Geometric Knot Theory

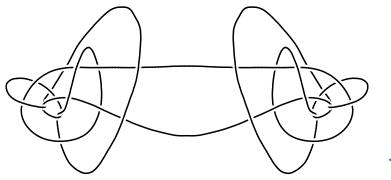
John M. Sullivan

Institut für Mathematik, TU Berlin DFG Research Center Matheon

Ōsaka, 2006 January 28

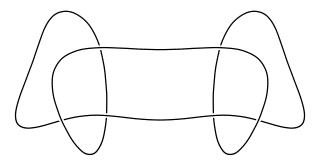
Knots and Links

- Closed curves embedded in space
- Classified topologically up to *isotopy*
- Two knotted curves are equivalent (same knot type) if one can be deformed into the other



Knots and Links

- Closed curves embedded in space
- Classified topologically up to *isotopy*
- Two knotted curves are equivalent (same knot type) if one can be deformed into the other



(Topological) Knot Theory

- Classify knot/link types
- Look for easily computed invariants to distinguish knots/links
- 3-manifold topology of complement

Geometric Knot Theory

- Geometric properties determined by knot type or implied by knottedness
- Seek optimal shape for a given knot (optimal geometric form for topological object) usually: Minimize geometric energy

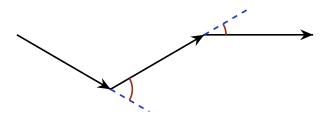
Total Curvature Projections and curvature Fáry/Milnor Second Hull

Total Curvature

 $\bullet\,$ For smooth curve K

$$\mathsf{TC} = \int_K \kappa \, ds$$

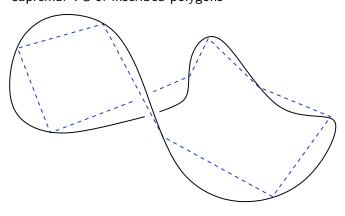
• For polygon *P* TC = sum of turning angles (exterior angles)



Total Curvature Projections and curvature Fáry/Milnor Second Hull

Total Curvature

• For arbitrary curve K [Milnor] supremal TC of inscribed polygons



Total Curvature Projections and curvature Fáry/Milnor Second Hull

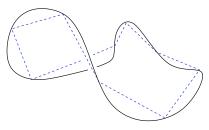
Curves of Finite Total Curvature

- FTC means TC $< \infty$
- Unit tangent vector BV function of arclength
- Curvature measure $T' = \kappa N \, ds$ as Radon measure
- Countably many corners where $T_+ \neq T_-$ (curvature measure has atom)

Total Curvature Projections and curvature Fáry/Milnor Second Hull

Approximation of FTC curves

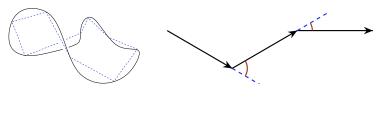
- FTC knot has isotopic inscribed polygon [Milnor]
- Tame knot type
- K, K' each FTC and C^1 -close \implies isotopic [DDS]
- FTC is "geometrically tame"



Total Curvature Projections and curvature Fáry/Milnor Second Hull

Projection of FTC curves

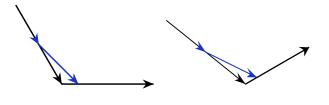
- Fix k < n and an FTC $K \subset \mathbb{R}^n$
- Consider all projections of K to \mathbb{R}^k s
- Their average TC equals the TC of K
- Pf: Suffices to prove for polygons Suffices to prove for one corner



Total Curvature Projections and curvature Fáry/Milnor Second Hull

Projection of FTC curves (Proof)

- Given angle $\theta,$ average turning angle of its projections is some function $f_k^n(\theta)$
- By cutting corner into two, f_k^n clearly additive, hence linear $f_k^n(\theta)=c_k^n\,\theta$
- Any projection of a cusp is a cusp, so $f_k^n(\pi)=\pi$. Hence $c_k^n=1$ as desired



Total Curvature Projections and curvature Fáry/Milnor Second Hull

Fenchel's Theorem

$\gamma \subset \mathbb{R}^n \text{ closed curve } \implies TC(\gamma) \geq 2\pi$

Pf: This is true in \mathbb{R}^1 , where every angle is 0 or π

Total Curvature Projections and curvature Fáry/Milnor Second Hull

Fáry/Milnor Theorem

 $K \subset \mathbb{R}^3 \text{ knotted } \implies TC(K) \geq 4\pi$

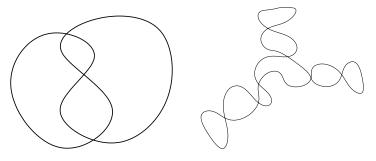
Milnor's Pf:

