. Satoh and A. Shima [17] showed that $\mathcal{T}(S(3_1)) = 4$ for the S^2-knot $S(3_1)$ obtained from the trefoil knot 3_1 by the 2-twist spinning. By Corollary 4.3, we have $\mathcal{T}(S(3_1)) = 1$, so that $\mathcal{T}(S(3_1)) - \mathcal{T}(S(3_1)) = 3$. There are open questions asking whether $\mathcal{T}(F) - \mathcal{T}(F) \geq 3$ for every non-pseudo-ribbon surface-knot F and whether there is a surface-knot F such that $\mathcal{T}(F) - \mathcal{T}(F)$ is greater than any previously given positive integer.

The inequality $\mathcal{T}(F_1 \# F_2) \leq \mathcal{T}(F_1) + \mathcal{T}(F_2)$ holds for any surface-knots F_1 and F_2, and the equality does not appear to hold in general (see T. Kanenobu [6]). **It is also an open question whether there is such an example.**

From now on, we shall establish an estimate of the triple point cancelling number of a general surface-link. Let $E = \text{cl}(S^4 - N)$ be the knot-exterior of a surface-knot F in S^4 where $N = F \times D^2$ is a tubular neighborhood of F in S^4 with the specified trivialization. Let V_0 be the handlebody such that $\partial V_0 = F$. Let M_ϕ be the closed 4-manifold obtained from the exterior E and $V_0 \times S^1$ by attaching the boundaries by a homeomorphism $\phi : \partial E = F \times S^1 \to \partial V_0 \times S^1$ which preserves the S^1-factor. Then M_ϕ is a closed connected oriented 4-manifold with $H_1(M_\phi; \mathbb{Z}) \cong \mathbb{Z}$, which we call a Z^{H_1}-manifold. We use the concept of exactness of Z^{H_1}-manifold in [8, 9] in our argument.

Lemma 4.5. Let F be a pseudo-ribbon surface-knot in S^4. Then there exists an attachment ϕ such that the Z^{H_1}-manifold M_ϕ is a spin exact Z^{H_1}-manifold.

Proof. Let V be a canonical Seifert hypersurface for F in S^4. Let C be the image of the boundary homomorphism $\partial : H_2(V, F; \mathbb{Z}) \to H_1(F; \mathbb{Z})$. By Corollary 3.5, we have a subgroup \tilde{C} of $H_1(F; \mathbb{Z})$ such that $\tilde{C} \supset C$ and the natural monomorphism $H_1(F; \mathbb{Z})/C \to H_1(V; \mathbb{Z})$ induces a monomorphism

$$H_1(F; \mathbb{Z}))/\tilde{C} \to bH_1(V; \mathbb{Z}).$$

Then \tilde{C} is a self-orthogonal complement of $H_1(F; \mathbb{Z})$ with respect to the intersection form $\text{Int} : H_1(F; \mathbb{Z}) \times H_1(F; \mathbb{Z}) \to \mathbb{Z}$. Let x_i, y_i be a \mathbb{Z}-basis for $H_1(F; \mathbb{Z})$ such
that $x_i \ (i = 1, 2, \ldots, g)$ is a \mathbb{Z}-basis for \mathbb{C} and $\text{Int}(x_i, x_j) = \text{Int}(y_i, y_j) = 0$ and $\text{Int}(x_i, y_j) = \delta_{ij}$ for all i, j. Let K_i^x and K_i^y be simple loops on F such that $K_i^x \cap K_j^x = K_i^y \cap K_j^y = K_i^x \cap K_j^y = \emptyset$ for all i, j with $i \neq j$ and $K_i^x \cap K_j^y$ is one point for all i. Let V_0 be a handlebody with $\partial V_0 = F$ such that $K_i^x \ (i = 1, 2, \ldots, g)$ bound mutually disjoint meridian disks $D_i \ (i = 1, 2, \ldots, g)$ in V_0. Let $\bar{V} = V \cup V_0$ be a closed oriented 3-manifold pasting F with these data which produces a \mathbb{Z}^{H_1}-manifold M_ϕ. From the homology exact sequence of the pair (\bar{V}, V), we obtain a natural isomorphism $bH_1(V; \mathbb{Z}) \cong H_1(\bar{V}; \mathbb{Z})$. When we regard V as V^+ in E_V, we see from Theorem 3.1 that the simple loop $K_i^x \subset V^+$ bounds a compact oriented surface F_i in E_V. Let $\bar{F}_i = F_i \cup D_i \ (i = 1, 2, \ldots, g)$ be closed oriented surfaces in M_ϕ. Let $T_i = K_i^y \times S^1 \subset F \times S^1 = \partial E \subset M_\phi \ (i = 1, 2, \ldots, g)$. Then the closed oriented surfaces \bar{F}_i and $T_i \ (i = 1, 2, \ldots, g)$ form a \mathbb{Z}-basis for $H_2(M_\phi; \mathbb{Z})$ with $\text{Int}(\bar{F}_i, \bar{F}_j) = \text{Int}(T_i, T_j) = 0$ and $\text{Int}(\bar{F}_i, T_j) = \delta_{ij}$ for all i, j with respect to the intersection form $\text{Int} : H_2(M_\phi; \mathbb{Z}) \times H_2(M_\phi; \mathbb{Z}) \longrightarrow \mathbb{Z}$. [To see that $\text{Int}(\bar{F}_i, \bar{F}_j) = 0$, we note that $K_i^x \ (i = 1, 2, \ldots, g)$ represent torsion elements in $H_1(V; \mathbb{Z})$, which implies that for each i there is a non-zero integer m_i such that $m_i \bar{F}_i$ is homologous to a cycle $C_i + C_i'$ in M_ϕ where C_i is a cycle in \bar{V} and C_i' is a cycle in $\text{int} E_V \subset S^4$. Then we have]

