Young diagrams and intersection numbers on toric manifolds associated with Weyl chambers

Hiraku Abe Tokyo Metropolitan University

24 Sep. 2014

 Φ : a root system \leadsto $X(\Phi)$: a toric manifold

(1) $X(\Phi) \cong X(\Phi')$ as toric varieties $\iff \Phi \cong \Phi'$ as root systems

(1) $X(\Phi) \cong X(\Phi')$ as toric varieties $\iff \Phi \cong \Phi'$ as root systems "geometry of root systems"

(1) $X(\Phi) \cong X(\Phi')$ as toric varieties $\iff \Phi \cong \Phi'$ as root systems "geometry of root systems"

(2)
$$W \curvearrowright X(\Phi) \rightsquigarrow W \curvearrowright H^*(X(\Phi))$$

- (1) $X(\Phi) \cong X(\Phi')$ as toric varieties $\iff \Phi \cong \Phi'$ as root systems "geometry of root systems"
- (2) $W \curvearrowright X(\Phi) \rightsquigarrow W \curvearrowright H^*(X(\Phi))$ Studied by Stembridge, Procesi, and Dolgachev-Lunts.

- (1) $X(\Phi) \cong X(\Phi')$ as toric varieties $\iff \Phi \cong \Phi'$ as root systems "geometry of root systems"
- (2) $W \cap X(\Phi) \rightsquigarrow W \cap H^*(X(\Phi))$ Studied by Stembridge, Procesi, and Dolgachev-Lunts. "a space with W-symmetry"

- (1) $X(\Phi) \cong X(\Phi')$ as toric varieties $\iff \Phi \cong \Phi'$ as root systems "geometry of root systems"
- (2) $W \curvearrowright X(\Phi) \rightsquigarrow W \curvearrowright H^*(X(\Phi))$ Studied by Stembridge, Procesi, and Dolgachev-Lunts. "a space with W-symmetry"
- (3) A choice of the simple roots $\Pi \subset \Phi$

- (1) $X(\Phi) \cong X(\Phi')$ as toric varieties $\iff \Phi \cong \Phi'$ as root systems "geometry of root systems"
- (2) $W \curvearrowright X(\Phi) \leadsto W \curvearrowright H^*(X(\Phi))$ Studied by Stembridge, Procesi, and Dolgachev-Lunts. "a space with W-symmetry"
- (3) A choice of the simple roots $\Pi \subset \Phi$ \hookrightarrow an additive basis $\{[X_w]\}_{w \in W}$ of $H^*(X(\Phi))$

- (1) $X(\Phi) \cong X(\Phi')$ as toric varieties $\iff \Phi \cong \Phi'$ as root systems "geometry of root systems"
- (2) $W \cap X(\Phi) \rightsquigarrow W \cap H^*(X(\Phi))$ Studied by Stembridge, Procesi, and Dolgachev-Lunts. "a space with W-symmetry"
- (3) A choice of the simple roots $\Pi \subset \Phi$ \leadsto an additive basis $\{[X_w]\}_{w \in W}$ of $H^*(X(\Phi))$ "structure constants"

 $\Phi \subset E$: a root system in $E = \mathbb{R}^n$

 \hookrightarrow Choose the set of simple roots $\Pi = \{\alpha_1, \dots, \alpha_n\} \subset \Phi$

- \leadsto Choose the set of simple roots $\Pi = \{\alpha_1, \dots, \alpha_n\} \subset \Phi$
- \hookrightarrow $\Pi^* = \{w_1, \cdots, w_n\} \subset E^*$: the dual basis of Π

- \hookrightarrow Choose the set of simple roots $\Pi = \{\alpha_1, \dots, \alpha_n\} \subset \Phi$
- $\neg \neg$ $\Pi^* = \{w_1, \dots, w_n\} \subset E^*$: the dual basis of Π $\sigma_0 = \operatorname{cone}(w_1, \dots, w_n) \subset E^*$ the fundamental Weyl chamber

