Splitting a 4-manifold with infinite cyclic fundamental group, revised in a definite case

Akio KAWAUCHI

Osaka City University Advanced Mathematical Institute
Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
kawauchi@sci.osaka-cu.ac.jp

ABSTRACT

A sufficient condition that a closed connected definite 4-manifold with infinite cyclic fundamental group is TOP-split is given. By this condition, it is shown that every closed connected definite smooth 4-manifold with infinite cyclic fundamental group is TOP-split. By combining with an earlier result, it is confirmed that every closed connected oriented smooth 4-manifold with infinite cyclic fundamental group is TOP-split. This also implies that every smooth sphere-knot in a closed simply connected smooth 4-manifold is topologically unknotted if the fundamental group of the complement is infinite cyclic.

Mathematics Subject Classification 2010: 57M10, 57M35, 57M50, 57N13

Keywords: Smooth 4-manifold, Definite intersection form, Topological splitting, Infinite cyclic covering, Topological unknotting.
1. Introduction

A closed connected oriented 4-manifold \(M \) is called a \(\mathbb{Z}^{\pi_1} \)-manifold if the fundamental group \(\pi_1(M) \) is isomorphic to \(\mathbb{Z} \), and a \(\mathbb{Z}^{H_1} \)-manifold if the first homology group \(H_1(M; \mathbb{Z}) \) is isomorphic to \(\mathbb{Z} \). A \(\mathbb{Z}^{\pi_1} \)-manifold \(M \) is TOP-split if \(M \) is homeomorphic to the connected sum \(S^1 \times S^3 \# M_1 \) for a simply connected closed 4-manifold \(M_1 \), and virtually TOP-split if a finite covering of \(M \) is TOP-split. A \(\mathbb{Z}^{H_1} \)-manifold \(M \) is definite if the rank of the intersection form

\[
\text{Int}^M : H_2(M; \mathbb{Z}) \times H_2(M; \mathbb{Z}) \to \mathbb{Z}
\]

is equal to the absolute value of the signature, and positive definite if, furthermore, the signature is positive. A definite \(\mathbb{Z}^{H_1} \)-manifold is positive definite, if necessary, by changing an orientation of \(M \).

In this paper, a sufficient condition for a definite \(\mathbb{Z}^{\pi_1} \)-manifold to be TOP-split is given in a study following [10] of the revision of the author’s earlier paper [6] of a TOP-split \(\mathbb{Z}^{\pi_1} \)-manifold. This revision was needed because a non-TOP-split, positive definite and non-smoothable \(\mathbb{Z}^{\pi_1} \)-manifold was given by Hambleton-Teichner in [5] and Friedl, Hambleton, Melvin and Teichner in [4] (see also [7, 8, 9] for some discussions).

To explain our main result, some observations and terminologies are needed. It is not always assumed that a closed 4-manifold is a smooth or piecewise-linear manifold, but smooth and piecewise-linear techniques can be used for it because a punctured manifold of it is smoothable (see Freedman-Quinn [3]). Let \(X \) be a \(\mathbb{Z}^{H_1} \)-manifold, and \(V \) a leaf of \(X \). Let \(S \) be a closed oriented surface (embedded) in \(X \) lifting trivially to the infinite cyclic covering \(\tilde{X} \) of \(X \). Then we can assume that the intersection \(\mathcal{L} = S \cap V \) is a closed oriented possibly disconnected 1-manifold unless it is empty. Let \(D_i \) \((i = 1, 2, \ldots, r)\) be the connected regions of \(S \) divided by \(\mathcal{L} \). Let \(\alpha_{ij} \) be an oriented arc in \(S \) joining an interior point \(p_i \) of \(D_i \) to an interior point \(p_j \) of \(D_j \). The absolute value \(|\text{Int}^S(\alpha_{ij}, \mathcal{L})| \) of the intersection number \(\text{Int}^S(\alpha_{ij}, \mathcal{L}) \) is independent of any choices of \(p_i, p_j \) and \(\alpha_{ij} \), whose maximal number for all \(i, j \) is called the winding index of the surface \(S \) in \(X \) with respect to the leaf \(V \) and denoted by \(\delta(S, V; X) \).

