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Background Recovering QDE for orbifold GW and QH QDE

Gromov-Witten Invariants and Problem

Target : a closed symplectic manifold (or orbifold) X.

Counting certain pseudo-hol. sphere in X (intuitively).

Gromov-Witten invariant:

ΨX
0,k,A(x1, . . . , xk) :=

∫[
M0,k(X,A)

]vir ev∗
1 x1 ∪ · · · ∪ ev∗

k xk

(genus-0, k-pointed, A ∈ H2(X; Z))

.

Problem

.

.

.

. ..

.

.

How do we compute GW invariants systematically?
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Background Recovering QDE for orbifold GW and QH QDE

Quantum Cohomology

Quantum cohomology : “◦” is a product on

Γhol
(

Heven(X; C)︸ ︷︷ ︸
fibre

×H2(X; C) → H2(X; C)︸ ︷︷ ︸
parameter space

)
Quantum product “◦”:∫

X
(x ◦ y) ∪ z = ∑

A∈EffX

ΨX
0,3,A

(
x, y, z

)︸ ︷︷ ︸
GW inv.

e〈τ,A〉

for all z. ( τ ∈ H2(X; C) : the parameter )

EffX : The effective cone (semigroup){
A ∈ H2(X; Z)

∣∣∣ ∃ pseudo-holomorphic curve in class A
}
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Background Recovering QDE for orbifold GW and QH QDE

Quantum Parameters (1/2)

Technical assumptions (please ignore):

monotonicity : [ω] = λc1(TX) for some λ > 0.

A1, . . . , Ar : a basis of H2(X; Z) such that

∀A ∈ EffX , A = d1 A1 + · · · + dr Ar for some nonnegative d1, . . . , dr.

p1, . . . , pr : the dual basis to A1, . . . , Ar

p1, . . . , pr : a “good” basis of H2(X; C).

τ = t1 p1 + · · · + tr pr. (t1, . . . , tr : the coord. sys.)

qi := eti : the quantum parameter

“◦” is also a product on

QH∗(X) := Heven(X; C) ⊗ C[q1, . . . , qr].
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Background Recovering QDE for orbifold GW and QH QDE

Quantum Parameters (2/2)

Example: X = CP1

p : the Poincare dual to [CP1]

Heven(CP2; C) ∼= C[p]
/
(p2):

1 ∪ 1 = 1, 1 ∪ p = p, p ∪ p = 0.

QH∗(CP2) ∼= C[p]
/
(p2 − q) (q = q1)

1 ◦ 1 = 1, 1 ◦ p = p, p ◦ p = q.

x ◦ y
∣∣∣
q=0

= x ∪ y
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Background Recovering QDE for orbifold GW and QH QDE

D-module Structure on Quantum Cohomology

h̄ : a parameter of C×

Dh̄ :=

{
∑
α

fα(h̄∂)α

∣∣∣∣∣ fα ∈ C[h̄, q1, . . . , qr]

}
(

∂i :=
∂

∂ti
= qi

∂

∂qi
, (h̄∂)α = (h̄∂1)α1 · · · (h̄∂r)αr

)

Dh̄ y QH∗(X); h̄∂i · ξ := h̄
∂ξ

∂ti
+ pi ◦ ξ

(ξ ∈ QH∗(X) : cohomology-valued function in q)
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Background Recovering QDE for orbifold GW and QH QDE

Quantum Differential Equation (1/2)

.

Assumption (Important!)

.

.

.

. ..

.

.

H∗(X; C) is generated by H2(X; C).

1 ∈ H0(X; C) is a cyclic generator: Dh̄ · 1 = QH∗(X).

QH∗(X) ∼= Dh̄/
J as Dh̄-module.

(J : the annihilator of 1)

J = (P1, . . . , Pk)

The quantum differential equation :

P1u = 0, · · · , Pku = 0 (a system of PDEs)
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Background Recovering QDE for orbifold GW and QH QDE

Quantum Differential Equation (2/2)

There are many spaces s.t. the quantum differential

equation is explicitly obtained WITHOUT GW invariants.

