Splitting a 4-manifold with infinite cyclic fundamental group, revised

Akio KAWAUCHI

Osaka City University Advanced Mathematical Institute
Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
kawauchi@sci.osaka-cu.ac.jp

ABSTRACT

This article is a revised version of the author’s earlier paper on a TOP-splitting of a closed connected oriented 4-manifold with infinite cyclic fundamental group. We show that a closed connected oriented 4-manifold with infinite cyclic fundamental group is TOP-split if it is virtually TOP-split. As a consequence, we see that a closed connected oriented 4-manifold with infinite cyclic fundamental group is TOP-split if the intersection form is indefinite. This also implies that every closed connected oriented smooth spin 4-manifold with infinite cyclic fundamental group is TOP-split.

Mathematics Subject Classification 2010: 15B57, 57M10, 57M35, 57Q45

Keywords: 4-manifold, Infinite cyclic covering, Topological splitting, Topological unknotting, Indefinite intersection form
1. Introduction

A closed connected oriented 4-manifold M is called a Z^{π_1}-manifold if the fundamental group $\pi_1(M)$ is isomorphic to Z, and a Z^{H_1}-manifold if the first homology group $H_1(M; Z)$ is isomorphic to Z. A Z^{π_1}-manifold M is TOP-split if M is homeomorphic to the connected sum $S^1 \times S^3 \# M_1$ for a simply connected closed 4-manifold M_1, and virtually TOP-split if a finite covering of M is TOP-split. Here, we do not assume that a closed 4-manifold is a smooth or piecewise-linear manifold, but we can use smooth and piecewise-linear techniques for it because a punctured manifold of it is smoothable (see Freedman-Quinn [2]). The purpose of this paper is to make a revised version of the author’s earlier paper [7] on TOP-splitting of a Z^{π_1}-manifold, which was needed because a non-TOP-split Z^{π_1}-manifold was given by Hambleton-Teichner in [4] (see also [8, 10, 11] for some discussions and partial results). We shall show the following theorem:

Theorem 1.1. Every virtually TOP-split Z^{π_1}-manifold is TOP-split.

The non-TOP-split Z^{π_1}-manifold given by Hambleton-Teichner is obtained from their non-trivial Λ-Hermitian form by using a construction technique of a topological 4-manifold with a given Λ-Hermitian form by Freedman-Quinn [2], where $\Lambda = Z[Z] = Z[t, t^{-1}]$ denotes the integral Laurent polynomial ring in t. As it is observed by Friedl, Hambleton, Melvin and Teichner in [3] and seen also from Theorem 1.1, the Hambleton-Teichner example is virtually non-TOP-split. In the proof of [4], the non-TOP-splitting comes from the property that the intersection form of the Hambleton-Teichner example is definite. For a Z^{π_1}-manifold with indefinite intersection form, we show the following theorem.

Theorem 1.2. Every Z^{π_1}-manifold with indefinite intersection form is TOP-split.

A key to this theorem is to show the following lemma with which Theorem 1.1 implies Theorem 1.2.

Lemma 1.3. Every Z^{π_1}-manifold with indefinite intersection form is virtually TOP-split.

By the proof of Hillman-Kawauchi [5] using Theorem 1.2 in place of [7], we have:

Corollary 1.4 (Hillman-Kawauchi). Every orientable surface-knot F in S^4 is topologically unknotted if the fundamental group $\pi_1(S^4 \setminus F)$ is isomorphic to Z.

2
For an S^2-knot K in a simply connected 4-manifold M, we have the following unknottedting result, where K is of Dehn’s type in M if there is a map f from the 3-disk D^3 to M such that the image $f(\partial D^3) = K$ and the singular set $\Sigma(f) \subset \text{int} D^3$.