Given a positive definite \(\mathbb{Z}^{\pi_1} \)-manifold \(M \), it is shown in [10] that the connected sum \(X = \mathbb{C}P^2 \# M \) is TOP-split because \(\text{sign}(\mathbb{C}P^2) = -1 \) and hence \(X \) is an indefinite \(\mathbb{Z}^{\pi_1} \)-manifold. Let \(S^3 \) be a 3-sphere leaf of \(X \). For the sphere \(\mathbb{C}P^1 \) in \(\mathbb{C}P^2 \), the winding index \(\delta(\mathbb{C}P^1, S^3; X) \) is simply called a winding index on \(M \). We note that there are infinitely many winding indexes on \(M \) by deforming the leaf \(S^3 \) in \(X \) isotopically. We shall show the following theorem:
Theorem 1.1. A definite \mathbb{Z}^{π_1}-manifold M is TOP-split if for any given winding index δ on M there is a \mathbb{Z}-basis x_i ($i = 1, 2, \ldots, n$) of the second homology $H_2(M^{(m)}; \mathbb{Z})$ of an m-fold covering $M^{(m)}$ of M with $m \geq \delta$ such that the intersection number $\text{Int}^{M^{(m)}}(x_i, x_i)$ has

$$1 \leq |\text{Int}^{M^{(m)}}(x_i, x_i)| \leq 2$$

for all i. In particular, a \mathbb{Z}^{π_1}-manifold M is TOP-split if every finite covering of M has an intersection matrix which is a block sum of copies of E_8^1 and/or (1).

If a positive definite \mathbb{Z}^{π_1}-manifold M is smooth, then the intersection form $\text{Int}^{M^{(m)}}: H_2(M^{(m)}; \mathbb{Z}) \times H_2(M^{(m)}; \mathbb{Z}) \to \mathbb{Z}$ of the m-fold covering $M^{(m)}$ of M for any $m > 0$ is standard by Donaldson’s theorem in [1], because $M^{(m)}$ is a positive definite \mathbb{Z}^{π_1}-manifold which is seen by using the Euler characteristic identity $\chi(M^{(m)}) = m\chi(M)$, the signature identity $\text{sign}(M^{(m)}) = m\text{sign}(M)$ and the Poincaré duality on $M^{(m)}$ and the intersection form $\text{Int}^{M^{(m)}}$ is isomorphic to the intersection form

$$\text{Int}^{M_1^{(m)}}: H_2(M_1^{(m)}; \mathbb{Z}) \times H_2(M_1^{(m)}; \mathbb{Z}) \to \mathbb{Z}$$

of a simply connected smooth 4-manifold $M_1^{(m)}$ obtained from $M^{(m)}$ by surgery killing $\pi_1(M^{(m)}) = Z$. Thus, there is a Z-basis x_i ($i = 1, 2, \ldots, n$) of $H_2(M^{(m)}; \mathbb{Z})$ such that $\text{Int}^{M^{(m)}}(x_i, x_i) = 1$ for all i and hence by Theorem 1.1 M is TOP-split. Since it is shown in [10] that every indefinite \mathbb{Z}^{π_1}-manifold is TOP-split, we have the following corollary.

Corollary 1.2. Every smooth \mathbb{Z}^{π_1}-manifold is TOP-split.

This result answers affirmatively a question thought so by the author himself in [8, p.209] and also confirms affirmatively a conjecture given by Friedl, Hambleton, Melvin and Teichner in [4]. We note that there is a smooth \mathbb{Z}^{π_1}-manifold M which is not diffeomorphic to the connected sum $S^1 \times S^3 \# M_1$ for any simply connected smooth 4-manifold M_1 (see Fintushel and Stern [2]).