$$m_im_j\text{Int}(\bar{F}_i, \bar{F}_j) = \text{Int}(m_i\bar{F}_i, m_j\bar{F}_j) = 0$$

showing $\text{Int}(\bar{F}_i, \bar{F}_j) = 0.$] In particular, M_ϕ is spin. Using a collar of \bar{V} in M_ϕ, we take mutually disjoint closed oriented surfaces $\bar{F}_i' \ (i = 1, 2, \ldots, g)$ in M_ϕ such that $\bar{F}_i' \cap \bar{V} = \emptyset$ and \bar{F}_i' is homologous to \bar{F}_i in M_ϕ. Since the normal disk bundle N'_i of \bar{F}_i' in M_ϕ is trivial, the leaf V^* of M_ϕ obtained by taking connected sums of \bar{V} and $\partial N'_i \ (i = 1, 2, \ldots, g)$ in M_ϕ satisfies the condition that $tH_1(V^*; \mathbb{Z}) = 0$ and the image of the natural homomorphism $H_2(V^*; \mathbb{Z}) \longrightarrow H_2(M_\phi; \mathbb{Z})$ is a self-orthogonal complement with respect to the intersection form $\text{Int} : H_2(M_\phi; \mathbb{Z}) \times H_2(M_\phi; \mathbb{Z}) \longrightarrow \mathbb{Z}$. Let M'_ϕ be the 4-manifold obtained from M_ϕ by splitting along V^*. Then by [8; (4.7.2)] $tH_1(V^*; \mathbb{Z}) = 0$ implies $tH_1(M'_\phi; \mathbb{Z}) = tH_2(M_\phi, V^*; \mathbb{Z}) = 0$. We see from [9] that V^* is an exact leaf of M_ϕ and thus M_ϕ is exact. \

For a finitely generated Λ-module H, let $e(H)$ denote the minimal number of Λ-generators of H. By convention, $e(0) = 0$. We show the following theorem, which improves and generalizes Kamada’s estimate in [5]:

Theorem 4.6. Let F be a surface-link with r components and total genus g. Then for every Λ-submodule $H' \subset H = H_1(\bar{E}, \partial \bar{E}; \mathbb{Z})$ such that $D = H/H'$ is a $(t - 1)$-divisible finite Λ-module, there is a Λ-submodule D' of D such that

$$e(D') \leq T(F) \quad \text{and} \quad e(E^2(D/D')) \leq g + e(H') - r + 1 + T(F).$$