- \leadsto Choose the set of simple roots $\Pi = \{\alpha_1, \dots, \alpha_n\} \subset \Phi$
- $\sqcap^* = \{w_1, \cdots, w_n\} \subset E^*$: the dual basis of Π $\sigma_0 = \operatorname{cone}(w_1, \cdots, w_n) \subset E^* \quad \text{the fundamental Weyl chamber}$
- The collection $\{u\sigma_0 \mid u \in W\}$ forms a complete non-singular fan $\Delta(\Phi)$ in E^* (together with the coweight lattice $N = \bigoplus_i \mathbb{Z} w_i$)

- \leadsto Choose the set of simple roots $\Pi = \{\alpha_1, \dots, \alpha_n\} \subset \Phi$
- $\sqcap^* = \{w_1, \cdots, w_n\} \subset E^*$: the dual basis of Π $\sigma_0 = \operatorname{cone}(w_1, \cdots, w_n) \subset E^* \quad \text{the fundamental Weyl chamber}$
- The collection $\{u\sigma_0 \mid u \in W\}$ forms a complete non-singular fan $\Delta(\Phi)$ in E^* (together with the coweight lattice $N = \bigoplus_i \mathbb{Z} w_i$)
- $\sim X(\Phi)$: the toric manifold associated with $\Delta(\Phi)$

$$\Phi = \{t_i - t_j \mid 1 \le i, j \le n+1\} \subset \mathbb{R}^{n+1}$$

$$(t_i \in \mathbb{R}^{n+1} : \text{ the } i\text{-th standard vector})$$

$$\Phi = \{t_i - t_j \mid 1 \le i, j \le n+1\} \subset \mathbb{R}^{n+1}$$

$$(t_i \in \mathbb{R}^{n+1} : \text{ the } i\text{-th standard vector})$$

$$\Pi = \{t_i - t_{i+1} \mid 1 \le i \le n\} \text{ a set of simple roots}$$

$$\Phi = \{t_i - t_j \mid 1 \le i, j \le n+1\} \subset \mathbb{R}^{n+1}$$

$$(t_i \in \mathbb{R}^{n+1} : \text{the } i\text{-th standard vector})$$

$$\Pi = \{t_i - t_{i+1} \mid 1 \le i \le n\} \text{ a set of simple roots}$$

$$\sigma_0 = \operatorname{cone}(w_1, \cdots, w_n)$$
;

$$\Phi = \{t_i - t_j \mid 1 \le i, j \le n+1\} \subset \mathbb{R}^{n+1}$$

$$(t_i \in \mathbb{R}^{n+1} : \text{ the } i\text{-th standard vector})$$

$$\Pi = \{t_i - t_{i+1} \mid 1 \le i \le n\} \text{ a set of simple roots}$$

$$\sigma_0 = \text{cone}(w_1, \cdots, w_n) ;$$

$$w_i = e_1 + \cdots + e_i - \frac{i}{n+1}(e_1 + \cdots + e_{n+1})$$

 $(e_i \in (\mathbb{R}^{n+1})^*$: the *i*-th standard vector)

n = 2:

n = 2:

 $X(A_n)$: the toric manifold corresponding to the permutohedron

n = 2:

 $X(A_n)$: the toric manifold corresponding to the permutohedron

 \rightarrow $X(\Phi)$: the root theoretic generalization!

§3. Invariant divisors of $X(\Phi)$

$\S 3$. Invariant divisors of $X(\Phi)$

 $\Pi = \{\alpha_1, \cdots, \alpha_n\} \subset \Phi$: the set of simple roots

§3. Invariant divisors of $X(\Phi)$

 $\Pi = \{\alpha_1, \cdots, \alpha_n\} \subset \Phi$: the set of simple roots

 \rightarrow $\Pi^* = \{w_1, \dots, w_n\} \subset E^*$: the minimal generators of $\sigma_0 \in \Delta(\Phi)$

$\S 3$. Invariant divisors of $X(\Phi)$

 $\Pi = \{\alpha_1, \cdots, \alpha_n\} \subset \Phi$: the set of simple roots

 \rightarrow $\Pi^* = \{w_1, \dots, w_n\} \subset E^*$: the minimal generators of $\sigma_0 \in \Delta(\Phi)$