In terms of S^2-knot theory, Corollary 1.2 implies the following corollary by a similar reason as the proof of [10, Corollary 1.5].

\footnote{This matrix is a square matrix (a_{ij}) of size 8 whose non-zero entries are given by $a_{ii} = 2$ ($i = 1, 2, \ldots, 8$), $a_{14} = a_{41} = 1$, and $a_{jj+1} = a_{j+1j} = 1$ ($j = 2, 3, \ldots, 7$).}
Corollary 1.3. Let M_1 be a closed simply connected smooth 4-manifold. A smooth S^2-knot K in M_1 is topologically unknotted if we have one of the following two conditions:

1. The fundamental group $\pi_1(M_1 \setminus K)$ is isomorphic to \mathbb{Z}.
2. The S^2-knot K is of Dehn’s type in M_1, namely if there is a map f from the 3-disk D^3 to M_1 such that the image $f(\partial D^3) = K$ and the singular set $\Sigma(f) \subset \text{int} D^3$.

2. Proof of Theorem 1.1

We first observe the following lemma.

Lemma 2.1. Let X be a \mathbb{Z}^m-manifold, V a connected leaf of X and S a closed connected oriented surface in X lifting trivially to the infinite cyclic covering \tilde{X} of X. Let V' and S' be connected lifts of V and S, respectively, to any m-fold covering $X^{(m)}$ of X with $m \geq \delta(S, V; X)$. Then we have the winding index

$$0 \leq \delta(S', V'; X^{(m)}) \leq 1.$$

Proof. Let X_V be a 4-manifold obtained from X by cutting X along V whose boundary ∂V is given as the disjoint union $V^+ \cup V^-$ of two copies V^\pm of V. Then the m-fold covering $X^{(m)}$ of X is obtained from the m copies X_i^V ($i = 1, 2, \ldots, m$) of X_V by pasting V^+_i to V^{-}_{i+1} ($i = 1, 2, \ldots, m$) with $m+1 = 1$ for the m copies $V^+_i \cup V^-_i$ ($i = 1, 2, \ldots, m$) of $V^+ \cup V^-$. For any $m \geq \delta(S, V; X)$, it is seen from the definition of a winding index that $0 \leq \delta(S', V'; X^{(m)}) \leq 1$. □

Throughout the remainder of this section, the proof of Theorem 1.1 is done. We assume that the \mathbb{Z}^n_1-manifold M is positive definite by a choice of an orientation of M. It suffices to prove that M is virtually TOP-split since “virtually TOP-split” implies “TOP-split” by [10]. For any given winding index δ on M, there is an m-fold covering $M^{(m)}$ of M with $m \geq \delta$ such that there is a \mathbb{Z}-basis x_i ($i = 1, 2, \ldots, n$) of $H_2(M^{(m)}; \mathbb{Z})$ with $1 \leq \text{Int}^{(m)}(x, x_i) \leq 2$ for all i. Since $\delta = \delta(\mathbb{CP}^1, S_1^3; X)$ for $X = \mathbb{CP}^2 \# M$, we see from Lemma 2.1 that any connected lift S_1^3 of the leaf S_1^3 of X to the m-fold cyclic covering $X^{(m)} = (m\mathbb{CP}^2) \# M^{(m)}$ of X has the winding index

