A PANOPLY OF SPECIAL LAGRANGIAN SINGULARITIES

MARK HASKINS

Imperial College London

- 'Gluing constructions of special Lagrangian cones', *Handbook of Geometric Analysis*, (Yau birthday volume) Aug 2008
- 'Special Lagrangian cones with higher genus link', *Inventiones Mathematicae*, 167, 223– 294 (2007)
- 3. 'Special Lagrangian cones', *American Journal of Mathematics* 126, 845–871 (2004)

Riemann Surfaces, Harmonic maps & Visualization, Osaka City University International Academic Symposium, Dec 2008

Calibrations – Definitions

A *calibrated geometry* is a distinguished class of minimal submanifolds associated with a differential form.

• A calibrated form is a closed differential p-form ϕ on a Riemannian manifold (M,g)satisfying $\phi \leq vol_g$.

i.e. $\phi(e_1,\ldots,e_p) \leq 1$

for any orthonormal set of $p\ {\rm tgt}\ {\rm vectors}$

- For $m \in M$ associate with ϕ the subset $G_m(\phi)$ of oriented *p*-planes for which equality holds in (*) the *calibrated* planes.
- A submanifold *calibrated* by ϕ is an oriented *p*-dim submanifold whose tangent plane at each point *m* lies in the subset $G_m(\phi)$ of distinguished *p*-planes.

Lemma: (Harvey–Lawson) Calibrated submanifolds minimize volume in their homology class.

Special Lagrangian Calibration on \mathbb{C}^n

On \mathbb{C}^n with standard complex coordinates, let

 $\alpha = \operatorname{Re}(\Omega)$, where $\Omega = dz^1 \wedge \ldots \wedge dz^n$.

- α is a calibrated form.
- Any α -calibrated plane is Lagrangian w.r.t. standard Kähler form

$$\omega = \sum dx^i \wedge dy^i$$

(but not conversely).

 An α-calibrated plane may be obtained from standard "real" ℝⁿ ⊆ ℂⁿ by action of A ∈ SU(n).

Thus the name *special* Lagrangian calibration.

Other ambient spaces: Calabi-Yau manifolds

If (M,g) has holonomy in SU(n) can use existence of parallel (n,0)-form Ω to define special Lagrangian calibration.

The Lagrangian angle

Oriented Lagn *n*-planes in $\mathbb{C}^n \leftrightarrow U(n)/SO(n)$. Map det_{\mathbb{C}} : $U(n)/SO(n) \longrightarrow \mathbb{S}^1$ gives us the *phase* of the Lagrangian *n*-plane.

Write phase of oriented Lagrangian submfd L of \mathbb{C}^n as $e^{i\theta} : L \to \mathbb{S}^1$.

Locally can lift phase $e^{i\theta}$ to a function $\theta : L \rightarrow \mathbb{R}$, the Lagrangian angle.

 θ not necessarily globally well-defined, but $d\theta$ is and has geometric meaning:

 $d\theta = \iota_H \omega$

where H is mean curvature vector of L

 $H = 0 \longleftrightarrow d\theta_L = 0 \longleftrightarrow \theta_L$ locally constant

 $\theta_L = 0 \longleftrightarrow L$ is special Lagrangian.

L is *Hamiltonian stationary* if $d\theta$ is a harmonic 1-form

Examples of Special Lagrangian submanifolds in \mathbb{C}^n

<u>SLG level sets</u> (Harvey – Lawson 1982) (explicit examples with symmetries)

$$F : \mathbb{C}^3 \to \mathbb{R}^3$$

$$F = \left(|z_1|^2 - |z_2|^2, \ |z_1|^2 - |z_3|^2, \ \operatorname{Im}(z_1 z_2 z_3) \right)$$

 $F^{-1}(c)$ is a (possibly singular) SLG 3-fold invariant under a T^2 action.