Proof. Let $m = e(H')$. Let F' be a surface-link obtained from F by an embedded surgery along m mutually disjoint 1-handles representing Λ-generators for
Let E' be the compact exterior of F' in S^4. Then we see that $H_1(\tilde{E}'; Z) \cong H/H' = D$, so that F' is a surface-knot of genus $g' = g + m - (r - 1)$. Since the 1-handle surgery can be done apart from the triple points of $\rho(F)$, we obtain a pseudo-ribbon surface-knot F'' of genus

$$g'' = g' + \mathcal{T}(F) = g + m - (r - 1) + \mathcal{T}(F)$$

from F' by $\mathcal{T}(F)$ times of triple point cancelling operations. Let E'' be the knot-exterior of F''. Then we have $H_1(\tilde{E}''; Z) \cong D/D'$ for a Λ-submodule D' of D with $e(D') \leq \mathcal{T}(F)$. By Theorem 2.2, we have a t-anti isomorphism

$$D/D' = H_1(\tilde{E}''; Z) = DH_1(\tilde{E}''; Z) \cong E^1(BH_2(\tilde{E}'', \partial \tilde{E}''; Z)).$$

Let M_ϕ be an exact \mathbb{Z}^{H_1}-manifold obtained from F'' by Lemma 4.5. By an argument in [8], we have a Λ-isomorphism

$$E^1(BH_2(\tilde{M}_\phi; Z)) \cong E^1(BH_2(\tilde{E}'', \partial \tilde{E}''; Z)).$$

Since M_ϕ is exact, we see from [9] that there is a splitting

$$BH_2(\tilde{M}_\phi; Z) \cong X \oplus \Lambda g''$$

for a torsion-free Λ-module X with $E^0E^0(X) = \Lambda g''$, so that

$$E^1(BH_2(\tilde{E}'', \partial \tilde{E}''; Z)) \cong E^1(X)$$

and we have a t-anti isomorphism

$$E^2(D/D') = E^2(H_1(\tilde{E}''; Z)) \cong E^2E^1(X).$$

Using a natural Λ-epimorphism $\Lambda g'' \cong E^0E^0(X) \to E^2E^1(X)$ (see [7]), we have

$$e(E^2(D/D')) = e(E^2E^1(X)) \leq g''.$$

A surface-link F is concordant to a surface-link F' if there is a proper locally-flat embedding $f : F \times [0, 1] \to S^4 \times [0, 1]$ such that $f(F \times 0) = F \times 0$ and $f(F \times 1) = F' \times 1$. Since the triple point cancelling number of every trivial surface-link is zero, the following corollary also implies that every positive integer is the triple point cancelling number of a surface-link with any previously given genera of the components.

Corollary 4.7. For every surface-link F and every integer $m \geq \mathcal{T}(F)$, there is a surface-link F_* such that F_* is concordant to F and $\mathcal{T}(F_*) = m$.

18
Proof. Let S_n be the n-fold connected sum of any S^2-knot in Corollary 4.3. Then we have $T(S_n) \leq n$. Let F_n be any connected sum of F and S_n and $F_0 = F$. Then F_n is concordant to F, since every S^2-knot is concordant to the trivial S^2-knot (see M. A. Kervaire [12]). Let E_n be the link-exterior of F_n in S^4. Let $H_n = H_1(\partial E_n, \partial \bar{E}_n; \mathbb{Z})$. Then we have

$$H_n = H_0 \oplus [\Lambda/(p, t+1)]^n.$$

In Theorem 4.6, we take $H = H_n$ and $H' = H_0$. Then by Theorem 4.6, there is a finite Λ-submodule D' of $D = H/H' = [\Lambda/(p, t+1)]^n$ such that $e(D') \leq T(F_n)$ and $e(E^2(D/D')) \leq g + e(H_0) - r + 1 + T(F_n)$. Since t acts on D as the (-1)-multiple map, we have a Λ-isomorphism

$$E^2(D/D') = \text{hom}(D/D', Q/\mathbb{Z}) \cong D/D'.$$

Thus, we have

$$n = e(D) \leq e(D') + e(D/D') \leq 2T(F_n) + g + e(H_0) - r + 1,$$

where g and r denote the total genus and the component number of F, respectively.

Using that g, $e(H_0)$ and r are independent of n, we see that

$$\lim_{n \to +\infty} T(F_n) = +\infty.$$

Using that $T(F_{n+1}) \leq T(F_n) + 1$ for all n, we find an integer n such that $T(F_n) = m$ for every integer $m \geq T(F)$. □

References