Normalization of differential equations

associated to orbifold quantum cohomology

Hironori Sakai
Tokyo Metropolitan University
http://sakai.blueskyproject.net/

December 18, 2008

Contents

(1) Background

- Gromov-Witten Invariant and Quantum Cohomology
- Quantum Differential Equation
(2) Recovering Gromov-Witten invariants
- Recovering Problem
- Normailzation and Birkhoff factorization
(3) Quantum Differential Equation for Orbifold
- Weighted Projective Spaces
- Hypersurfaces in Weighted Projective Space (WIP)

Gromov-Witten Invariants and Problem

- Target : a closed symplectic manifold (or orbifold) X.
- Counting certain pseudo-hol. sphere in X (intuitively).
- Gromov-Witten invariant:

$$
\begin{aligned}
\Psi_{0, k, A}^{X}\left(x_{1}, \ldots, x_{k}\right):= & \int_{\left[\overline{\mathcal{M}}_{0, k}(X, A)\right]^{\operatorname{vir}} \mathrm{ev}_{1}^{*} x_{1} \cup \cdots \cup \mathrm{ev}_{k}^{*} x_{k}} \\
& \left(\text { genus-0,k-pointed, } A \in \mathrm{H}_{2}(X ; \mathbb{Z})\right)
\end{aligned}
$$

Problem

How do we compute GW invariants systematically?

Quantum Cohomology

- Quantum cohomology : " \circ " is a product on

$$
\Gamma^{\mathrm{hol}}(\underbrace{\mathrm{H}^{\mathrm{even}}(X ; \mathbb{C})}_{\text {fibre }} \times \mathrm{H}^{2}(X ; \mathbb{C}) \rightarrow \underbrace{\mathrm{H}^{2}(X ; \mathbb{C})}_{\text {parameter space }})
$$

- Quantum product "○":

$$
\int_{X}(x \circ y) \cup z=\sum_{A \in E \mathrm{Ef}_{X}} \underbrace{\Psi_{0,3, A}^{X}(x, y, z)}_{\mathrm{GW} \text { inv. }} e^{\langle\tau, A\rangle}
$$

for all z. ($\tau \in H^{2}(X ; \mathbb{C})$: the parameter)

- Eff_{X} : The effective cone (semigroup)
$\left\{A \in \mathrm{H}_{\mathbf{2}}(X ; \mathbb{Z}) \mid \exists\right.$ pseudo-holomorphic curve in class $\left.A\right\}$

Quantum Parameters (1/2)

Technical assumptions (please ignore):

- monotonicity : $[\omega]=\lambda c_{1}(T X)$ for some $\lambda>0$.
- A_{1}, \ldots, A_{r} : a basis of $\mathrm{H}_{2}(X ; \mathbb{Z})$ such that
$\forall A \in \operatorname{Eff}_{X}, A=d_{1} A_{1}+\cdots+d_{r} A_{r}$ for some nonnegative d_{1}, \ldots, d_{r}.
- p_{1}, \ldots, p_{r} : the dual basis to A_{1}, \ldots, A_{r}
- p_{1}, \ldots, p_{r} : a "good" basis of $\mathrm{H}^{2}(X ; \mathbb{C})$.
- $\tau=t_{1} p_{1}+\cdots+t_{r} p_{r} .\left(t_{1}, \ldots, t_{r}:\right.$ the coord. sys. $)$
- $q_{i}:=e^{t_{i}}:$ the quantum parameter
- "o" is also a product on

$$
\mathrm{QH}^{*}(X):=\mathrm{H}^{\mathrm{even}}(X ; \mathbb{C}) \otimes \mathbb{C}\left[q_{1}, \ldots, q_{r}\right] .
$$

Quantum Parameters (2/2)