Corollary 1.5. Let M be a closed simply connected 4-manifold with indefinite intersection form. An S^2-knot K in M is topologically unknotted if we have one of the following two conditions:

1. The fundamental group $\pi_1(M \setminus K)$ is isomorphic to \mathbb{Z}.
2. The S^2-knot K is of Dehn’s type in M.

Proof. We can obtain a \mathbb{Z}^{π_1}-manifold M with indefinite intersection form from M by surgery replacing a normal disk-bundle $K \times D^2$ of K in M with $D^3 \times \partial D^2$. By Theorem 1.2, M is TOP-split. Since a simple loop ℓ in M representing a generator of $\pi_1(M) \cong \mathbb{Z}$ is unique up to isotopies of M, we see that K is topologically unknotted in M. If K is of Dehn’s type, then we have also $\pi_1(M \setminus K) \cong \mathbb{Z}$ by the proof of [5, Corollary 4.2], so that K is topologically unknotted. □

By Donaldson’s famous result [1], there is no smooth spin 4-manifold with definite intersection form. Hence we have the following corollary.

Corollary 1.6. Every smooth spin \mathbb{Z}^{π_1}-manifold is TOP-split.

Friedl, Hambleton, Melvin and Teichner in [3] showed that the non-TOP-split \mathbb{Z}^{π_1}-manifold given by Hambleton-Teichner is non-smoothable and further virtually non-smoothable. It appears unknown whether every smooth non-spin \mathbb{Z}^{π_1}-manifold with definite intersection form is TOP-split (see [10, p.209] as well as [3]). By [2], it is known that every non-singular Λ-Hermitian form on a free Λ-module of finite rank is realized as the Λ-intersection form $\text{Int}_\Lambda : H_2(\hat{M}; \mathbb{Z}) \times H_2(\hat{M}; \mathbb{Z}) \to \Lambda$ of the infinite cyclic covering \hat{M} of a \mathbb{Z}^{π_1}-manifold M. Thus, we obtain from Theorems 1.1 and 1.2 the following purely algebraic result:

Corollary 1.7. A non-singular Λ-Hermitian form

$$I_\Lambda : \Lambda^n \times \Lambda^n \to \Lambda$$

admits a Λ-basis x_1, x_2, \ldots, x_n of Λ^n such that $I_\Lambda(x_i, x_j)$ is an integer for all i, j if we have one of the following two conditions:

1. For a positive integer m, we regard Λ^n as a free $\Lambda^{(m)}$-module of rank mn over the subring $\Lambda^{(m)} = \mathbb{Z}[\ell^m, \ell^{-m}]$ of Λ, so that I_Λ induces a non-singular $\Lambda^{(m)}$-Hermitian form
Then for some positive integer \(m\), there is a \(\Lambda^{(m)}\)-basis \(x_{ik}\) \((i = 1, 2, \ldots, n; k = 1, 2, \ldots, m)\) for \(\Lambda^n\) such that \(I_{\Lambda^{(m)}}(x_{ik}, x_{i'k'})\) is an integer for all \(i, i', k, k'\).

(2) The nonsingular symmetric bilinear form \(I : \mathbb{Z}^n \times \mathbb{Z}^n \to \mathbb{Z}\) obtained from \(I_{\Lambda}\) by taking \(t = 1\) is indefinite.

The idea of proof of Theorem 1.1 is to find an exact leaf of a \(\mathbb{Z}^\pi\)-manifold, whose notion was developed in [10, 11] for the infinite cyclic covering \(\tilde{M}\) of a \(\mathbb{Z}^{H_1}\)-manifold \(M\). The idea of proof of Lemma 1.3 which is a key to Theorem 1.2 is to find a connected summand \(S^2 \times S^2\) in the infinite cyclic covering \(\tilde{M}\) of a \(\mathbb{Z}^\pi\)-manifold \(M\).

We note that this paper is done on a basis of the author's earlier paper [7]. In fact, in this paper we shall use the results [10, Corollary 3.4] and [11, Theorem 2.3, Lemma 3.6] on exactness of a \(\mathbb{Z}^\pi\)-manifold, but behind them we used the result that every \(\mathbb{Z}^\pi\)-manifold \(M\) is homology cobordant to the connected sum \(S^1 \times S^3\# M_1\) which has been shown in [7].

2. Proof of Theorem 1.1.

The following lemma is needed to reduce the proof of Theorem 1.1 to an argument on the double covering of \(\mathbb{Z}^\pi\)-manifold.

Lemma 2.1. Let \(M\) be a virtually topological split \(\mathbb{Z}^\pi\)-manifold. Then there is a positive integer \(m\) such that the \(2^m\)-fold cyclic covering \(M^{(2^m)}\) of \(M\) is TOP-split.