The set of minimal generators of $\Delta(\Phi)$ is

$$\Phi^* := \bigcup_{u \in W} \{uw_1, \cdots, uw_n\} \subset E^*.$$

$\S 3$. Invariant divisors of $X(\Phi)$

 $\Pi = \{\alpha_1, \cdots, \alpha_n\} \subset \Phi$: the set of simple roots

 \rightarrow $\Pi^* = \{w_1, \dots, w_n\} \subset E^*$: the minimal generators of $\sigma_0 \in \Delta(\Phi)$

The set of minimal generators of $\Delta(\Phi)$ is

$$\Phi^* := \cup_{u \in W} \{uw_1, \cdots, uw_n\} \subset E^*.$$

 \rightarrow $X_{uw_i} \subset X(\Phi)$ invariant divisor $(uw_i \in \Phi^*)$

 $\Pi = \{t_i - t_{i+1} \mid 1 \le i \le n\} \subset \Phi \subset \mathbb{R}^{n+1}$: the set of simple roots

$$w_i = e_1 + \dots + e_i - \frac{i}{n+1}(e_1 + \dots + e_{n+1}) \in (\mathbb{R}^n)^*$$

 $\Pi = \{t_i - t_{i+1} \mid 1 \le i \le n\} \subset \Phi \subset \mathbb{R}^{n+1}$: the set of simple roots

$$w_i = e_1 + \dots + e_i - \frac{i}{n+1}(e_1 + \dots + e_{n+1}) \in (\mathbb{R}^n)^*$$

$$\Phi^* \hookrightarrow 2^{[n+1]} \; ; \; uw_i \mapsto \{u(1), \cdots, u(i)\}$$

 $\Pi = \{t_i - t_{i+1} \mid 1 \le i \le n\} \subset \Phi \subset \mathbb{R}^{n+1}$: the set of simple roots

$$w_i = e_1 + \dots + e_i - \frac{i}{n+1}(e_1 + \dots + e_{n+1}) \in (\mathbb{R}^n)^*$$

$$\Phi^* \hookrightarrow 2^{[n+1]}$$
; $uw_i \mapsto \{u(1), \cdots, u(i)\}$

 $\Phi^* \stackrel{1:1}{\longleftrightarrow}$ the set of non-empty proper subsets in $2^{[n+1]}$

 $\Pi = \{t_i - t_{i+1} \mid 1 \le i \le n\} \subset \Phi \subset \mathbb{R}^{n+1}$: the set of simple roots

$$w_i = e_1 + \dots + e_i - \frac{i}{n+1}(e_1 + \dots + e_{n+1}) \in (\mathbb{R}^n)^*$$

$$\Phi^* \hookrightarrow 2^{[n+1]} ; uw_i \mapsto \{u(1), \cdots, u(i)\}$$

 $\Phi^* \stackrel{1:1}{\longleftrightarrow}$ the set of non-empty proper subsets in $2^{[n+1]}$

 $X_S \subset X(A_n)$ invariant divisor for each $\emptyset \subsetneq S \subsetneq [n+1]$

Example: type A_n (continued)

 $\Pi = \{t_i - t_{i+1} \mid 1 \le i \le n\} \subset \Phi \subset \mathbb{R}^{n+1}$: the set of simple roots

$$w_i = e_1 + \dots + e_i - \frac{i}{n+1}(e_1 + \dots + e_{n+1}) \in (\mathbb{R}^n)^*$$

$$\Phi^* \hookrightarrow 2^{[n+1]} ; uw_i \mapsto \{u(1), \cdots, u(i)\}$$

 $\Phi^* \stackrel{1:1}{\longleftrightarrow}$ the set of non-empty proper subsets in $2^{[n+1]}$

 $X_S \subset X(A_n)$ invariant divisor for each $\emptyset \subsetneq S \subsetneq [n+1]$

$$X_{S_1} \cap \cdots \cap X_{S_n} = \emptyset$$
 unless $S_1 \subset \cdots \subset S_n$

For each $u \in \mathfrak{S}_{n+1}$,

$$X_u := \bigcap_i X_{uw_i} = \bigcap_i X_{\{u(1), \dots, u(i)\}}$$

where i runs over all descents in u. (i.e.