- For a generic c, $F^{-1}(c)$ is nonsingular and diffeomorphic to $T^2 \times \mathbb{R}$.
- For 1-dimensional set of critical values of c, $F^{-1}(c)$ is a smoothly immersed 3-fold, with two components each diffeomorphic to $S^1 \times \mathbb{R}^2$ and intersecting in a circle.
- F⁻¹(0) is a singular cone C.
 Link of C has 2 (antipodal) components.

Each component is flat 2-torus (with equilateral conformal structure)

Singularities of SLG varieties

Q: What can we say about singularities of SLG varieties?

A: In complete generality, very little!

- Generalize from SLG manifolds to SLG rectifiable currents – objects with measuretheoretic oriented tgt plane a.e.
- SLG rectifiable currents in \mathbb{C}^n are *mass-minimizing* currents
- Almgren's *Codimension Two* or *Big* regularity result for general mass minimizing currents applies
- Very hard and long (1000 page book)!!
- \Rightarrow Singular set S has Hausdorff codim \geq 2.
- Not enough information about S for geometric applications.

Want to find interesting but more manageable classes of singular SLG varieties.

Isolated conical singularities of SLG *n*-folds

SLG *n*-fold with *isolated conical singularities* means:

- Compact singular SLG *n*-fold X in a Calabi-Yau M.
- Finite number of distinct singular points x_1, \ldots, x_k .
- Near the singular point x_i , X looks like a SLG cone C_i in \mathbb{C}^n with isolated singularity.

Joyce studied the deformation theory of these singular SLG varieties

- Keep number and local model of singular points fixed but not their locations.
- Singular deformation theory is obstructed.
- Obstruction space depends on geometry of each SLG cone C_i .

 \Rightarrow To understand this class of singular SL n- folds need to study the geometry of SL cones.

SLG Cones and Their Links

Defⁿ: A cone $C \subset \mathbb{C}^n$ is a subset invariant under all dilations.

For $\Sigma \subset \mathbb{S}^{2n-1} \subset \mathbb{C}^n$, let $C(\Sigma)$ denote the cone on Σ :

$$C(\Sigma) = \{tx : t \ge 0, x \in \Sigma\}$$

Defⁿ: A cone is *regular* if $C = C(\Sigma)$ where Σ is compact, connected, embedded and oriented submanifold of \mathbb{S}^{2n-1} .

Call Σ the *link* of the regular cone C.

Propⁿ A: C is SLG in \mathbb{C}^n (up to a phase) \iff Σ is minimal and Legendrian in \mathbb{S}^{2n-1} .

SLG cones in dimension 3

Link of a regular SLG cone is a cpt oriented Riemannian surface of genus g.

The trichotomy:

- 1. g = 0. Only example is standard round \mathbb{S}^2
- 2. g = 1

● ∃ infinitely many explicit examples with cts symmetries

- *Integrable systems* (loop group/spectral curve) methods produce all examples
- 3. *g* > 1
 - Cts symmetry not possible
 - Integrable systems methods not currently effective

• Can use geometric PDE *gluing* methods to construct many examples (Haskins & Kapouleas)

SL cones in higher dimensions

Th^m: (Haskins-Kapouleas 2008-9)

(i) For every $n \ge 3$ there are infinitely many topological types of special Lagrangian cone in \mathbb{C}^n each of which admits infinitely many geometrically distinct representatives.

(ii) For every $n \ge 5$ statement (i) also holds for Hamiltonian stationary (non SL) cones.

(iii) For every $n \ge 6$ there are infinitely many topological types of SL cone in \mathbb{C}^n which can occur in continuous families of arbitrarily large dimension.

(iv) For $n \ge 7$ statement (iii) also holds for Hamiltonian stationary (non SL) cones in \mathbb{C}^n .

Ingredients of proof:

A. Integrable systems constructions of SL T^2 cones

B. Gluing constructions of infinitely many topological types of SL cones

C. A *twisted product* construction for pairs of SL cones

A: SLG T^2 cones using integrable systems

Sharipov (1991) studied minimal Legendrian tori in \mathbb{S}^5 using *finite gap* methods.

- Gave formulae for immersions in terms of theta functions associated to *spectral data*.
- Did not solve period conditions needed to obtain tori; so could not produce tori.
- Did not prove uniqueness of spectral data.

