Triply Periodic Minimal Surfaces Bounded by Vertical Symmetry Planes

Shoichi Fujimori¹ Matthias Weber²

¹Department of Mathematics Fukuoka University of Education

²Department of Mathematics Indiana University

December 17, 2008

A triply periodic minimal surface (TPMS) \iff

complete, embedded minimal surface in \mathbb{R}^3 which is invariant under translations in three independent directions (the three translations generate a lattice Λ in \mathbb{R}^3).

- A triply periodic minimal surface (TPMS) \iff
- complete, embedded minimal surface in \mathbb{R}^3 which is invariant under translations in three independent directions (the three translations generate a lattice Λ in \mathbb{R}^3).
- TPMS can be considered as a minimally embedded surface from a compact Riemann surface of genus $g \geq 3$ into \mathbb{R}^3/Λ .

• (19th century) H. A. Schwarz, E. R. Neovius, 5 examples.

- (19th century) H. A. Schwarz, E. R. Neovius, 5 examples.
- (1970) A. Schoen, 12 more examples.

- (19th century) H. A. Schwarz, E. R. Neovius, 5 examples.
- (1970) A. Schoen, 12 more examples.
- (1989) H. Karcher, existence of Schoen's examples and further examples.

- (19th century) H. A. Schwarz, E. R. Neovius, 5 examples.
- (1970) A. Schoen, 12 more examples.
- (1989) H. Karcher, existence of Schoen's examples and further examples.
- (2008) M. Traizet, existence of TPMS for any genus $g \ge 3$.

Examples

Schwarz \mathbf{P}

Schwarz H

Schoen T'-R

Our construction method

 Construct a minimal embedding defined on a parallel strip with the following properties:

Our construction method

- Construct a minimal embedding defined on a parallel strip with the following properties:
 - bounded by a vertical prism over a certain kind of triangle,
 - the boundary curves lie on the prism,
 - intersects to the prism orthogonally,
 - invariant under vartical translation.

Our construction method

- Construct a minimal embedding defined on a parallel strip with the following properties:
 - bounded by a vertical prism over a certain kind of triangle,
 - the boundary curves lie on the prism,
 - intersects to the prism orthogonally,
 - invariant under vartical translation.
- Repeat reflection with respect to a vertical plane of the prism.

It gives the biholomorphic map from the upper half plane into a polygon.

An equivariant Schwarz-Christoffel formula

It gives the biholomorphic map from the parallel strip Z into a periodic polygon P.

008 7 / 25

A periodic polygon P is a simply connected domain in the plane which is bounded by two infinite piecewise linear curves, and is invariant under a Euclidean translation V(z) = z + v for some $v \neq 0$, and the quotient $P/\langle V \rangle$ is conformally an annulus. A periodic polygon P is a simply connected domain in the plane which is bounded by two infinite piecewise linear curves, and is invariant under a Euclidean translation V(z) = z + v for some $v \neq 0$, and the quotient $P/\langle V \rangle$ is conformally an annulus. Let P be a periodic polygon, and define the strip $Z = \{z \in \mathbb{C}; 0 < \text{Im} z < \tau/2\}$. Then $\exists 1 \ \tau \in i\mathbb{R}^+$ s.t. $Z/\langle z \mapsto z+1 \rangle$ and $P/\langle V \rangle$ are conformally equivalent. Moreover, we obtain a biholomorphic map $f: Z \to P$ which is equivariant w.r.t. both translations:

$$f(z+1) = V(f(z)).$$

Proposition

Let P be a periodic polygon and Z the associated parallel strip. Then, up to scaling, rotating, and translating,

$$f(z) = \int^{z} \prod_{i=1}^{m} \vartheta(z - p_i)^{a_i} \cdot \prod_{j=1}^{n} \vartheta(z - q_j)^{b_j}$$

is the biholomorphic map from Z to P. Conversely, for any choices of $p_i \in \mathbb{R}$ $(1 \le i \le m)$, $q_j \in \mathbb{R} + \tau/2$ $(1 \le j \le n)$ and $-1 < a_i, b_j < 1$ satisfying the angle condition $\sum_{i=1}^m a_i = 0 = \sum_{j=1}^n b_j$, f maps Z to a periodic polygon.