- No projection to \mathbb{R}^1 can just go up & down
- So true in \mathbb{R}^1

Total Curvature Projections and curvature Fáry/Milnor Second Hull

Fáry/Milnor Theorem: Fáry's Proof

- True for knot diagrams in \mathbb{R}^2
- Because some region enclosed twice (perhaps not winding number two)



Total Curvature Projections and curvature Fáry/Milnor Second Hull

Second Hull: Intiuition

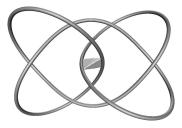
- Fary/Milnor says knot K "wraps around" twice
- $\bullet\,$ Intuition says $K\,$ "wraps around some point" twice
- $\bullet\,$ Some region (second hull) doubly enclosed by K
- How to make this precise?

Second hull: Definition

- Characterize convex hull of K as set of points p such that every plane through p cuts K (at least twice)
- Then n^{th} hull of K is

set of points p such that

every plane through $p \ {\rm cuts} \ K$ at least $2n \ {\rm times}$



Total Curvature Projections and curvature Fáry/Milnor Second Hull

Second hull: Theorem

- Work with Jason Cantarella, Greg Kuperber, Rob Kusner
- Amer. J. Math 125 (2003) 1335-1348 arXiv:math.GT/0204106
- Thm: Knotted curve has nonempty second hull

Total Curvature Projections and curvature Fáry/Milnor Second Hull

Second hull: Proof

- Proof for prime FTC knot
- Essential halfspace contains all of K except one unknotted arc
- Intersection of all essential halfspaces is (part of) second hull

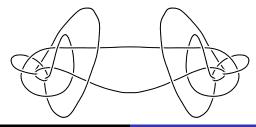
Topology versus geometry Finite Total Curvature Optimal Shapes Knot Energies Ropelength Distortion

Möbius energy

• Inspired by Coulomb energy (repelling electrical charges)

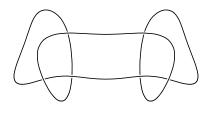
$$\iint_{K \times K} \frac{dx \, dy}{|x - y|^p}$$

- Renormalize to make this finite [O'Hara]
- Scale-invariant for p=2
- Invariant under Möbius transformations [FHW]



Möbius energy

- Minimizers for prime knots [FHW]
- Probably not for composite knots
- Perhaps untangles all unknots
- Simulations (with Kusner) \longrightarrow video



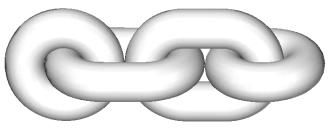
Knot Energies Ropelength Distortion

Ropelength: Definitions

- Ropelength of L: quotient length / thickness
- Thickness: diameter of largest embedded normal tube Positive thickness implies $C^{1,1}$
- *Gehring thickness*: minimum distance between components Works with Milnor's *link homotopy*

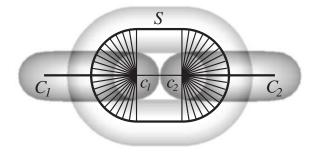
Ropelength: Theory

- Work with Jason Cantarella, Rob Kusner arXiv: math.GT/0103224 *Inventiones 150* (2002) pp 257-286
- Minimizers exist for any link type
- Some known from sharp lower bounds
- $\bullet~{\rm Need}$ not be C^2



Tight Knots: Theory

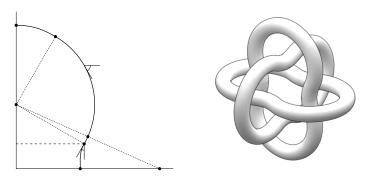
- New work with also Joe Fu, Nancy Wrinkle arXiv: math.DG/0402212, math.DG/0409369
- Balance criterion for ropelength-critical links



Knot Energies Ropelength Distortion

Tight Knots: Example

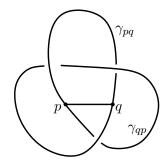
- critical Borromean rings
- piecewise smooth (14 pieces per component)



Topology versus geometry Finite Total Curvature Optimal Shapes Knot Energies Ropelength Distortion

Distortion

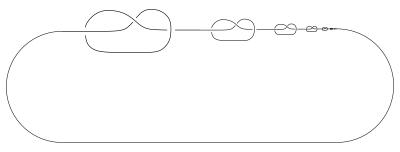
- Given $p,q \in K$, subarcs γ_{pq} , γ_{qp} of lengths ℓ_{pq} , ℓ_{qp}
- $d(p,q) := \min(\ell_{pq}, \ell_{qp})$
- $\delta(p,q) := d(p,q)/|p-q|$ arc/chord ratio
- Distortion: $\delta(K) := \sup_{p,q} \delta(p,q).$



Gromov: $\delta(K) \ge \pi/2$, equality only for round circle Can every knot be built with $\delta < 100$?

