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Closed curves embedded in space

Classified topologically up to isotopy
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(Topological) Knot Theory

Classify knot/link types

Look for easily computed invariants

to distinguish knots/links

3-manifold topology of complement
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Geometric Knot Theory

Geometric properties determined by knot type

or implied by knottedness

Seek optimal shape for a given knot

(optimal geometric form for topological object)

usually: Minimize geometric energy
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Total Curvature

For smooth curve K

TC =
∫

K
κ ds

For polygon P

TC = sum of turning angles (exterior angles)
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Total Curvature

For arbitrary curve K [Milnor]

supremal TC of inscribed polygons
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Curves of Finite Total Curvature

FTC means TC <∞
Unit tangent vector

BV function of arclength

Curvature measure

T ′ = κN ds as Radon measure

Countably many corners

where T+ 6= T−
(curvature measure has atom)
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Approximation of FTC curves

FTC knot has isotopic inscribed polygon [Milnor]

Tame knot type

K, K ′ each FTC and C1-close =⇒ isotopic [DDS]

FTC is “geometrically tame”
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Projection of FTC curves

Fix k < n and an FTC K ⊂ Rn

Consider all projections of K to Rks

Their average TC equals the TC of K

Pf: Suffices to prove for polygons

Suffices to prove for one corner
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Projection of FTC curves (Proof)

Given angle θ, average turning angle of its projections

is some function fn
k (θ)

By cutting corner into two, fn
k clearly additive, hence linear

fn
k (θ) = cn

k θ

Any projection of a cusp is a cusp, so fn
k (π) = π

Hence cn
k = 1 as desired
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Fenchel’s Theorem

γ ⊂ Rn closed curve =⇒ TC(γ) ≥ 2π

Pf: This is true in R1, where every angle is 0 or π
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Fáry/Milnor Theorem

K ⊂ R3 knotted =⇒ TC(K) ≥ 4π

Milnor’s Pf:

No projection to R1

can just go up & down

So true in R1
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Fáry/Milnor
Second Hull

Fáry/Milnor Theorem: Fáry’s Proof

True for knot diagrams in R2

Because some region enclosed twice

(perhaps not winding number two)
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Second Hull: Intiuition

Fary/Milnor says knot K “wraps around” twice

Intuition says K “wraps around some point” twice

Some region (second hull) doubly enclosed by K

How to make this precise?
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Fáry/Milnor
Second Hull

Second hull: Definition

Characterize convex hull of K as

set of points p such that

every plane through p cuts K (at least twice)

Then nth hull of K is

set of points p such that

every plane through p cuts K at least 2n times
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Second hull: Theorem

Work with Jason Cantarella, Greg Kuperber, Rob Kusner

Amer. J. Math 125 (2003) 1335-1348

arXiv:math.GT/0204106

Thm: Knotted curve has nonempty second hull
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Second hull: Proof

Proof for prime FTC knot

Essential halfspace contains all of K

except one unknotted arc

Intersection of all essential halfspaces is (part of) second hull
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Möbius energy

Inspired by Coulomb energy (repelling electrical charges)∫∫
K×K

dx dy

|x− y|p

Renormalize to make this finite [O’Hara]

Scale-invariant for p = 2
Invariant under Möbius transformations [FHW]
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Möbius energy

Minimizers for prime knots [FHW]

Probably not for composite knots

Perhaps untangles all unknots

Simulations (with Kusner) −→ video
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Ropelength: Definitions

Ropelength of L: quotient length / thickness

Thickness: diameter of largest embedded normal tube

Positive thickness implies C1,1

Gehring thickness: minimum distance between components

Works with Milnor’s link homotopy
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Ropelength: Theory

Work with Jason Cantarella, Rob Kusner

arXiv: math.GT/0103224

Inventiones 150 (2002) pp 257-286

Minimizers exist for any link type

Some known from sharp lower bounds

Need not be C2
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Tight Knots: Theory

New work with also Joe Fu, Nancy Wrinkle

arXiv: math.DG/0402212, math.DG/0409369

Balance criterion for ropelength-critical links

C1 2C

S

c1 c2
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Tight Knots: Example

critical Borromean rings

piecewise smooth (14 pieces per component)
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Distortion

Given p, q ∈ K,

subarcs γpq, γqp

of lengths `pq, `qp

d(p, q) := min(`pq, `qp)

δ(p, q) := d(p, q)/|p− q|
arc/chord ratio

Distortion: δ(K) := supp,q δ(p, q).

p q

γpq

γqp

Gromov: δ(K) ≥ π/2, equality only for round circle

Can every knot be built with δ < 100?
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Distortion: Upper bounds

Trefoil can be built with δ < 8.2

Open trefoil with δ < 11

So infinitely many (even wild) knots with δ < 11
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Distortion: Lower bounds

Work with Elizabeth Denne, arXiv: math.GT/0409438

K knotted implies δ > 4

with Denne and Yuanan Diao, arXiv: math.DG/0408026

Geometry and Topology, to appear

Ropelength ≥ 15.66 (within 5% for trefoil)

Proofs use essential secants
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Essential arcs

Given p, q ∈ K, when is γpq essential?

Construct free homotopy class hpq in R3 r K

Parallel to γpq ∪ qp, linking zero with K.

γpq essential iff hpq nontrivial

iff γpq ∪ qp spanned by no disk in R3 r K

p q

hpq
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Essential secants

K unknotted =⇒ all arcs inessential (π1 = H1)

γpq and γqp inessential =⇒ K unknotted (Dehn)

Defn: pq essential if both γpq and γqp are.

If λ ∈ π1 is meridian loop

[λ, hpq] = [λ, hqp]

p q

[λ, h]
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Arcs becoming essential

Change in hpr to essential happens because pr crosses q ∈ K

Difference is [λ, hpq] = [λ, hqr]

For γpr to become essential

need pq and qr both essential

p

q

r
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pq and qr are both essential
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Distortion: Theorem

Thm: δ ≥ π for any (FTC) knot

Find shortest essential arc γpr

Scale so `pr = δ = δ(K) (!)

ab essential =⇒ `ab, `ba ≥ δ

so δ(a, b) ≤ δ =⇒ |a− b| ≥ 1

γpr stays outside B1(q)
so `pr ≥ π.

p

q

r
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Quadrisecants

Quadrisecant: line intersecting knot four times

Every knot has one (Pannwitz, Kuperberg)

Three order types: simple, flipped, alternating

Denne thesis: all knots have alternating quadrisecants

Alternating =⇒ midsegment in second hull
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Ropelength: Theorem

Thm: Ropelength > 15.66 for any knotted curve

Denne gives essential alternating quadrisecant abcd

Write lengths as r := |a− b|, s := |b− c|, t := |c− d|
Scaling to thickness 1, we have r, s, t ≥ 1

Define f(x) :=
√

x2 − 1 + arcsin(1/x)

`ac ≥ f(r) + f(s), `bd ≥ f(s) + f(t),

`da ≥ f(r) + s + f(t),

`cb ≥ π and `cb ≥ 2π − 2 arcsin s/2 if s < 2.

Minimize sum separately in r, s, t.
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