Proof. Let \(\tilde{M}\) be the infinite cyclic covering of \(M\). Then we have a 3-sphere \(S^3\) in \(\tilde{M}\) with \([S^3] \in H_3(\tilde{M}; Z) \cong Z\) a generator such that there is a constant \(n_0 > 0\) with \(S^3 \cap t^n(S^3) = \emptyset\) for all \(n > n_0\). Take \(2^m > n_0\). \(\square\)

By induction on \(m\) in Lemma 2.1, Theorem 1.1 follows from the following lemma:

Lemma 2.2. A \(\mathbb{Z}^\pi\)-manifold \(M\) is TOP-split if \(M^{(2)}\) is TOP-split.

A leaf \(V\) of a \(\mathbb{Z}^{H_1}\)-manifold \(M\) is exact if the natural semi-exact sequence

\[
0 \to \text{tor}H_2(\tilde{M}, \tilde{V}; Z) \to \text{tor}H_1(\tilde{V}; Z) \to \text{tor}H_1(\tilde{M}; Z)
\]

on the \(Z\)-torsion parts induced from the homology exact sequence of the pair \((\tilde{M}, \tilde{V})\) is exact, where the pair \((\tilde{M}, \tilde{V})\) denotes the lift of the pair \((M, V)\) under the infinite cyclic connected covering \(\tilde{M} \to M\) (see [10, 11]). A \(\mathbb{Z}^{H_1}\)-manifold \(M\) is exact if \(M\) admits an exact leaf. Because an exact \(\mathbb{Z}^\pi\)-manifold \(M\) is TOP-split (see [10,
Corollary 3.4), Lemma 2.2 is obtained by a combination of the following Lemmas 2.3 and 2.4:

Lemma 2.3. For a \mathbb{Z}^n-manifold M, if $M^{(2)}$ is TOP-split, then M has a connected leaf V with $H_1(V; \mathbb{Z})$ a free abelian group.

Lemma 2.4. If a \mathbb{Z}^{H_1}-manifold M has a connected leaf V with $H_1(V; \mathbb{Z})$ a free abelian group, then M is exact.

![Image of creating t-interchangeable 3-manifolds](image-url)

Figure 1: Creating t-interchangeable 3-manifolds

Proof of Lemma 2.3. Let S^3 be an oriented 3-sphere leaf of $M^{(2)}$ such that S^3 and $t(S^3)$ meet transversely for the covering involution t of $M^{(2)}$. Then the intersection $F = S^3 \cap t(S^3)$ is a closed orientable (possibly disconnected) 2-manifold F. Let E_+, E_- be the oriented 3-manifolds obtained from S^3 by splitting along F, and tE_+, tE_- be the oriented 3-manifolds obtained from the oriented 3-sphere $t(S^3)$ given by the orientation of S^3 and t by splitting along $tF = F$. We consider that F is oriented so that $\partial E_+ = \partial tE_+ = F$ and $\partial E_- = \partial tE_- = -F$. The 3-manifolds $V' = E_+ \cup tE_-$ and $tV' = tE_+ \cup E_-$ are closed oriented (possibly disconnected) 3-manifolds which are interchangeable by the t-action (see Fig. 1(i)). By the same local modification, the closed oriented 3-manifold V' can be also obtained from the immersed image $S^3_\#$ of S^3 in M under the double covering projection $M^{(2)} \to M$. We note that the homomorphism $H_1(M^{(2)}; \mathbb{Z}) \to H_1(M; \mathbb{Z})$ induced from the covering projection sends a generator $x^{(2)} \in H_1(M^{(2)}; \mathbb{Z}) \cong \mathbb{Z}$ to the double of a generator $x \in H_1(M; \mathbb{Z}) \cong \mathbb{Z}$.