For each $u \in \mathfrak{S}_{n+1}$,

$$X_u := \bigcap_i X_{uw_i} = \bigcap_i X_{\{u(1), \dots, u(i)\}}$$

where i runs over all descents in u. (i.e. u(i) > u(i+1))

For each $u \in \mathfrak{S}_{n+1}$,

$$X_u := \bigcap_i X_{uw_i} = \bigcap_i X_{\{u(1), \dots, u(i)\}}$$

where i runs over all descents in u. (i.e. u(i) > u(i+1))

 \leadsto $\{[X_u]\}_{u \in \mathfrak{S}_{n+1}}$: an additive basis of $H^*(X(A_n))$

For each $u \in \mathfrak{S}_{n+1}$,

$$X_u := \bigcap_i X_{uw_i} = \bigcap_i X_{\{u(1), \dots, u(i)\}}$$

where i runs over all descents in u. (i.e. u(i) > u(i+1))

 \leadsto $\{[X_u]\}_{u \in \mathfrak{S}_{n+1}}$: an additive basis of $H^*(X(A_n))$

$$[X_u][X_v] = \sum_w c_{u,v}^w [X_w], \quad c_{u,v}^w \in \mathbb{Z}$$

$$[X_{s_i}][X_{s_j}] = \begin{cases} [X_{s_i s_j}] (= [X_{s_j s_i}]) & \text{if } |i - j| \ge 2, \\ 0 & \text{if } |i - j| = 1. \end{cases}$$

$$[X_{s_i}][X_{s_j}] = \begin{cases} [X_{s_i s_j}] (= [X_{s_j s_i}]) & \text{if } |i - j| \ge 2, \\ 0 & \text{if } |i - j| = 1. \end{cases}$$

But, it is not easy to compute $[X_{s_i}]^2$ in terms of $\{[X_u]\}_{u\in\mathfrak{S}_{n+1}}$.

$$[X_{s_i}][X_{s_j}] = \begin{cases} [X_{s_i s_j}] (= [X_{s_j s_i}]) & \text{if } |i - j| \ge 2, \\ 0 & \text{if } |i - j| = 1. \end{cases}$$

But, it is not easy to compute $[X_{s_i}]^2$ in terms of $\{[X_u]\}_{u\in\mathfrak{S}_{n+1}}$.

In general,

$$c_{uv}^{w} = \sum_{w'} (\mathcal{I}^{-1})_{ww'} \int_{X} [w_{0}X_{w_{0}w'}][X_{u}][X_{v}] \qquad \Big(\mathcal{I}_{uv} = \int_{X} [w_{0}X_{w_{0}u}][X_{v}]\Big).$$

$$[X_{s_i}][X_{s_j}] = \begin{cases} [X_{s_i s_j}] (= [X_{s_j s_i}]) & \text{if } |i - j| \ge 2, \\ 0 & \text{if } |i - j| = 1. \end{cases}$$

But, it is not easy to compute $[X_{s_i}]^2$ in terms of $\{[X_u]\}_{u\in\mathfrak{S}_{n+1}}$.

In general,

$$c_{uv}^{w} = \sum_{w'} (\mathcal{I}^{-1})_{ww'} \int_{X} [w_{0}X_{w_{0}w'}][X_{u}][X_{v}] \qquad \Big(\mathcal{I}_{uv} = \int_{X} [w_{0}X_{w_{0}u}][X_{v}]\Big).$$

→ Need a combinatorial formula for intersection numbers.

 $X_S \subset X(A_n)$ invariant divisor for each $\emptyset \subsetneq S \subsetneq [n+1]$

 $X_S \subset X(A_n)$ invariant divisor for each $\emptyset \subsetneq S \subsetneq [n+1]$

 $\rightarrow \tau_S := [X_S] \in H^2(X(\Phi))$: divisor class

 $X_S \subset X(A_n)$ invariant divisor for each $\emptyset \subseteq S \subseteq [n+1]$

$$\rightarrow \tau_S := [X_S] \in H^2(X(\Phi))$$
: divisor class

 $\mathfrak{S}_{n+1} \cap H^*(X(A_n))$ gives the following invariance.

 $X_S \subset X(A_n)$ invariant divisor for each $\emptyset \subsetneq S \subsetneq [n+1]$

$$\rightarrow \tau_S := [X_S] \in H^2(X(\Phi))$$
: divisor class

 $\mathfrak{S}_{n+1} \curvearrowright H^*(X(A_n))$ gives the following invariance.

