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(3) A choice of the simple roots N C @
~» an additive basis {[Xuw]}wew of H*(X(P))
"structure constants”
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d C F : aroot system in £ =R"

~»  Choose the set of simple roots N = {aq, - ,an} C P
~ o M ={wq, - ,wp} C E* : the dual basis of I
og = cone(wq, - ,wp) C E* the fundamental Weyl chamber

~+  The collection {uoqg | v € W} forms
a complete non-singular fan A(®) in E*
(together with the coweight lattice N = @,;Zw;)

~  X(P) : the toric manifold associated with A(®)
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®={t; —t;| 1 <4,j <n+1} CR" !
(t; € R*T1 : the i-th standard vector)

MN={t;—t;+1]1<:<n} aset of simple roots

og = cone(wy, -+ ,wn) ;

)
n-+1
(e; € (R*t1)* : the i-th standard vector)

w; =e1+ - +e— (e1 4+ ent1)
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X (Ay) : the toric manifold corresponding to the permutohedron

~  X(®P) : the root theoretic generalization!
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MN={ai, - ,an} C P : the set of simple roots
~ M ={wq, -+ ,wp} C E* : the minimal generators of o9 € A(P)
The set of minimal generators of A(®P) is

d* 1= Uyew{vwy, - ,uwp} C E™.

v Xyw; C X(P) invariant divisor (uw; € ®*)
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Example: type A, (continued)

N={t;—t;11]1<i<n}C®CR"!: the set of simple roots

wi=€1+"‘+€i—#(61+“'+6n+1) S (Rn)*
o — 2wy o {u(1), - (@)}

d* <£> the set of non-empty proper subsets in oln+1]

Xg C X(Ap) invariant divisor for each § € S C [n 4+ 1]

Xg,N---NXg, =0 unless Sy C--- C Sp

1
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For each u € 6,41,
X = () Xuw; = (1 X (u(1), u(i)}
i ?

where 7 runs over all descents in w. (i.e. u(?) >u(t+ 1))
o {[Xu]}u€6n+1 . an additive basis of H*(X(Ap))

[(Xu][Xo] = ch,v[X’w]a Cg,v € Z
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For example, we have

[Xsisj](: [ijsi]) if |'L — J| > 2,

[Xs;][Xs;] = {o if i —j] = 1.

But, it is not easy to compute [X;]? in terms of {(Xul}ues, 4 1

In general,

= Y@ s [ 00X g X] (Zoo = [ oo Xugul[Xa]).

~s Need a combinatorial formula for intersection numbers.
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Xg C X(Ap) invariant divisor for each ) € S C [n + 1]
w19 :1=[Xg] € H2(X(®)) : divisor class

S,41 ~ H*(X(Ap)) gives the following invariance.

- Lemma (W-invariance)
Let0CS;C---CSpCn+1landPCSiC---CS),C[n+ 1]
If |S;| = |S;| for all ¢, then

/X 5177 Ton /X S1° S

~  [xTs, - Tg, depends only on [Sy| < - < |Sy| !
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Want to compute [x 7g, - Tg, in terms of [S1| < - < [Sy.

~ A= (|Sn|,---,|S1|) : a Young diagram
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-~ Vanishing property ~
Let 0 CS1C---CSp,C[n+1] and A= (|Sn|,---,|S1]).

Then, [x7g,---75, = 0 unless each step of the zigzag-line of the
Ksouth-west corners of X\ crosses the dotted anti diagonal.

J

The linear relations for divisor classes :

Y - Y rg=0 for each k,l € [n + 1].

0CSC[n+1] 0CSC[n+1]
kcS,1¢S k¢S,leS
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Intersection numbers for type Ay, :
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)
Cr r-th corner
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Intersection numbers for type A, :

ar
)
Cr r-th corner
br
.__[Qar br
Yr = Cr Cr
~ T heorem
Let D C ST C---CSpnC[n+1] and A= (|Sn|,---,]|S1])-
Then,

/X 75, TS, = (=1)" Py ys.
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[(Xu] =]] Tu(1),u(@)}r (running over all i s.t. u(i) > u(i+ 1))

Inn =25, for 534216 € Gg,
5342

[X534216] = 7(5}7(5,3,4)7(5,3,4,2} =

~» A combinatorial formula for [y [woXwgw][Xu][Xv] !
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For example, for n = 4,

Jx[X12354][X31254] [woX31245]
= [x T{1,2,35) - T{3}7{3,1,2,5} - T{3)}

= [x(r31)?(7(3,1.2,51)°
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For example, for n = 4,

Ix[X12354][X31254] [woX31245]

= Jx T{1,2,3,5) " T{3}7{3,1,2,5} " T{3}

= Ix(r3P*(73,1,25))°
= 2.
1235 3125 3 3125




Now we can compute

[Xs;]% = [X2134][X2134]
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Now we can compute

[Xs;]% = [X2134][X2134]
= [X2431] — [X4213] — [X3421] — [X3241] — [X3214].

Closed formula for the expansion of [X]? 77
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6. Other classical types

type By, type ), : Similar formulas for intersection numbers

type D, : the simplicial complex of A(Dy) is very different

e.g. The minimal generators wq, - ,wn Of g C A(P) are
type A,
1] C[2] C - C[n] O0—O oo —O
type D,, :
{1,---,n}
C
[1]Cc[2]C---C[n—2] O—O ce.

&
{1,---,—n}



Thank you for your attention!