A precise local picture is obtained from this picture by taking the product of this picture and an open disk.
Since $\text{Int}_{M(2)}(S^3, x^{(2)}) = +1$ and $[S^3]_{#} = [V'] \in H_2(M; Z)$, we have

$$\text{Int}_{M}(S^3, 2x) = \text{Int}_{M}(V', 2x) = +2.$$

Hence $\text{Int}_{M}(V', x) = +1$. Let V be a component of V' with $\text{Int}_{M}(V, x) > 0$. Representing x by a simple loop ℓ in M, we can construct from ℓ a simple loop ℓ' in M meeting V transversely in a single point because V is connected. This means that V and ℓ' represent generators of $H_3(M; Z) \cong Z$ and $H_1(M; Z) \cong Z$, respectively, and the natural homomorphism $H_1(V; Z) \to H_1(M; Z)$ is the zero map. Thus, V is a connected leaf of M. We show that $H_1(V; Z)$ is a free abelian group. To see this, for $I = [-1, 1]$ we consider normal I-bundles $S^3 \times I$ and $t(S^3) \times I$ of S^3 and $t(S^3)$, respectively, whose union W is a compact connected oriented 4-manifold (see Fig. 1(ii))2. We observe the following sublemma:

Sublemma 2.3.1. For the 4-manifold $W = S^3 \times I \cup t(S^3 \times I)$, the homology groups $H_d(W; Z)$ ($d = 1, 2$) are free abelian groups and the intersection form $\text{Int} : H_2(W; Z) \times H_2(W; Z) \to Z$ is the zero form.

Assuming this sublemma, we obtain by Poincaré duality that $H_2(W, \partial W; Z)$ is a free abelian group and the natural homomorphism $H_2(W; Z) \to H_2(W, \partial W; Z)$ is the zero map, because this homomorphism induces the intersection form

$$\text{Int} : H_2(W; Z) \times H_2(W; Z) \to Z$$

from the non-singular intersection form

$$\text{Int} : H_2(W; Z) \times H_2(W, \partial W; Z) \to Z.$$

Then the exact sequence

$$0 \to H_2(W, \partial W; Z) \to H_1(\partial W; Z) \to H_1(W; Z)$$

implies that $H_1(\partial W; Z)$ is a free abelian group. Since V is a component of the boundary ∂W, we see that $H_1(V; Z)$ is a free abelian group. □

Proof of Sublemma 2.3.1. By Mayer-Vietoris sequence, we have

$$H_2(W; Z) \cong H_1(F; Z) \cong Z^{2g} \quad \text{and} \quad H_1(W; Z) \cong \tilde{H}_0(F; Z) \cong Z^{c-1},$$

2A precise local picture is obtained from this picture by taking the product of this picture and an open disk.
where \(g \) and \(c \) denote the total genus of \(F \) and the number of the connected components of \(F \), respectively. Thus, the homology groups \(H_d(W; Z) \) (\(d = 1, 2 \)) are free abelian groups. Since the boundary operators \(\partial_* : H_2(S^3, F; Z) \rightarrow H_1(F; Z) \) and \(\partial'_* : H_2(t(S^3), F; Z) \rightarrow H_1(F; Z) \) are isomorphisms, we see from the excision isomorphisms

\[
H_2(S^3, F; Z) \cong H_2(E^+, \partial E^+; Z) \oplus H_2(E^-, \partial E^-; Z), \\
H_2(t(S^3), F; Z) \cong H_2(tE^+, \partial tE^+; Z) \oplus H_2(tE^-, \partial tE^-; Z)
\]

that \(H_1(F; Z) \) has a basis \([\partial C^+_i], [\partial C^-_i] \) (\(i = 1, 2, \ldots, g \)) where \(C^+_i \) is a 2-chain in \(E^+ \) and \(C^-_i \) is a 2-chain in \(E^- \), and further we can write \(\partial C^+_i = \partial D^+_i + \partial D^-_i \) and \(\partial C^-_i = \partial D^-_i + \partial D^+_i \) where \(D^+_i, D^-_i \) are 2-chains in \(tE^+ \) and \(D^+_i, D^-_i \) are 2-chains in \(tE^- \). The homology classes \(z_i = [C^+_i - (D^+_i + D^-_i)], z'_i = [C^-_i - (D^-_i + D^+_i)] \) \((i = 1, 2, \ldots, g) \) form a basis for \(H_2(W; Z) \). Using the thickness \(t(S^3) \times I \) of \(t(S^3) \) in \(W \), we see that \(\text{Int}(z_i, z'_j) = 0 \) for all \(i, j \). Since \(\text{Int}(\partial C^+_i, \partial C^-_j) = \text{Int}(\partial C^-_i, \partial C^+_j) = 0 \) in \(F \) for all \(i, j \), we also see that \(\text{Int}(z_i, z_j) = \text{Int}(z'_i, z'_j) = 0 \) for all \(i, j \). □

