Triply Periodic Minimal Surfaces Bounded by Vertical Symmetry Planes

Shoichi Fujimori ${ }^{1}$ Matthias Weber ${ }^{2}$

${ }^{1}$ Department of Mathematics
Fukuoka University of Education
${ }^{2}$ Department of Mathematics
Indiana University

December 17, 2008

Introduction

A triply periodic minimal surface (TPMS)
complete, embedded minimal surface in \mathbb{R}^{3} which is invariant under translations in three independent directions (the three translations generate a lattice Λ in \mathbb{R}^{3}).

Introduction

A triply periodic minimal surface (TPMS)
complete, embedded minimal surface in \mathbb{R}^{3} which is invariant under translations in three independent directions (the three translations generate a lattice Λ in \mathbb{R}^{3}).
TPMS can be considered as a minimally embedded surface from a compact Riemann surface of genus $g \geq 3$ into \mathbb{R}^{3} / Λ.

History

- (19th century) H. A. Schwarz, E. R. Neovius, 5 examples.

History

- (19th century) H. A. Schwarz, E. R. Neovius, 5 examples.
- (1970) A. Schoen, 12 more examples.

History

- (19th century) H. A. Schwarz, E. R. Neovius, 5 examples.
- (1970) A. Schoen, 12 more examples.
- (1989) H. Karcher, existence of Schoen's examples and further examples.

History

- (19th century) H. A. Schwarz, E. R. Neovius, 5 examples.
- (1970) A. Schoen, 12 more examples.
- (1989) H. Karcher, existence of Schoen's examples and further examples.
- (2008) M. Traizet, existence of TPMS for any genus $g \geq 3$.

Examples

Schwarz P

Schwarz H

Schoen T'-R

Our construction method

(1) Construct a minimal embedding defined on a parallel strip with the following properties:

Our construction method

(1) Construct a minimal embedding defined on a parallel strip with the following properties:

- bounded by a vertical prism over a certain kind of triangle,
- the boundary curves lie on the prism,
- intersects to the prism orthogonally,
- invariant under vartical translation.

Our construction method

(1) Construct a minimal embedding defined on a parallel strip with the following properties:

- bounded by a vertical prism over a certain kind of triangle,
- the boundary curves lie on the prism,
- intersects to the prism orthogonally,
- invariant under vartical translation.
(2) Repeat reflection with respect to a vertical plane of the prism.

The Classical Schwarz-Christoffel formula

It gives the biholomorphic map from the upper half plane into a polygon.

An equivariant Schwarz-Christoffel formula

It gives the biholomorphic map from the parallel strip Z into a periodic polygon P.

An equivariant Schwarz-Christoffel formula

A periodic polygon P is a simply connected domain in the plane which is bounded by two infinite piecewise linear curves, and is invariant under a Euclidean translation $V(z)=z+v$ for some $v \neq 0$, and the quotient $P /\langle V\rangle$ is conformally an annulus.

An equivariant Schwarz-Christoffel formula

A periodic polygon P is a simply connected domain in the plane which is bounded by two infinite piecewise linear curves, and is invariant under a Euclidean translation $V(z)=z+v$ for some $v \neq 0$, and the quotient $P /\langle V\rangle$ is conformally an annulus.
Let P be a periodic polygon, and define the strip $Z=\{z \in \mathbb{C} ; 0<\operatorname{Im} z<\tau / 2\}$. Then $\exists 1 \tau \in i \mathbb{R}^{+}$s.t. $Z /\langle z \mapsto z+1\rangle$ and $P /\langle V\rangle$ are conformally equivalent. Moreover, we obtain a biholomorphic map $f: Z \rightarrow P$ which is equivariant w.r.t. both translations:

$$
f(z+1)=V(f(z))
$$

Proposition

Let P be a periodic polygon and Z the associated parallel strip. Then, up to scaling, rotating, and translating,

$$
f(z)=\int^{z} \prod_{i=1}^{m} \vartheta\left(z-p_{i}\right)^{a_{i}} \cdot \prod_{j=1}^{n} \vartheta\left(z-q_{j}\right)^{b_{j}}
$$

is the biholomorphic map from Z to P. Conversely, for any choices of $p_{i} \in \mathbb{R}(1 \leq i \leq m), q_{j} \in \mathbb{R}+\tau / 2$ $(1 \leq j \leq n)$ and $-1<a_{i}, b_{j}<1$ satisfying the angle condition $\sum_{i=1}^{m} a_{i}=0=\sum_{j=1}^{n} b_{j}, f$ maps Z to a periodic polygon.

Jacobi ϑ-function

Definition

$$
\vartheta(z)=\vartheta(z, \tau)=\sum_{n=-\infty}^{\infty} e^{\pi i\left(n+\frac{1}{2}\right)^{2} \tau+2 \pi i\left(n+\frac{1}{2}\right)\left(z-\frac{1}{2}\right)}
$$

Fact

$$
\begin{aligned}
\vartheta(-z) & =-\vartheta(z) \\
\vartheta(z+1) & =-\vartheta(z) \\
\vartheta(z+\tau) & =-e^{-\pi i \tau-2 \pi i z} \vartheta(z)
\end{aligned}
$$

Proposition (Weierstrass representation)

$$
Z \ni z \mapsto \operatorname{Re} \int^{z}\left(\frac{1}{G}-G, \frac{i}{G}+i G, 2\right) d z
$$

with

$$
G(z)=\prod_{i=1}^{m} \vartheta\left(z-p_{i}\right)^{a_{i}} \cdot \prod_{j=1}^{n} \vartheta\left(z-q_{j}\right)^{b_{j}}
$$

gives a simply connected minimal surface with two boundary components lying in a finite number of vertical symmetry planes. These planes meet at angles πa_{i} at the image of p_{i} and πb_{j} at the image of q_{j}. Furthermore, the surface is invariant under the vertical translation $x_{3} \mapsto x_{3}+1$.