$$0 \leq \delta(\mathbb{CP}^1_k, S_1^3; X^{(m)}) \leq 1$$

for all the connecting lifts \mathbb{CP}^1_k ($k = 1, 2, \ldots, m$) of \mathbb{CP}^1 to $X^{(m)}$. Let $L_k = \mathbb{CP}^1_k \cap S_1^3$ ($k = 1, 2, \ldots, m$) be oriented links (possibly empty) with the orientations determined by the orientations of \mathbb{CP}^1_k, S_1^3 and $X^{(m)}$. Represent x_i by a closed connected oriented
we can construct a compact connected oriented surface \(F \) of \(X \) by taking its connected oriented surface obtained from \(F \) trivially to \(X \). We show that the linking number \(\text{Link}(K, L_k) = 0 \) in \(S^3 \) for all \(k \). Suppose that \(\text{Link}(K_i, L_k) \neq 0 \) for some \(k \). By the fact that every meridian of the sphere \(\mathbb{CP}^1 \) in the complex projective plane bounds a disk disjointly parallel to \(\mathbb{CP}^1 \), we can construct a compact connected oriented surface \(D_i \) with \(\partial D_i = K_i \) in the union \(U \) of \(S^3 \) for all \(i \) and the connected summand \(m \mathbb{CP}^2 \) of \(X^{(m)} \) so that \(D_i \cap m \mathbb{CP}^1 = \emptyset \).

As an important note, the surface \(D_i \) has the intersection number \(-a_i \) with respect to a Seifert framing of \(K_i \) in \(S^3 \) for some \(a_i = \sum_{k=1}^{m} c_{i,k} > 0 \). The surface \(D_i \) is regarded as a surface in the \(S \)-manifold \(M^{(m)} \) obtained from \(X^{(m)} \) by replacing a normal disk bundle of \(m \mathbb{CP}^2 \) in \(m \mathbb{CP}^1 \) with the 4-disks \(m D^4 \). Let \(S_i \) be an immersed closed connected oriented surface obtained from \(F_i \) by a surgery along \(D_i \), namely take

\[
S_i = \text{cl}(F_i \setminus K_i \times [-1, 1]) \cup D_i^{-1} \cup D_i^{+1}
\]

for a collar \(K_i \times [-1, +1] \) of \(K_i \) in \(F_i \) and isotopically deformed surfaces \(D_i \) of \(D_i \) such that the boundaries \(\partial D_i^\pm \) are deformed into \(K_i \times \pm 1 \) through \(F_i \), respectively. Then we have \([S_i] = [F_i] = x_i \neq 0 \) in \(H_2(M^{(m)}; \mathbb{Z}) \). Let \(S'_i \) be a connected lift of \(S_i \) to the double covering \(X^{(2m)} \) of \(X^{(m)} \) which is the 2-fold covering of \(X \). Since \(U \) lifts trivially to \(X^{(2m)} \), the self-intersection number of \(S'_i \) in \(X^{(2m)} \) is computed as follows:

\[
\text{Int}^{X^{(2m)}}([S'_i], [S'_i]) = \text{Int}^{X^{(m)}}(x_i, x_i) - 2a_i \leq 2 - 2a_i \leq 0.
\]

Since the surface \(S'_i \) is in the connected summand \(M^{(2m)} \) of \(X^{(2m)} \), we have

\[
\text{Int}^{M^{(2m)}}([S'_i], [S'_i]) \leq 0 \quad (i = 1, 2, \ldots, n).
\]

Since \(M^{(2m)} \) is a positive definite \(S \)-manifold, there is a real basis \(e_j \) \((j = 1, 2, \ldots, 2n) \) of the real extension \(H_2(M^{(2m)}; \mathbb{R}) \) of the integral homology group \(H_2(M^{(2m)}; \mathbb{Z}) \) such that the real intersection number \(\text{Int}^{M^{(2m)}}(e_j, e_{j'}) = \delta_{jj'} \) (the Kronecker’s delta) for all \(j, j' \). The covering projection \(M^{(2m)} \to M^{(m)} \) induces a homomorphism \(H_2(M^{(2m)}; \mathbb{Z}) \to H_2(M^{(m)}; \mathbb{Z}) \) sending the homology class \([S'_i] \) to \(x_i \neq 0 \), so that \([S'_i] \in H_2(M^{(2m)}; \mathbb{R}) \) is written as

\[
[S'_i] = \sum_{j=1}^{2n} c_{ij} e_j
\]

with \(c_{ij} \neq 0 \) for some \(j \) and hence

\[
\text{Int}^{M^{(2m)}}([S'_i], [S'_i]) = \text{Int}^{M^{(2m)}}([S'_i], [S'_i]) = \sum_{j=1}^{2n} c_{ij}^2 > 0,
\]