Proof of Lemma 2.4. If \(H_2(M, V; Z) \) and \(H_1(V; Z) \) are free abelian groups, then we have \(\text{tor} H_2(M, \bar{V}; Z) = \text{tor} H_1(V; Z) = 0 \) and \(V \) is an exact leaf. Assume that \(H_2(M, V; Z) \) is not free abelian. We shall construct a connected leaf \(V^* \) of \(M \) such that \(H_1(V^*; Z) \) and \(H_2(M, V^*; Z) \) are free abelian groups, which is an exact leaf of \(M \). To see this, we consider a free abelian subgroup \(G \) of \(H_2(M; Z) \) such that the quotient group \(H_2(M; Z)/G \) is a free abelian group and the image \(H \) of the natural homomorphism \(H_2(V; Z) \rightarrow H_2(M; Z) \) is a finite index subgroup of \(G \). Then there are a basis \(x_i (i = 1, 2, \ldots, v) \) for \(H_2(V; Z) \) and a basis \(y_i (i = 1, 2, \ldots, u) \) for \(G \) with \(u \leq v \) such that the natural homomorphism \(H_2(V; Z) \rightarrow H_2(M; Z) \) sends the first \(m \) \((\leq u)\) elements \(x_i (i = 1, 2, \ldots, m) \) to the elements \(k_i y_i (i = 1, 2, \ldots, m) \) for some integers \(k_i > 1 \) \((i = 1, 2, \ldots, m)\) and the elements \(x_i (i = m + 1, 1, m + 1, 2, \ldots, u) \) to \(y_i \) \((i = m + 1, m + 2, \ldots, u)\) and the elements \(x_i (i = u + 1, m + 2, \ldots, v) \) to \(0 \). Then we have

\[
G/H \cong Z_{k_1} \oplus Z_{k_2} \oplus \cdots \oplus Z_{k_m}.
\]

By an argument of [9], every \(x_i \) is represented by a closed connected oriented surface \(S_i^\ast \) in \(V \). Regarding \(x_i \) as an element in \(H_2(M; Z) \), we have \(\text{Int}(x_i, x_j) = \text{Int}(y_i, y_j) = \text{Int}(x_i, y_j) = 0 \) in \(M \) for all \(i, j \). Thus, we can represent \(y_i \) \((i = 1, 2, \ldots, m)\) by mutually disjoint closed connected oriented surfaces \(S_i^\ast \) \((i = 1, 2, \ldots, m)\) in \(M \). Let \(\ell_i = V \cap S_i^\ast \) be a closed oriented 1-manifold. Since \(k_i S_i^\ast \) is homologous to \(S_i^\ast \) in \(M \) and hence \(\text{Int}(k_i S_i^\ast, S_i^\ast) = 0 \) in \(M \) for all \(i \), the intersection number of \(k_i \ell_i \) and \(S_i^\ast \) in \(V \) must be 0 for all \(i \). Using that \(H_1(V; Z) \) is free abelian, we obtain by Poincaré duality that \(k_i \ell_i \) and hence \(\ell_i \) are null-homologous in \(V \). Thus, the 1-manifold \(\ell_i \) bounds an oriented surface \(\Delta_i \) in \(V \). Let \(S_i^\ast \) be a closed (possibly disconnected)
oriented surface in $M \setminus V$ obtained from S^1_i by cutting along ℓ_1 and then adding parallel copies of Δ_1 in a collar neighborhood of V in M. Since V is connected, the complement $M \setminus V$ is also connected. We can construct a closed connected oriented surface $S^1_{i^*}$ by piping the components of S^1_i in the complement $M \setminus V$. Then we have $y_i = [S^1_{i^*}] \in H_2(M; \mathbb{Z})$. Since $S^1_{i^*}$ admits a trivial normal D^2-bundle $S^1_{i^*} \times D^2$ in M, we can take a connected sum of V and $S^1_{i^*} \times \partial D^2$ to obtain a connected leaf V' of M. Then $H_1(V'; Z)$ is a free abelian group. Let H' be the image of the natural homomorphism $H_2(V'; Z) \to H_2(M; Z)$. By construction, we have $H' \subset G$ and

$$G/H' \cong \mathbb{Z}_{k_2} \oplus \mathbb{Z}_{k_3} \oplus \cdots \oplus \mathbb{Z}_{k_m}.$$