Minimal Legendrian surfaces in \mathbb{S}^5 project via Hopf map $\mathbb{S}^5 \to \mathbb{CP}^2$ to minimal Lagrangians. Conversely, minimal Lagrangian *tori* in \mathbb{CP}^2 lift (3-fold cover perhaps) to minimal Legendrian tori in \mathbb{S}^5 .

• Minimal tori in \mathbb{CP}^2 all come from primitive harmonic maps to a flag manifold.

- McIntosh (1995-96) used this to give a spectral curve construction of these tori.
- Lagrangian condition \Rightarrow spectral curve has an extra involution.

A: SLG T^2 cones using integrable systems

McIntosh (2003): Minimal Lagrangian tori in $\mathbb{C}P^2$ (up to congruence) are in bijective correspondence with certain *spectral data*, $(X, \lambda, \rho, \mu, \mathcal{L})$.

- X is a compact Riemann surface of even genus g = 2p, \mathcal{L} is a holo line bundle on X.
- $p = 0 \Rightarrow$ must get Clifford torus. $p = 1 \Rightarrow$ get S^1 -invariant tori (H₋ 2000). $p = 2, \exists$ examples due to Joyce (2001).
- Spectral data gives rise to torus ⇒ strong restrictions on spectral data – a kind of "rationality condition".
- Not obvious that for p > 2 there are any spectral curves giving rise to tori.

McIntosh-Carberry (2004): For each p > 2, there exist countably many spectral curves of genus 2p, each yielding a p-2-dimensional real family of minimal Lagrangian tori.

- \bullet periodicity conditions don't change if we vary ${\cal L}$ in Jacobian variety
- Lagrangian deformations \longleftrightarrow move $\mathcal L$ in Prym

B: SL cones via gluing constructions

Th^m 1: (Haskins-Kapouleas 2007)

For any $d \in \mathbb{N}$ there exist infinitely many SLG cones C with a link a surface of genus g = 2d + 1. Also true for genus 4.

Th^m 2: (Haskins-Kapouleas 2008-9)

For every $n \ge 3$ there are infinitely many topological types of special Lagrangian cone in \mathbb{C}^n each of which admits infinitely many geometrically distinct representatives.

- Proofs use delicate *gluing* techniques singular perturbation theory for geometric PDE à la Schoen (singular Yamabe problem), Kapouleas (CMC surfaces)
- Links composed of *large* number of *almost spherical regions* connected to each other via small highly curved regions.
- Reminiscent of use of Delaunay surfaces to construct new CMC surfaces in \mathbb{R}^3 by Kapouleas.

Outline of proofs of Theorems 1 & 2

- 1. Use ODE methods to construct SL analogues of Delaunay cylinders:
 - highly symmetric SL necklaces w/ many almost spherical regions connected by highly curved neck regions.
 - finitely many topological types of neck-lace in each dimension.
- 2. Combine many SL necklaces to form topologically more complicated Legendrian submanifolds that are approximately minimal.
- 3. Linear theory.

(a) Understand linearization \mathcal{L} of condition that graph(f) over Σ is minimal.

(b) Understand (approx) kernel of \mathcal{L} .

(c) Understand how to compensate for the (approx) kernel of \mathcal{L} .

4. Deal with nonlinear terms.
(a) Set up iteration/ fixed point scheme.
(b) Prove nonlinear estimates to guarantee convergence.

The Building Blocks for n = 3: SL analogues of Delaunay cylinders in \mathbb{S}^5

SO(2)-invariant SL cylinders in \mathbb{S}^5 .

SO(2) \subset SO(3): std SO(3) action on \mathbb{C}^3 SO(2): stabilizer of $(1,0,0) \in \mathbb{S}^5$.

Thm: (H 2000) There exists a 1-parameter family of SO(2)-invariant SL cylinders

 $X_{\tau}: \mathbb{R} \times \mathbb{S}^1 \to \mathbb{S}^5$

interpolating between:

- a flat cylinder when $\tau = \tau_{max}$, and
- the round sphere $\mathbb{S}^2 \setminus (\pm 1, 0, 0)$ when $\tau = 0$.