Example: $X=\mathbb{C} P^{1}$

- p : the Poincare dual to $\left[\mathbb{C}{ }^{1}\right]$
- $\mathrm{H}^{\text {even }}\left(\mathbb{C} \mathrm{P}^{2} ; \mathbb{C}\right) \cong \mathbb{C}[p] /\left(p^{2}\right)$:

$$
1 \cup 1=1, \quad 1 \cup p=p, \quad p \cup p=0
$$

- $\mathrm{QH}^{*}\left(\mathbb{C P}^{2}\right) \cong \mathbb{C}[p] /\left(p^{2}-q\right) \quad\left(q=q_{1}\right)$

$$
1 \circ 1=1, \quad 1 \circ p=p, \quad p \circ p=q .
$$

- $\left.x \circ y\right|_{q=0}=x \cup y$

D-module Structure on Quantum Cohomology

- \hbar : a parameter of \mathbb{C}^{\times}
- $\mathcal{D}^{\hbar}:=\left\{\sum_{\alpha} f_{\alpha}(\hbar \partial)^{\alpha} \mid f_{\alpha} \in \mathbb{C}\left[\hbar, q_{1}, \ldots, q_{r}\right]\right\}$

$$
\left(\partial_{i}:=\frac{\partial}{\partial t_{i}}=q_{i} \frac{\partial}{\partial q_{i}},(\hbar \partial)^{\alpha}=\left(\hbar \partial_{1}\right)^{\alpha_{1}} \cdots\left(\hbar \partial_{r}\right)^{\alpha_{r}}\right)
$$

- $\mathcal{D}^{\hbar} \curvearrowright \mathrm{QH}^{*}(X) ; \quad \hbar \partial_{i} \cdot \xi:=\hbar \frac{\partial \xi}{\partial t_{i}}+p_{i} \circ \xi$
$\left(\xi \in \mathrm{QH}^{*}(X)\right.$: cohomology-valued function in q)

Quantum Differential Equation (1/2)

Assumption (Important!)

$\mathrm{H}^{*}(\mathrm{X} ; \mathbb{C})$ is generated by $\mathrm{H}^{2}(\mathrm{X} ; \mathbb{C})$.

- $1 \in \mathrm{H}^{0}(X ; \mathbb{C})$ is a cyclic generator: $\mathcal{D}^{\hbar} \cdot 1=\mathrm{QH}^{*}(X)$.
- $\mathrm{QH}^{*}(X) \cong \mathcal{D}^{\hbar} / \mathcal{J}$ as \mathcal{D}^{\hbar}-module.

(\mathcal{J} : the annihilator of 1)

- $\mathcal{J}=\left(P_{1}, \ldots, P_{k}\right)$
- The quantum differential equation :

$$
P_{1} u=0, \cdots, P_{k} u=0 \quad \text { (a system of PDEs) }
$$

Quantum Differential Equation (2/2)

There are many spaces s.t. the quantum differential equation is explicitly obtained WITHOUT GW invariants.

- Flag manifolds (Kim)
- Symplectic toric manifolds (Givental)

Problem

Can we deduce GW invariants from quantum diff. eqn.?

Recovering Gromov-Witten Invariants

M. Guest suggested using Birkhoff factorization.

It is true for the followings:

- Amarzaya-Guest : full flag manifolds
- Iritani : certain toric complete intersections
(making use of fundamental solution)
- S : Fano complete intersections in $\mathbb{C P}^{n}$
monotone symplectic toric manifolds
(making use of grading of quantum D-module)

Where is the Answer?

- We work on $\mathcal{D}^{\hbar} / \mathcal{J}$ (e.g. $\mathcal{D}^{\hbar} /\left((\hbar \partial)^{2}-q\right)$ for $\left.\mathbb{C P}^{1}\right)$.
- QH is a space of sections of " $\mathrm{H}^{\text {even }} \times \mathrm{H}^{2} \rightarrow \mathrm{H}^{2}$ ".
- $\mathrm{H}^{\text {even }}=$ the space of constant sections

Problem

Find a hidden basis of $\mathrm{H}^{\text {even }}$ behind $\mathcal{D}^{\hbar} / \mathcal{J}$.

Normalized Trivialization

- ξ_{1}, \ldots, ξ_{N} : frame $\left(\mathbb{C}\left[\hbar, q_{1}, \ldots, q_{r}\right]\right.$-basis)
- Define the connection 1-form (w.r.t. the frame):

$$
\Omega:=\sum_{i=1}^{r} \frac{1}{\hbar} \Omega_{i} d t_{i} \quad\left(\hbar \partial_{i} \cdot \xi_{j}=\sum_{k=1}^{N}\left(\Omega_{i}\right)_{j}^{k} \xi_{k}\right)
$$

- ξ_{1}, \ldots, ξ_{N} is a normalized trivialization

$$
\stackrel{\text { def }}{\Longleftrightarrow} \Omega_{1}, \ldots, \Omega_{r} \text { are } \hbar \text {-indep. }
$$

- ξ_{1}, \ldots, ξ_{N} is a basis of $H^{\text {even }}$
$\Longrightarrow \xi_{1}, \ldots, \xi_{N}$ is a normalized trivialization.