By continuing this process, we have a connected leaf V^* with $H_1(V^*; Z)$ a free abelian group such that the image of the natural homomorphism $H_2(V^*; Z) \to H_2(M; Z)$ coincides with G. The exact sequence

$$0 \to H_2(M; Z)/G \to H_2(M, V^*; Z) \to H_1(V^*; Z)$$

induced from the homology exact sequence of (M, V) implies that $H_2(M, V^*; Z)$ is a free abelian group. □

3. Proof of Lemma 1.3.

First, we show the following lemma.

Lemma 3.1. If the intersection form on Z^H_1-manifold M is indefinite, then there is a pair of elements $x, y \in H_2(\tilde{M}; \mathbb{Z})$ such that the ordinary intersection numbers of x, y in \tilde{M} have

$$\text{Int}(x, x) = \text{Int}(y, y) = 0 \quad \text{and} \quad \text{Int}(x, y) = 1.$$

Proof of Lemma 3.1. For $\Lambda = \mathbb{Z}[t, t^{-1}]$, we consider the subring

$$\Lambda^+ = \left\{ \frac{f(t)}{g(t)} \in Q(\Lambda) \mid f(t), g(t) \in \Lambda \text{ with } g(1) = \pm 1 \right\}$$

of the quotient field $Q(\Lambda)$. For a Λ-module H, we denote the Λ^+-module $H \otimes_\Lambda \Lambda^+$ by H^+. The Λ-intersection number $\text{Int}_\Lambda(x, y)$ for $x, y \in H_2(\tilde{M}; \mathbb{Z})$ is defined by

$$\text{Int}_\Lambda(x, y) = \sum_{i=-\infty}^{+\infty} \text{Int}(x, t^{-i}y)t^i \in \Lambda,$$

which is extended to the Λ^+-intersection number $\text{Int}_{\Lambda^+}(x^+, y^+)$ for any elements x^+, y^+ of the second Λ^+-homology $H_2(\tilde{M}; Z)^+$. By [11, Lemma 3.6], we see that
the Λ^+-homology $H_2(\hat{M}; Z)^+$ of every Z^{H_1}-manifold M is a Λ^+-free module with a Λ^+-basis $x_i^+ (i = 1, 2, \ldots, n)$ such that the Λ^+-intersection numbers $\text{Int}_{\Lambda^+}(x_i^+, x_j^+)$ are integers for all i, j. Since the intersection form $\text{Int} : H_2(M; Z) \times H_2(M; Z) \to Z$ is indefinite (i.e., there is a non-zero element $x_0 \in H_2(M; Z)$ with $\text{Int}(x_0, x_0) = 0$), we may assume that $\text{Int}_{\Lambda^+}(x_i^+, x_i^+) = 0$, $\text{Int}_{\Lambda^+}(x_i^+, x_j^+) = 1$, $\text{Int}_{\Lambda^+}(x_i^+, x_j^+) = 0$ $(i = 1, 2, j = 3, 4, \ldots, n)$. We take elements $g_i(t) \in \Lambda$ with $g_i(1) = 1$ $(i = 1, 2)$ such that the elements $x' = g_i(t)x_i^+$, $y' = g_2(t)x_2^+$ are in $H_2(\hat{M})$. Then we have

$$\text{Int}_{\Lambda^+}(x', x') = g_i(t^{-1})g_i(t)\text{Int}_{\Lambda^+}(x_i^+, x_i^+) = 0,$$

$$\text{Int}_{\Lambda^+}(x', y') = g_i(t^{-1})g_2(t)\text{Int}_{\Lambda^+}(x_i^+, x_2^+) = g_i(t^{-1})g_2(t).$$

Thus, if we let $x = \sum_{i=1}^{N} t^ix'$ for a large positive integer N, then we have

$$\text{Int}(x, x) = 0, \quad \text{and} \quad \text{Int}(x, y') = g_i(1)g_2(1) = 1.$$