Lemma (W-invariance) -

Let $\emptyset \subsetneq S_1 \subset \cdots \subset S_n \subsetneq [n+1]$ and $\emptyset \subsetneq S_1' \subset \cdots \subset S_n' \subsetneq [n+1]$. If $|S_i| = |S_i'|$ for all i, then

$$\int_X \tau_{S_1} \cdots \tau_{S_n} = \int_X \tau_{S_1'} \cdots \tau_{S_n'}.$$

 $X_S \subset X(A_n)$ invariant divisor for each $\emptyset \subsetneq S \subsetneq [n+1]$

$$\rightarrow \tau_S := [X_S] \in H^2(X(\Phi))$$
: divisor class

 $\mathfrak{S}_{n+1} \curvearrowright H^*(X(A_n))$ gives the following invariance.

Lemma (W-invariance) -

Let $\emptyset \subsetneq S_1 \subset \cdots \subset S_n \subsetneq [n+1]$ and $\emptyset \subsetneq S_1' \subset \cdots \subset S_n' \subsetneq [n+1]$. If $|S_i| = |S_i'|$ for all i, then

$$\int_X \tau_{S_1} \cdots \tau_{S_n} = \int_X \tau_{S_1'} \cdots \tau_{S_n'}.$$

 $\leadsto \int_X \tau_{S_1} \cdots \tau_{S_n}$ depends only on $|S_1| \leq \cdots \leq |S_n|$!

Want to compute $\int_X \tau_{S_1} \cdots \tau_{S_n}$ in terms of $|S_1| \leq \cdots \leq |S_n|$.

Want to compute $\int_X \tau_{S_1} \cdots \tau_{S_n}$ in terms of $|S_1| \leq \cdots \leq |S_n|$.

 $\rightarrow \lambda := (|S_n|, \cdots, |S_1|)$: a Young diagram

,	Vanishing property ————————————————————————————————————

Vanishing property -

Let $\emptyset \subsetneq S_1 \subset \cdots \subset S_n \subsetneq [n+1]$ and $\lambda = (|S_n|, \cdots, |S_1|)$.

Vanishing property

Let $\emptyset \subsetneq S_1 \subset \cdots \subset S_n \subsetneq [n+1]$ and $\lambda = (|S_n|, \cdots, |S_1|)$.

Then, $\int_X \tau_{S_1} \cdots \tau_{S_n} = 0$ unless each step of the zigzag-line of the south-west corners of λ crosses the dotted anti diagonal.

Vanishing property

Let $\emptyset \subsetneq S_1 \subset \cdots \subset S_n \subsetneq [n+1]$ and $\lambda = (|S_n|, \cdots, |S_1|)$.

Then, $\int_X \tau_{S_1} \cdots \tau_{S_n} = 0$ unless each step of the zigzag-line of the south-west corners of λ crosses the dotted anti diagonal.

The linear relations for divisor classes:

$$\sum_{\substack{\emptyset \subsetneq S \subsetneq [n+1]\\k \in S, l \notin S}} \tau_S - \sum_{\substack{\emptyset \subsetneq S \subsetneq [n+1]\\k \notin S, l \in S}} \tau_S = 0 \qquad \text{for each } k, l \in [n+1].$$

Theorem

Let $\emptyset \subsetneq S_1 \subset \cdots \subset S_n \subsetneq [n+1]$ and $\lambda = (|S_n|, \cdots, |S_1|)$.

Theorem

Let $\emptyset \subsetneq S_1 \subset \cdots \subset S_n \subsetneq [n+1]$ and $\lambda = (|S_n|, \cdots, |S_1|)$.