Birkhoff Factorization

- $\Omega:=\sum_{i=1}^{r} \frac{1}{\hbar} \Omega_{i} d t_{i}$ w.r.t. a frame ξ_{1}, \ldots, ξ_{N}.
- $\exists L(\hbar, q)$ s.t. $\Omega=L^{-1} d L$. (L contains \hbar and \hbar^{-1}.)
- $L=L_{-} L_{+}$: the Birkhoff factorization
- $L_{-}=I+\frac{1}{\hbar} A_{1}+O\left(\hbar^{-2}\right) \in \Lambda_{-}^{1} \mathrm{GL}_{N} \mathbb{C}$
- $L_{+}=B_{0}+\hbar B_{1}+O\left(\hbar^{2}\right) \in \Lambda_{+} \mathrm{GL}_{N} \mathbb{C}$
- $\left(\hat{\xi}_{1}, \ldots, \hat{\xi}_{N}\right):=\left(\xi_{1}, \ldots, \xi_{N}\right) L_{+}^{-1}$: a new frame
- The connection 1-form $\hat{\Omega}$ w.r.t. the new frame is a normalized trivialization.

Uniqueness of Normalized Trivialization

Theorem (Amarzaya-Guest, Iritani, S)
A normalized trivialization is unique in some sense.
\Longrightarrow Birkhoff factorization gives a frame which we want.

Key observation:

The change of frames belongs to $\Lambda_{+} \mathrm{GL}_{N} \mathbb{C}$.

Gromov-Witten invariant for orbifolds

- Chen and Ruan :

GW invariants for closed symplectic orbifolds

- Coates, Corti, Lee and Tseng :
the quantum diff. eqn for weighted projective spaces
- Extend our method to weighted projective spaces.

Chen-Ruan cohomology (1/2)

- $\mathrm{QH}^{*}(\mathcal{X})$ is defined on the Chen-Ruan cohomology.
- $\wedge \mathcal{X}=\mathcal{X} \sqcup$ (twisted sectors) : the inertia orbifold

Chen-Ruan cohomology

$$
\begin{aligned}
\mathrm{H}_{\mathrm{CR}}^{*}(\mathcal{X}): & =\mathrm{H}^{*}(\wedge \mathcal{X} ; \mathbb{C}) \\
& =\mathrm{H}^{*}(\mathcal{X} ; \mathbb{C}) \oplus \underbrace{\mathrm{H}^{*}(\text { twisted sectors } \mathbb{C})}_{\text {coming from singularity }}
\end{aligned}
$$

Chen-Ruan cohomology (2/2)

- $\mathrm{H}_{\mathrm{CR}}^{*}(\mathcal{X})=\mathrm{H}^{*}(\mathcal{X} ; \mathbb{C}) \oplus \mathrm{H}^{*}$ (twisted sectors; \mathbb{C}).
- Chen-Ruan cup product
- Quantum product is a quantization of the CR product.
- $\mathrm{H}^{*}(\mathcal{X} ; \mathbb{C})$ is closed under CR cup product.

Proposition

$\mathrm{H}^{2}(\mathcal{X} ; \mathbb{C})$ NEVER generates $\mathrm{H}_{\mathrm{CR}}^{*}(\mathcal{X})$.