Flag manifolds (Kim)

Symplectic toric manifolds (Givental)

.

Problem

.

.

.

. ..

.

.

Can we deduce GW invariants from quantum diff. eqn.?
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Background Recovering QDE for orbifold Recovering Problem Normailzation and Birkhoff factorization

Recovering Gromov-Witten Invariants

M. Guest suggested using Birkhoff factorization.

It is true for the followings:

Amarzaya-Guest : full flag manifolds

Iritani : certain toric complete intersections

(making use of fundamental solution)

S : Fano complete intersections in CPn

monotone symplectic toric manifolds

(making use of grading of quantum D-module)
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Background Recovering QDE for orbifold Recovering Problem Normailzation and Birkhoff factorization

Where is the Answer?

We work on Dh̄/
J (e.g. Dh̄/(

(h̄∂)2 − q
)

for CP1).

QH is a space of sections of “Heven × H2 → H2”.

Heven = the space of constant sections

.

Problem

.

.

.

. ..

.

.

Find a hidden basis of Heven behind Dh̄/
J .
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Background Recovering QDE for orbifold Recovering Problem Normailzation and Birkhoff factorization

Normalized Trivialization

ξ1, . . . , ξN : frame (C[h̄, q1, . . . , qr]-basis)

Define the connection 1-form (w.r.t. the frame):

Ω :=
r

∑
i=1

1
h̄

Ωidti

(
h̄∂i · ξ j =

N

∑
k=1

(Ωi)k
j ξk

)
.

ξ1, . . . , ξN is a normalized trivialization
def⇐⇒ Ω1, . . . , Ωr are h̄-indep.

ξ1, . . . , ξN is a basis of Heven

=⇒ ξ1, . . . , ξN is a normalized trivialization.
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Background Recovering QDE for orbifold Recovering Problem Normailzation and Birkhoff factorization

Birkhoff Factorization

Ω :=
r

∑
i=1

1
h̄

Ωidti w.r.t. a frame ξ1, . . . , ξN .

∃L(h̄, q) s.t. Ω = L−1dL. (L contains h̄ and h̄−1.)

L = L−L+ : the Birkhoff factorization

L− = I +
1
h̄

A1 + O
(

h̄−2
)

∈ Λ1
−GLNC

L+ = B0 + h̄B1 + O
(
h̄2) ∈ Λ+GLNC(

ξ̂1, . . . , ξ̂N
)

:=
(
ξ1, . . . , ξN

)
L−1

+ : a new frame

The connection 1-form Ω̂ w.r.t. the new frame is a

normalized trivialization.
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Background Recovering QDE for orbifold Recovering Problem Normailzation and Birkhoff factorization

Uniqueness of Normalized Trivialization

.

Theorem (Amarzaya-Guest, Iritani, S)

.

.

.

. ..

.

.

A normalized trivialization is unique in some sense.

=⇒ Birkhoff factorization gives a frame which we want.

Key observation:

The change of frames belongs to Λ+GLNC.
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Background Recovering QDE for orbifold Weighted Projective Spaces Hypersurfaces in WPS

Gromov-Witten invariant for orbifolds

Chen and Ruan :

GW invariants for closed symplectic orbifolds

Coates, Corti, Lee and Tseng :

the quantum diff. eqn for weighted projective spaces

Extend our method to weighted projective spaces.
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Background Recovering QDE for orbifold Weighted Projective Spaces Hypersurfaces in WPS

Chen-Ruan cohomology (1/2)

QH∗(X ) is defined on the Chen-Ruan cohomology.

∧X = X t (twisted sectors) : the inertia orbifold

.

Chen-Ruan cohomology

.

.

.

. ..

.

.