Distortion: Upper bounds

- Trefoil can be built with $\delta < 8.2$
- \bullet Open trefoil with $\delta < 11$
- So infinitely many (even wild) knots with $\delta < 11$



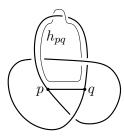
Distortion: Lower bounds

- Work with Elizabeth Denne, arXiv: math.GT/0409438 K knotted implies $\delta>4$
- with Denne and Yuanan Diao, arXiv: math.DG/0408026 Geometry and Topology, to appear Ropelength ≥ 15.66 (within 5% for trefoil)
- Proofs use essential secants

Knot Energies Ropelength Distortion

Essential arcs

- Given $p, q \in K$, when is γ_{pq} essential?
- Construct free homotopy class h_{pq} in $\mathbb{R}^3 \smallsetminus K$ Parallel to $\gamma_{pq} \cup \overline{qp}$, linking zero with K.
- γ_{pq} essential iff h_{pq} nontrivial iff $\gamma_{pq}\cup \overline{qp}$ spanned by no disk in $\mathbb{R}^3\smallsetminus K$



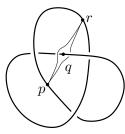
Essential secants

- K unknotted \implies all arcs inessential $(\pi_1 = H_1)$
- γ_{pq} and γ_{qp} inessential $\implies K$ unknotted (Dehn)
- Defn: \overline{pq} essential if both γ_{pq} and γ_{qp} are.
- If $\lambda \in \pi_1$ is meridian loop

 $[\lambda, h_{pq}] = [\lambda, h_{qp}]$

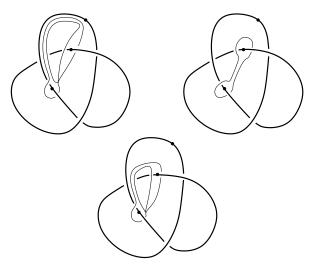
Arcs becoming essential

- Change in h_{pr} to essential happens because \overline{pr} crosses $q \in K$
- Difference is $[\lambda, h_{pq}] = [\lambda, h_{qr}]$
- For γ_{pr} to become essential need \overline{pq} and \overline{qr} both essential



Knot Energies Ropelength Distortion

pq and qr are both essential



Knot Energies Ropelength Distortion

Distortion: Theorem

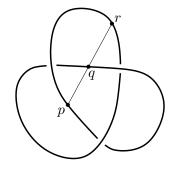
Thm: $\delta \geq \pi$ for any (FTC) knot

• Find shortest essential arc γ_{pr}

• Scale so
$$\ell_{pr} = \delta = \delta(K)$$
 (!)

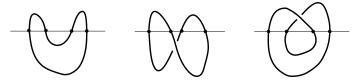
•
$$\overline{ab}$$
 essential $\implies \ell_{ab}, \ell_{ba} \ge \delta$
so $\delta(a, b) \le \delta \implies |a - b| \ge 1$

•
$$\gamma_{pr}$$
 stays outside $B_1(q)$
so $\ell_{pr} \ge \pi$.



Quadrisecants

- Quadrisecant: line intersecting knot four times
- Every knot has one (Pannwitz, Kuperberg)
- Three order types: simple, flipped, alternating
- Denne thesis: all knots have alternating quadrisecants
- Alternating \implies midsegment in second hull



Ropelength: Theorem

Thm: Ropelength > 15.66 for any knotted curve

- $\bullet\,$ Denne gives essential alternating quadrisecant abcd
- Write lengths as r := |a b|, s := |b c|, t := |c d|
- Scaling to thickness 1, we have $r, s, t \ge 1$
- Define $f(x) := \sqrt{x^2 1} + \arcsin(1/x)$
- $\ell_{ac} \ge f(r) + f(s)$, $\ell_{bd} \ge f(s) + f(t)$,
- $\ell_{da} \ge f(r) + s + f(t)$,
- $\ell_{cb} \ge \pi$ and $\ell_{cb} \ge 2\pi 2 \arcsin s/2$ if s < 2.
- Minimize sum separately in r, s, t.