Weighted Projective Spaces

- $S^{1} \curvearrowright S^{2 n+1}$

$$
\begin{aligned}
& t \cdot\left(z_{0}, \ldots, z_{n}\right)=\left(t^{-w_{0}} z_{0}, \ldots, t^{-w_{n}} z_{n}\right) \\
& \quad\left(S^{1} \subset \mathbb{C}, S^{2 n+1} \subset \mathbb{C}^{n+1}, w_{0}, \ldots, w_{n} \in \mathbb{Z}_{>0}\right)
\end{aligned}
$$

- $\mathbb{P}(w)=\mathbb{P}\left(w_{0}, \ldots, w_{n}\right):=S^{2 n+1} / S^{1}$
: the weighted projective space (quotient orbifold)

Quantum Cohomology of $\mathbb{P}(w)(1 / 2)$

Example: $\mathbb{P}(1,3)$

- $\wedge \mathbb{P}(1,3)=\mathbb{P}(1,3) \sqcup \underbrace{\mathbb{P}(3) \sqcup \mathbb{P}(3)}_{\text {twisted sectors }}$
- $\mathrm{H}_{\mathrm{CR}}^{*}(\mathbb{P}(1,3))=\operatorname{Span}_{\mathbb{C}}\{\underbrace{1, p_{1}}_{\text {original }}, \underbrace{p_{2}, p_{3}}_{\text {twisted }}\}$

$$
\left(p_{1}:=c_{1}(\mathcal{O}(1)) \in \mathrm{H}^{2}(\mathbb{P}(1,3) ; \mathbb{C})\right)
$$

- $\mathrm{QH}^{*}(\mathbb{P}(1,3)):=\mathrm{H}_{\mathrm{CR}}^{*}(\mathcal{X}) \otimes \mathbb{C}\left[\boldsymbol{q}^{\frac{1}{3}}\right]$
- $\exp \left(\left\langle t_{1} p_{1}, d A\right\rangle\right)=\exp \left(\frac{1}{3} t_{1} d\right)=q^{\frac{1}{3} d}$
(A is the generator of Eff)

Quantum Cohomology of $\mathbb{P}(w)(2 / 2)$

- Continue

$$
\begin{aligned}
& \mathrm{QH}(\mathbb{P}(1,3))=\operatorname{Span}_{\mathbb{C}}\left\{1, p_{1}, p_{2}, p_{3}\right\} \otimes \mathbb{C}\left[q^{\frac{1}{3}}\right] . \\
& p_{1} \circ 1=p_{1}, \\
& p_{1} \circ p_{1}=3 C_{113} q^{\frac{1}{3}} p_{2,} \\
& p_{1} \circ p_{2}=3 C_{122} q^{\frac{1}{3}} p_{3}, \\
& p_{1} \circ p_{3}=3 C_{131} q^{\frac{1}{3}} 1 . \quad\left(C_{i j k}:=\Psi_{0,3,1}^{\mathbb{P}(1,3)}\left(p_{i}, p_{j}, p_{k}\right)\right)
\end{aligned}
$$

Proposition

If we permit taking $q^{-\frac{1}{3}}$, then
$\mathrm{H}^{2}(\mathcal{X} ; \mathbb{C})$ generates $\mathrm{H}_{\mathrm{CR}}^{*}(\mathcal{X})$ under quantum product.

Quantum Differential Equation of $\mathbb{P}(w)$

Theorem (Coates-Corti-Lee-Tseng)

In quantum D -module of $\mathbb{P}(w)$, the annihilator of 1 is generated by

$$
T=\prod_{i=0}^{n} \prod_{\mu=0}^{w_{i}-1}\left(w_{i} \hbar \partial-\mu h\right)-q .
$$

Example: $\mathbb{P}(1,3)$

- $T=(\hbar \partial)(3 \hbar \partial)(3 \hbar \partial-\hbar)(3 \hbar \partial-2 \hbar)-q$

Main Result

Theorem (Guest-S)
The Birkhoff factorization gives a basis of $\mathrm{H}_{\mathrm{CR}}^{*}(\mathbb{P}(w))$.

- Key observation:

A change of frames which we want belongs to $\Lambda_{+} \mathrm{GL}_{N} \mathbb{C}$.

Hypersurface in Weighted Projective Space (WIP)

- Can we extend our method to hypersurfaces in $\mathbb{P}(w)$?.
- A change of frames which we want does NOT belong to $\Lambda_{+} \mathrm{GL}_{N} \mathbb{C}$.
- Thus we need the general Birkhoff factorization

$$
L=L_{-} \gamma L_{+} \quad \text { where } \quad \gamma=\operatorname{diag}\left(\hbar^{a_{1}}, \ldots, \hbar^{a_{N}}\right)
$$

That's all

Thank you for listening!