For $\tau \sim 0$, X_{τ} is periodic and consists of infinitely many almost spherical regions (ASRs) connected by small highly curved necks.

For any $m \gg 0$, $\exists ! \tau_m \sim 0$ s.t. X_{τ_m} factors through an embedded SL torus with exactly m ASRs.

⇒ \exists embedded SL toroidal necklaces in \mathbb{S}^5 with any (sufficiently large) number of almost spherical beads.

Higher dimensional building blocks I: SO(n-1)-invariant SL cylinders in S^{2n-1} $SO(n-1) \subset SO(n)$: std SO(n) action on \mathbb{C}^n SO(n-1) is stabilizer of $(1, 0, ..., 0) \in S^{2n-1}$.

Thm: (HK 06) There exists a 1-parameter family of SO(n-1)-invariant SL cylinders

$$X_{\tau}: \mathbb{R} \times \mathbb{S}^{n-2} \to \mathbb{S}^{2n-1}$$

interpolating between:

- a "product" cylinder $\mathbb{R} \times \mathbb{S}^{n-2}$ ($\tau = \tau_{\max}$),
- the round sphere $\mathbb{S}^{n-1} \setminus (\pm 1, 0 \dots, 0)$ $(\tau = 0)$.

For $\tau > 0$, X_{τ} is periodic and for $\tau \sim 0$ consists of infinitely many almost spherical regions (ASRs) connected by small highly curved necks.

For any $m \gg 0$, $\exists ! \tau_m \sim 0$ s.t. X_{τ_m} factors through an SL submfd $\mathbb{S}^1 \times \mathbb{S}^{n-2}$ with exactly m ASRs.

Higher dimensional building blocks II: $SO(p) \times SO(q)$ -invariant SL cylinders

Choose positive integers p and q, s.t. p+q = n. SO $(p) \times$ SO $(q) \subset$ SO(n): std SO(n) action

Thm: (HK 06) There exists a 1-parameter family of $SO(p) \times SO(q)$ -invariant SL cylinders

 $X_{\tau}: \mathbb{R} \times \mathbb{S}^{p-1} \times \mathbb{S}^{q-1} \to \mathbb{S}^{2n-1}$

interpolating between:

• a "product" cylinder $\mathbb{R} \times \mathbb{S}^{p-1} \times \mathbb{S}^{q-1}$ when $\tau = \tau_{\max}$,

• the round sphere $\mathbb{S}^{n-1}\setminus(\mathbb{S}^{p-1},0)\cup(0,\mathbb{S}^{q-1})$ when $\tau=0.$

For $\tau > 0$, X_{τ} is periodic and for $\tau \sim 0$ consists of infinitely many almost spherical regions (ASRs) connected by small highly curved necks. For any $m \gg 0$, $\exists ! \tau_m \sim 0$ s.t. X_{τ_m} factors through an SL submfd $\mathbb{S}^1 \times \mathbb{S}^{p-1} \times \mathbb{S}^{q-1}$ with exactly m ASRs.

 \Rightarrow for fixed *n* get SL necklaces of type (p,q) with any (suff large) number of almost spherical beads.

Geometry of SL cylinders.

- I. SO(n-1)-invariant SL cylinders:
- for $\tau \sim 0$ curvature of X_{τ} blows up near 2 antipodal points $\pm e_1$.
- Near $\pm e_1$, $X_{\tau} \sim \text{Lagrangian catenoid in } \mathbb{C}^{n-1}$.

II. $SO(p) \times SO(q)$ -invariant SL cylinders:

• for $\tau \sim 0$ curvature blows along an *orthogonal* generalized Hopf link

 $(\mathbb{S}^{p-1}, 0) \cup (0, \mathbb{S}^{q-1}).$

Now have 2 types of highly curved region:
(a) near (S^{p-1}, 0) X_τ resembles

 $\mathbb{S}^{p-1} \times \mathsf{Lagn}$ catenoid in \mathbb{C}^q

(b) near $(0, \mathbb{S}^{q-1})$ X_{τ} resembles

Lagn catenoid in $\mathbb{C}^p \times \mathbb{S}^{q-1}$

Adjacent spheres in necklace as $\tau \rightarrow 0$.