Jacobi ϑ -function

Definition

$$\vartheta(z) = \vartheta(z, \tau) = \sum_{n=-\infty}^{\infty} e^{\pi i (n + \frac{1}{2})^2 \tau + 2\pi i (n + \frac{1}{2})(z - \frac{1}{2})}$$

Fact

$$\begin{split} \vartheta(-z) &= -\vartheta(z), \\ \vartheta(z+1) &= -\vartheta(z), \\ \vartheta(z+\tau) &= -e^{-\pi i \tau - 2\pi i z} \vartheta(z) \end{split}$$

Proposition (Weierstrass representation)

$$Z \ni z \mapsto \operatorname{Re} \int^{z} \left(\frac{1}{G} - G, \, \frac{i}{G} + iG, \, 2 \right) \, dz$$

with

$$G(z) = \prod_{i=1}^{m} \vartheta (z - p_i)^{a_i} \cdot \prod_{j=1}^{n} \vartheta (z - q_j)^{b_j}$$

gives a simply connected minimal surface with two boundary components lying in a finite number of vertical symmetry planes. These planes meet at angles πa_i at the image of p_i and πb_j at the image of q_j . Furthermore, the surface is invariant under the vertical translation $x_3 \mapsto x_3 + 1$.

•
$$m = 2$$
 and $n = 0$.

•
$$m = 2$$
 and $n = 0$.

• Can assume $p_1 = -p$ and $p_2 = +p$.

•
$$m = 2$$
 and $n = 0$.

• Can assume
$$p_1 = -p$$
 and $p_2 = +p$.
• $G = \left(\frac{\vartheta(z-p)}{\vartheta(z+p)}\right)^a$.

•
$$m = 2$$
 and $n = 0$.

• Can assume $p_1 = -p$ and $p_2 = +p$.

•
$$G = \left(\frac{\vartheta(z-p)}{\vartheta(z+p)}\right)^a$$
.

- One boundary arc lies entirely in one vertical plane.
- Other boundary arc swiches between two planes.

•
$$m = 2$$
 and $n = 0$.

• Can assume $p_1 = -p$ and $p_2 = +p$.

•
$$G = \left(\frac{\vartheta(z-p)}{\vartheta(z+p)}\right)^a$$
.

- One boundary arc lies entirely in one vertical plane.
- Other boundary arc swiches between two planes.
- The surface lies in vertical prism over a triangle.

Angles between symmetry planes

Proposition

The angle α_0 between the symmetry planes correspond to the intervals [0, p] and $[0, 1/2] + \tau/2$ is

$$\alpha_0 = \pi a(2p-1).$$

Basic case

Name	(r,s,t)	p	g
Schwarz P	(2,4,4)	1/4	3
Schoen H'-T	$(2,\!6,\!3)$	1/3	4
Schoen H'-T	(2,3,6)	1/6	4
Schwarz H	(3,3,3)	1/4	3
Schoen H"-R	(3,2,6)	1/8	5
Schoen H"-R	$(3,\!6,\!2)$	3/8	5
Schoen S'-S"	(4,4,2)	1/3	4
Schoen S'-S"	(4,2,4)	1/6	4
Schoen T'-R	(6,2,3)	1/5	6
Schoen T'-R	(6,3,2)	3/10	6

Basic case

Limits

• Periodic polygons with four corners.

- Periodic polygons with four corners.
- There are three different cases.

- Periodic polygons with four corners.
- There are three different cases.
- Assume additional horizontal symmetry plane.

- Periodic polygons with four corners.
- There are three different cases.
- Assume additional horizontal symmetry plane.
- 1-dimensional period problem.

- Periodic polygons with four corners.
- There are three different cases.
- Assume additional horizontal symmetry plane.
- 1-dimensional period problem.
- If all corners lie in one boundary component, the period problem cannot be solved.

Four corners, case I

Four corners, case I

(2,4,4) and (4,2,4) surfaces in the basic case

(2,4,4) surface in this case

Four corners, case II

Four corners, case II

Existence proof for case I

We asswume the pair of planes corresponds to the intervals [0, p] and $[\tau/2, q]$ to be parallel. Then we have

$$a(2p-1) + b(2\operatorname{Re}(q) - 1) = 1.$$

So the period problem reduces to 1-dimensional.

The fundamental piece of the (2,3,6) surface

We consider the projection F(z) of the fundamental piece into the x_1x_2 -plane. Then the period problem solved iff the image edges F([0, p]) and $F([\tau/2, q])$ are colinear.

The limit situations can be analyzed explicitly, so the solution follows from an intermediate value argument.

• Periodic polygons with six corners.

- Periodic polygons with six corners.
- There are many different cases.

- Periodic polygons with six corners.
- There are many different cases.
- Assume additional horizontal symmetry plane.

- Periodic polygons with six corners.
- There are many different cases.
- Assume additional horizontal symmetry plane.
- 2-dimensional period problem.

- Periodic polygons with six corners.
- There are many different cases.
- Assume additional horizontal symmetry plane.
- 2-dimensional period problem.
- In some cases we have established numerically.

The Neovius family

Fujimori and Weber (FUE and IU)