5
which is a contradiction. Thus, we have
\[\text{Link}(K_i, L_k) = 0 \]
for all \(k \). Then \(K_i \) bounds a compact connected oriented surface \(D_i^* \) embedded in \(U_m \) such that \(D_i^* \cap m\mathbb{CP}^1 = \emptyset \) and \(D_i^* \) has the self-intersection number 0 with respect to a Seifert framing of \(K_i \) in \(S^3 \). The surface \(D_i^* \) is regarded as a surface in the \(Z \)-manifold \(M(m) \) obtained from \(X(m) \) by replacing a normal disk bundle of \(m\mathbb{CP}^1 \) in \(m\mathbb{CP}^2 \) with the 4-disks \(mD^4 \). Then a closed connected orientable surface \(S_i^* \) embedded in \(M(m) \) is obtained from \(F_i \) by a surgery along a collar \(D_i^* \times [-1, 1] \) of \(D_i^* \) with \((D_i^* \times [-1, 1]) \cap F_i = K_i \times [-1, +1] \). This modification can be done for all \(i \). Since \(U_m \) lifts trivially to the infinite cyclic covering \(\tilde{X}(m) \) of \(X(m) \), we see that the \(Z \)-basis \(x_i = [S_i^*] \) \((i = 1, 2, \ldots, n)\) of \(H_2(M(m); Z) \) regarded as a direct summand of \(H_2(X(m); Z) \) lifts to a set of elements \(\tilde{x}_i = [\tilde{S}_i^*] \) \((i = 1, 2, \ldots, n)\) of \(H_2(\tilde{X}(m); Z) \) for a connected lift \(\tilde{S}_i^* \) of \(S_i^* \) to \(\tilde{X}(m) \) such that the \(\Lambda \)-intersection form
\[\text{Int}^\Lambda_{\tilde{X}(m)}: H_2(\tilde{X}(m); Z) \times H_2(\tilde{X}(m); Z) \to \Lambda \]
has
\[\text{Int}^\Lambda_{\tilde{X}(m)}(\tilde{x}_i, \tilde{x}_j) = \text{Int}^\Lambda_{X(m)}(x_i, x_j) \in Z \]
for all \(i, j \), where \(\Lambda = Z[Z] = Z[t, t^{-1}] \). Since the surfaces \(\tilde{S}_i^* \) \((i = 1, 2, \ldots, n)\) belong to the infinite cyclic covering \(\tilde{M}(m) \) of \(M(m) \), the elements \(\tilde{x}_i \) \((i = 1, 2, \ldots, n)\) are regarded as elements of \(H_2(\tilde{M}(m); Z) \) with
\[\text{Int}^\Lambda_{\tilde{M}(m)}(\tilde{x}_i, \tilde{x}_j) = \text{Int}^\Lambda_{\tilde{X}(m)}(\tilde{x}_i, \tilde{x}_j) \]
for all \(i, j \). Using that \(H_2(\tilde{M}(m); Z) \) is a \(\Lambda \)-free module of rank \(n \), we see from the non-singularity of the \(\Lambda \)-intersection matrix \((\text{Int}^\Lambda_{\tilde{M}(m)}(\tilde{x}_i, \tilde{x}_j))\) that the elements \(\tilde{x}_i \) \((i = 1, 2, \ldots, n)\) form a \(\Lambda \)-basis for \(H_2(\tilde{M}(m); Z) \). This implies that the \(Z \)-manifold \(M(m) \) is exact (see \([8, 9]\)), so that by \([8, \text{Corollary 3.4}]\) \(M(m) \) is TOP-split. Thus, \(M \) is virtually TOP-split and hence by \([10]\) \(M \) is TOP-split. This completes the proof of Theorem 1.1.

References