H∗
CR(X ) : = H∗(∧X ; C)

= H∗(X ; C) ⊕ H∗(twisted sectors; C)︸ ︷︷ ︸
coming from singularity
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Background Recovering QDE for orbifold Weighted Projective Spaces Hypersurfaces in WPS

Chen-Ruan cohomology (2/2)

H∗
CR(X ) = H∗(X ; C) ⊕ H∗(twisted sectors; C).

Chen-Ruan cup product

Quantum product is a quantization of the CR product.

H∗(X ; C) is closed under CR cup product.

.

Proposition

.

.

.

. ..

.

.

H2(X ; C) NEVER generates H∗
CR(X ).
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Background Recovering QDE for orbifold Weighted Projective Spaces Hypersurfaces in WPS

Weighted Projective Spaces

S1 y S2n+1;

t · (z0, . . . , zn) = (t−w0 z0, . . . , t−wn zn)

(S1 ⊂ C, S2n+1 ⊂ Cn+1, w0, . . . , wn ∈ Z>0)

P(w) = P(w0, . . . , wn) := S2n+1/S1

: the weighted projective space (quotient orbifold)
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Background Recovering QDE for orbifold Weighted Projective Spaces Hypersurfaces in WPS

Quantum Cohomology of P(w) (1/2)

Example: P(1, 3)

∧P(1, 3) = P(1, 3) t P(3) t P(3)︸ ︷︷ ︸
twisted sectors

H∗
CR(P(1, 3)) = SpanC

{
1, p1︸ ︷︷ ︸
original

, p2, p3︸ ︷︷ ︸
twisted

}
(

p1 := c1(O(1)) ∈ H2(P(1, 3); C)
)

QH∗(P(1, 3)) := H∗
CR(X ) ⊗ C

[
q

1
3
]

exp(〈t1 p1, dA〉) = exp( 1
3 t1d) = q

1
3 d

( A is the generator of Eff )
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Background Recovering QDE for orbifold Weighted Projective Spaces Hypersurfaces in WPS

Quantum Cohomology of P(w) (2/2)

Continue

QH∗(P(1, 3)) = SpanC
{

1, p1, p2, p3
}

⊗ C
[
q

1
3
]
.

p1 ◦ 1 = p1,

p1 ◦ p1 = 3C113q
1
3 p2,

p1 ◦ p2 = 3C122q
1
3 p3,

p1 ◦ p3 = 3C131q
1
3 1.

(
Cijk := Ψ

P(1,3)
0,3,1 (pi, pj, pk)

)

.

Proposition

.

.

.

. ..

.

.

If we permit taking q− 1
3 , then

H2(X ; C) generates H∗
CR(X ) under quantum product.
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Background Recovering QDE for orbifold Weighted Projective Spaces Hypersurfaces in WPS

Quantum Differential Equation of P(w)

.

Theorem (Coates-Corti-Lee-Tseng)

.

.

.

. ..

.

.

In quantum D-module of P(w), the annihilator of 1 is generated by

T =
n

∏
i=0

wi−1

∏
µ=0

(wih̄∂ − µh) − q.

Example: P(1, 3)

T = (h̄∂)(3h̄∂)(3h̄∂ − h̄)(3h̄∂ − 2h̄) − q
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Background Recovering QDE for orbifold Weighted Projective Spaces Hypersurfaces in WPS

Main Result

.

Theorem (Guest-S)

.

.

.

. ..

.

.

The Birkhoff factorization gives a basis of H∗
CR(P(w)).

Key observation:

A change of frames which we want belongs to Λ+GLNC.
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Background Recovering QDE for orbifold Weighted Projective Spaces Hypersurfaces in WPS

Hypersurface in Weighted Projective Space (WIP)

Can we extend our method to hypersurfaces in P(w)?.

A change of frames which we want does NOT belong to

Λ+GLNC.

Thus we need the general Birkhoff factorization

L = L−γL+ where γ = diag(h̄a1 , . . . , h̄aN )
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Background Recovering QDE for orbifold Weighted Projective Spaces Hypersurfaces in WPS

That’s all

Thank you for listening!
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