Case I: consecutive spheres meet at a point. Case II: consecutive spheres meet along an equatorial sphere of dimension p-1 or q-1

Construction of initial submanifolds

Basic idea: fuse a finite number of SL necklaces at one common central sphere.

Initial configuration determined by

- 1. type (p,q) of SL necklaces used
- 2. position of attachment sets on central sphere
- 3. number of beads in SL necklace

To simplify treatment of approximate kernel look only at "maximally symmetric" configurations.

 \Rightarrow

A. only use one necklace type per construction and same number m of beads for all fused necklaces

B. attachment sets must be highly symmetrically arranged

Describe two families of gluing constructions A. using type (1, n - 1) necklaces,

• each attachment set is pair of antipodal pts

B. using type (p, p) necklaces

• each attachment set is an *orthogonal gener*alized Hopf link

Attachment sets \triangle in case A:

(i) $\Delta \subset \mathbb{S}^1 \subset \mathbb{S}^{n-1} \subset \mathbb{S}^{2n-1}$

 $\Delta =$ vertices of regular g-gon, g odd plus all its antipodal points.

(ii) $\Delta \subset \mathbb{S}^{k-1} \subset \mathbb{S}^{n-1} \subset \mathbb{S}^{2n-1}$

 $\Delta =$ vertices of a regular k-simplex plus all its antipodal points.

Attachment sets \triangle in case B:

 $\Delta = \Delta_0 \cup \ldots \cup \Delta_{g-1}, \quad g \text{ odd}$

$$\Delta_0 = (\mathbb{S}^{p-1}, 0) \cup (0, \mathbb{S}^{p-1})$$

$$\Delta_k = (R_g)^k \Delta_0$$

where

$$R_g = \begin{pmatrix} \cos(2\pi/g)Id_p & \sin(2\pi/g)Id_p \\ -\sin(2\pi/g)Id_p & \cos(2\pi/g)Id_p \end{pmatrix}$$

B: Main Gluing Theorem

Thm: (HK 08-09) For any m sufficiently large the initial Legn submfds constructed using the attachment sets Δ described above and SL necklaces with m beads can be corrected to be special Legendrian.

Cor: For any $n \ge 3 \exists$ infinitely many topological types of SL cone in \mathbb{C}^n each of which has infinitely many geometrically distinct representatives.

Source of main technical difficulties in proof:

1. Initial submfds contain $\sim gm$ almost spherical regions where g is number of necklaces fused.

2. Each ASR contributes

```
\dim(SU(n)) - \dim(SO(n))
```

small eigenvalues to $\ensuremath{\mathcal{L}}$

3. Construction works for m large.

 $1-3 \Rightarrow$ linearization \mathcal{L} has huge approx kernel.

C: Twisted products of SL cones

Product cones: C_1 , C_2 regular cones in \mathbb{C}^p , $\mathbb{C}^q \Rightarrow$

- $C_1 \times C_2 \subset \mathbb{C}^p \times \mathbb{C}^q$ also a cone,
- C_i both Lagn cones $\Rightarrow C_1 \times C_2$ also Lagn
- C_i both SL cones \Rightarrow $C_1 \times C_2$ also SL

But $\Sigma_{1,2}$ the link of $C_1 \times C_2$ is singular.

 $\Sigma_{1,2} = \{\cos t \, \Sigma_1, \sin t \, \Sigma_2\} \subset \mathbb{S}^{2(p+q)-1}.$

Map from $[0,\frac{\pi}{2}]\times \Sigma_1\times \Sigma_2 \to \Sigma_{1,2}$ given by

 $(t, \sigma_1, \sigma_2) \mapsto (\cos t \, \sigma_1, \sin t \, \sigma_2)$

fails to be immersion at t = 0 and $t = \frac{\pi}{2}$.