If $\text{Int}(y', y')$ is an even integer, say $2m$, then we take $y = y' - mx$ to obtain a desired pair x, y. Otherwise, we can assume that $\text{Int}(y', y') = 1$ by replacing y' with $y' - mx$ when $\text{Int}(y', y') = 2m + 1$. The covering translated elements $z = t^n(x)$ and $w = t^n(y')$ for a large integer n are represented by 2-cycles disjoint from 2-cycles represented by x, y'. Since $\text{Int}(z, z) = 0$ and $\text{Int}(z, w) = \text{Int}(w, w) = 1$, the pair of x and $y = y' + z - w$ gives a desired pair. □

By the integral duality on the infinite cyclic covering \hat{M} of a Z^{H_1}-manifold M (see [6]), we have $H_3(\hat{M}; Z) \cong Z$, whose generator is called the fundamental class of the infinite cyclic covering $\hat{M} \to M$ (see [9]). By considering a closed oriented 3-manifold representing the fundamental class, we can complete the proof of Lemma 1.3.

Completion of the proof of Lemma 1.3. We shall find a 3-sphere S^3 in \hat{M} representing a generator of $H_3(\hat{M}; Z)$. Then this 3-sphere S^3 is embedded in the p-fold cyclic covering $M^{(p)}$ of M for a large p so that S^3 represents a generator of $H_3(M^{(p)}; Z) \cong Z$ because the covering projection $\hat{M} \to M^{(p)}$ induces an isomorphism $H_3(\hat{M}; Z) \cong H_3(M^{(p)}; Z)$ by the Wang exact sequence. A generator of $H_1(M^{(p)}; Z) \cong Z$ is represented by an embedded circle S^1 in $M^{(p)}$ intersecting S^3 transversely in a single point. The regular neighborhood of the bouquet $S^1 \vee S^3$ in $M^{(p)}$ gives a connected summand $S^1 \times S^3$ of $M^{(p)}$, so that $M^{(p)}$ is TOP-split. Since \hat{M} is a simply connected 4-manifold, the pair of x, y in Lemma 3.1 is represented by a pair of 2-spheres in M with geometric intersection number one by [2]. Thus, \hat{M} has a connected summand $S^2 \times S^2$. Then we see that the q-fold cyclic covering $M^{(q)}$ of M for a large q has a connected summand of $S^2 \times S^2$. Let $M^{(q)} = M' \# kS^2 \times S^2$ for a Z^{r_1}-manifold M'. It turns out that the Z^{r_1}-manifold $M' \# kS^2 \times S^2$ for any
positive integer k has the infinite cyclic covering (non-equivariantly) homeomorphic to $\tilde{\mathcal{M}}$. The connected sum $M' \# k S^2 \times S^2$ for a large k is exact by [11, Theorem 2.4] and hence TOP-split by [10, Corollary 3.4]. We note that another proof of the TOP-splitting of the connected sum $M' \# k S^2 \times S^2$ for a large k is known by Matumoto [12]. Then we can obtain a 3-sphere S^3 in $\tilde{\mathcal{M}}$ representing a generator of $H_3(\tilde{\mathcal{M}}; \mathbb{Z})$. \square

There is also another proof of Lemma 1.3. For the proof, let M is a \mathbb{Z}^{n-1}-manifold with indefinite intersection form. Then we have the Witt index

$$w(M) = \frac{\beta_2(M; \mathbb{Z}) - |\text{sign}(M)|}{2} \geq 1.$$

Let M' be the d-fold cyclic covering of M. By the covering properties of Euler characteristic and signature, we have

$$\beta_2(M'; \mathbb{Z}) = d \beta_2(M; \mathbb{Z}) \quad \text{and} \quad \text{sign}(M') = d \text{sign}(M),$$

so that $w(M') \geq d$. Thus, we have the Witt index $w(M') \geq 3$ for $d \geq 3$. Then Hambleton-Teichner in [4] observed that there is a Λ-basis $x'_i (i = 1, 2, \ldots, n')$ for the second homology $H_2(M'; \mathbb{Z})$ of the infinite cyclic covering \tilde{M}' of M' such that the Λ-intersection $\text{Int}_\Lambda(x'_i, x'_j)$ is an integer for all i, j. By [11], M' is exact and hence by [10, Corollary 3.4] M' is TOP-split, implying that M is virtually TOP-split.

References