Then,

$$\int_X \tau_{S_1} \cdots \tau_{S_n} = (-1)^{n-s} y_1 \cdots y_s.$$

$$[X_u] = \prod_i \tau_{\{u(1), \dots, u(i)\}} \quad \text{(running over all } i \text{ s.t. } u(i) > u(i+1))$$

$$[X_u] = \prod_i \tau_{\{u(1), \dots, u(i)\}} \quad \text{(running over all } i \text{ s.t. } u(i) > u(i+1))$$

In n = 5, for $534216 \in \mathfrak{S}_6$,

$$[X_{534216}] = \tau_{\{5\}}\tau_{\{5,3,4\}}\tau_{\{5,3,4,2\}} = \boxed{\begin{array}{c} 5 \ 3 \ 4 \ 2 \\ \hline \end{array}}$$

$$[X_u] = \prod_i \tau_{\{u(1), \dots, u(i)\}} \quad \text{(running over all } i \text{ s.t. } u(i) > u(i+1))$$

In n = 5, for $534216 \in \mathfrak{S}_6$,

$$[X_{534216}] = \tau_{\{5\}}\tau_{\{5,3,4\}}\tau_{\{5,3,4,2\}} = \begin{bmatrix} 5 & 3 & 4 & 2 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{bmatrix}$$

 \leadsto A combinatorial formula for $\int_X [w_0 X_{w_0 w}][X_u][X_v]$!

 $\int_{X} [X_{12354}][X_{31254}][w_0 X_{31245}]$

$$\int_{X} [X_{12354}][X_{31254}][w_0 X_{31245}]$$

$$= \int_{X} \tau_{\{1,2,3,5\}} \cdot \tau_{\{3\}} \tau_{\{3,1,2,5\}} \cdot \tau_{\{3\}}$$

$$\int_{X} [X_{12354}][X_{31254}][w_{0}X_{31245}]$$

$$= \int_{X} \tau_{\{1,2,3,5\}} \cdot \tau_{\{3\}} \tau_{\{3,1,2,5\}} \cdot \tau_{\{3\}}$$

$$= \int_{X} (\tau_{\{3\}})^{2} (\tau_{\{3,1,2,5\}})^{2}$$

$$\int_{X} [X_{12354}][X_{31254}][w_{0}X_{31245}]$$

$$= \int_{X} \tau_{\{1,2,3,5\}} \cdot \tau_{\{3\}} \tau_{\{3,1,2,5\}} \cdot \tau_{\{3\}}$$

$$= \int_{X} (\tau_{\{3\}})^{2} (\tau_{\{3,1,2,5\}})^{2}$$

$$= 2.$$

Now we can compute

$$[X_{s_1}]^2 = [X_{2134}][X_{2134}]$$

= $[X_{2431}] - [X_{4213}] - [X_{3421}] - [X_{3241}] - [X_{3214}].$

Now we can compute

$$[X_{s_1}]^2 = [X_{2134}][X_{2134}]$$

= $[X_{2431}] - [X_{4213}] - [X_{3421}] - [X_{3241}] - [X_{3214}].$

Closed formula for the expansion of $[X_{s_i}]^2$??

type B_n , type C_n : Similar formulas for intersection numbers

type B_n , type C_n : Similar formulas for intersection numbers

type D_n : the simplicial complex of $\Delta(D_n)$ is very different

type B_n , type C_n : Similar formulas for intersection numbers

type D_n : the simplicial complex of $\Delta(D_n)$ is very different

<u>e.g.</u> The minimal generators w_1, \cdots, w_n of $\sigma_0 \subset \Delta(\Phi)$ are type A_n :

type D_n :

type B_n , type C_n : Similar formulas for intersection numbers

type D_n : the simplicial complex of $\Delta(D_n)$ is very different

<u>e.g.</u> The minimal generators w_1, \dots, w_n of $\sigma_0 \subset \Delta(\Phi)$ are type A_n :

$$[1] \subset [2] \subset \cdots \subset [n]$$
 $\longrightarrow \bigcirc \cdots \longrightarrow \bigcirc$

type D_n :

type B_n , type C_n : Similar formulas for intersection numbers

type D_n : the simplicial complex of $\Delta(D_n)$ is very different

<u>e.g.</u> The minimal generators w_1, \dots, w_n of $\sigma_0 \subset \Delta(\Phi)$ are type A_n :

$$[1] \subset [2] \subset \cdots \subset [n]$$
 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

type D_n :

$$\{1,\cdots,n\}$$
 $[1]\subset [2]\subset\cdots\subset [n-2]$ $[1,\cdots,-n]$