- near t = 0 link singularity looks like $\Sigma_1 \times C_2$
- near $t = \frac{\pi}{2}$ singularity looks like $C_1 \times \Sigma_2$

Twisted product cones: look for deformations of $C_1 \times C_2$ to a regular SL cone.

C: Twisted products of SL cones

If $w = (w_1, w_2) : I \to \mathbb{S}^3 \subset \mathbb{C}^2$ define the *w*-twisted product of Σ_1 with Σ_2 by

 $(t,\sigma_1,\sigma_2) \rightarrow (w_1(t)\sigma_1,w_2(t)\sigma_2).$

Lemma: If w is a Legendrian curve in \mathbb{S}^3 and Σ_1 , Σ_2 are both Legendrian then away from zeros of w_i the w-twisted product $\Sigma_1 *_w \Sigma_2$ is also Legendrian with phase $e^{i\theta}$ given by

$$(-1)^{p-1}e^{i\theta_1}e^{i\theta_2}e^{i\theta_w+i(p-1)} \operatorname{arg} w_1+i(q-1) \operatorname{arg} w_2$$

where θ_i , θ_w are Lagn phases of Σ_i and w

Defn: A Legn curve w in \mathbb{S}^3 is a (p,q)-twisted SL curve if its phase satisfies

$$e^{i\theta_w} = (-1)^{p-1} e^{-i(p-1) \arg w_1 - i(q-1) \arg w_2}.$$

Cor: If Σ_i are both SL then the *w*-twisted product is SL $\iff w$ is a (p,q)-twisted SL curve.

Main point: want to find closed (p,q)-twisted SL curves.

C: Twisted products of SL cones

Prop: Any curve $w: I \to \mathbb{C}^2$ satisfying

$$\overline{w}_1 \dot{w}_1 = -\overline{w}_2 \dot{w}_2 = (-1)^p \overline{w}_1^p \overline{w}_2^q,$$

with initial condition |w(0)| = 1, is a (p,q)-twisted SL curve in \mathbb{S}^3 .

Conversely, any (p,q)-twisted SL curve in \mathbb{S}^3 containing no points with $w_i(t) = 0$ admits a parametrization satisfying these ODEs.

Thm: (HK 08) Up to symmetry \exists a 1-parameter family of (p,q)-twisted SL curves w_{τ} . For a countable dense set of values of τ these curves are closed.

Cor: HK 08 (i) There exist infinitely many topological types of SL cone in \mathbb{C}^n for $n \ge 3$, each of which admits infinitely many distinct geometric representatives.

(ii) For every $n \ge 6$ there are infinitely many topological types of SL cone in \mathbb{C}^n which can occur in continuous families of arbitrarily large dimension.

Proof: (needs gluing results in n = 3 and integrable systems construction of families of SL 2-tori)

(i) For n = 4 any closed (1, 3)-twisted SL curve and any SL surface in \mathbb{S}^5 give rise to a SL submanifold of \mathbb{S}^7 with link $\mathbb{S}^1 \times \Sigma$.

For n > 4 any closed (n - 3, 3)-twisted SL curve, any SL surface Σ in \mathbb{S}^5 and any SL submfd $\Sigma_{2(n-3)}$ in $\mathbb{S}^{2(n-3)-1}$ (e.g. the equatorial sphere) gives rise to a SL submfd of \mathbb{S}^{2n-1} with link $\mathbb{S}^1 \times \Sigma \times \Sigma_{2(n-3)}$.

(ii) To get infinitely many top types of SL cones that come in at least a p dimensional cts family of SL cones for $n \ge 6$:

Take any closed (n - 3, 3)-twisted SL curve, Σ to be any SL T^2 of sufficiently high spectral curve genus and $\Sigma_{2(n-3)}$ to be any of the infinitely many top types of SL cones already constructed in \mathbb{C}^{n-3}

⇒ get at least at *p*-diml cts family of SL submfds of S^{2n-1} with topology $S^1 \times T^2 \times \Sigma_{2(n-3)}$.