Two corners in one component

- $m=2$ and $n=0$.

Two corners in one component

- $m=2$ and $n=0$.
- Can assume $p_{1}=-p$ and $p_{2}=+p$.

Two corners in one component

- $m=2$ and $n=0$.
- Can assume $p_{1}=-p$ and $p_{2}=+p$.
- $G=\left(\frac{\vartheta(z-p)}{\vartheta(z+p)}\right)^{a}$.

Two corners in one component

- $m=2$ and $n=0$.
- Can assume $p_{1}=-p$ and $p_{2}=+p$.
- $G=\left(\frac{\vartheta(z-p)}{\vartheta(z+p)}\right)^{a}$.
- One boundary arc lies entirely in one vertical plane.
- Other boundary arc swiches between two planes.

Two corners in one component

- $m=2$ and $n=0$.
- Can assume $p_{1}=-p$ and $p_{2}=+p$.
- $G=\left(\frac{\vartheta(z-p)}{\vartheta(z+p)}\right)^{a}$.
- One boundary arc lies entirely in one vertical plane.
- Other boundary arc swiches between two planes.
- The surface lies in vertical prism over a triangle.

Angles between symmetry planes

Proposition

The angle α_{0} between the symmetry planes correspond to the intervals $[0, p]$ and $[0,1 / 2]+\tau / 2$ is

$$
\alpha_{0}=\pi a(2 p-1)
$$

Basic case

Name	(r, s, t)	p	g
Schwarz P	$(2,4,4)$	$1 / 4$	3
Schoen H'-T	$(2,6,3)$	$1 / 3$	4
Schoen H'-T	$(2,3,6)$	$1 / 6$	4
Schwarz H	$(3,3,3)$	$1 / 4$	3
Schoen H"-R	$(3,2,6)$	$1 / 8$	5
Schoen H"-R	$(3,6,2)$	$3 / 8$	5
Schoen S'S'S"	$(4,4,2)$	$1 / 3$	4
Schoen S'-S"	$(4,2,4)$	$1 / 6$	4
Schoen T'-R	$(6,2,3)$	$1 / 5$	6
Schoen T'-R	$(6,3,2)$	$3 / 10$	6

$(2,3,6)$

$(2,6,3)$

Basic case

$(2,4,4)$

$(3,2,6)$

$(3,3,3)$

$(4,2,4)$
$(2,3,6)$

$(6,2,3)$

Limits

Next complicated cases

- Periodic polygons with four corners.

Next complicated cases

- Periodic polygons with four corners.
- There are three different cases.

Next complicated cases

- Periodic polygons with four corners.
- There are three different cases.
- Assume additional horizontal symmetry plane.

Next complicated cases

- Periodic polygons with four corners.
- There are three different cases.
- Assume additional horizontal symmetry plane.
- 1-dimensional period problem.

Next complicated cases

- Periodic polygons with four corners.
- There are three different cases.
- Assume additional horizontal symmetry plane.
- 1-dimensional period problem.
- If all corners lie in one boundary component, the period problem cannot be solved.

Four corners, case I

$(2,3,6)$

Four corners, case I

$(2,4,4)$ and $(4,2,4)$ surfaces in the basic case

$(2,4,4)$ surface in this case

Four corners, case II

Four corners, case II

$(2,4,4)$ and $(4,2,4)$ surfaces in the basic case

$(2,4,4)$ surface in this case

Existence proof for case I

We asswume the pair of planes corresponds to the intervals $[0, p]$ and $[\tau / 2, q]$ to be parallel. Then we have

$$
a(2 p-1)+b(2 \operatorname{Re}(q)-1)=1
$$

So the period problem reduces to 1-dimensional.

The fundamental piece of the $(2,3,6)$ surface

We consider the projection $F(z)$ of the fundamental piece into the $x_{1} x_{2}$-plane. Then the period problem solved iff the image edges $F([0, p])$ and $F([\tau / 2, q])$ are colinear.

$$
p \rightarrow 0
$$

solved

$$
p \rightarrow 1 / 2
$$

The limit situations can be analyzed explicitly, so the solution follows from an intermediate value argument.

Next complicated cases

- Periodic polygons with six corners.

Next complicated cases

- Periodic polygons with six corners.
- There are many different cases.

Next complicated cases

- Periodic polygons with six corners.
- There are many different cases.
- Assume additional horizontal symmetry plane.

Next complicated cases

- Periodic polygons with six corners.
- There are many different cases.
- Assume additional horizontal symmetry plane.
- 2-dimensional period problem.

Next complicated cases

- Periodic polygons with six corners.
- There are many different cases.
- Assume additional horizontal symmetry plane.
- 2-dimensional period problem.
- In some cases we have established numerically.

The Neovius family

$(2,4,4)$
$(3,3,3)$

$(3,2,6)$
$(2,3,6)$

$(6,2,3)$
$(4,2,4)$

