
A PANOPLY OF SPECIAL
LAGRANGIAN SINGULARITIES

MARK HASKINS

Imperial College London

1. ‘Gluing constructions of special Lagrangian

cones’, Handbook of Geometric Analysis,

(Yau birthday volume) Aug 2008

2. ‘Special Lagrangian cones with higher genus

link’, Inventiones Mathematicae, 167, 223–

294 (2007)

3. ‘Special Lagrangian cones’, American Jour-

nal of Mathematics 126, 845–871 (2004)

Riemann Surfaces, Harmonic maps &

Visualization,

Osaka City University International Academic

Symposium, Dec 2008



Calibrations – Definitions

A calibrated geometry is a distinguished class

of minimal submanifolds associated with a dif-

ferential form.

• A calibrated form is a closed differential

p-form φ on a Riemannian manifold (M, g)

satisfying φ ≤ volg.

i.e. φ(e1, . . . , ep) ≤ 1

for any orthonormal set of p tgt vectors

• For m ∈ M associate with φ the subset

Gm(φ) of oriented p-planes for which equal-

ity holds in (∗) – the calibrated planes.

• A submanifold calibrated by φ is an ori-

ented p-dim submanifold whose tangent plane

at each point m lies in the subset Gm(φ)

of distinguished p-planes.

Lemma: (Harvey–Lawson) Calibrated subman-

ifolds minimize volume in their homology class.



Special Lagrangian Calibration on Cn

On Cn with standard complex coordinates, let

α = Re(Ω), where Ω = dz1 ∧ . . . ∧ dzn.

• α is a calibrated form.

• Any α-calibrated plane is Lagrangian w.r.t.
standard Kähler form

ω =
∑
dxi ∧ dyi

(but not conversely).

• An α-calibrated plane may be obtained from
standard “real” Rn ⊆ Cn by action of A ∈
SU(n).

Thus the name special Lagrangian calibration.

Other ambient spaces: Calabi-Yau manifolds

If (M, g) has holonomy in SU(n) can use exis-

tence of parallel (n,0)-form Ω to define special

Lagrangian calibration.



The Lagrangian angle

Oriented Lagn n-planes in Cn! U(n)/SO(n).

Map detC : U(n)/SO(n) −→ S1 gives us the

phase of the Lagrangian n-plane.

Write phase of oriented Lagrangian submfd L

of Cn as eiθ : L→ S1.

Locally can lift phase eiθ to a function θ : L→
R, the Lagrangian angle.

θ not necessarily globally well-defined, but dθ

is and has geometric meaning:

dθ = ιHω

where H is mean curvature vector of L

H = 0←→ dθL = 0←→ θL locally constant

θL = 0←→ L is special Lagrangian.

L is Hamiltonian stationary if dθ is a harmonic

1-form



Examples of Special Lagrangian

submanifolds in Cn

SLG level sets (Harvey – Lawson 1982)

(explicit examples with symmetries)

F : C3 → R3

F =
(
|z1|2 − |z2|2, |z1|2 − |z3|2, Im(z1z2z3)

)

F−1(c) is a (possibly singular) SLG 3-fold in-

variant under a T2 action.

• For a generic c, F−1(c) is nonsingular and
diffeomorphic to T2 × R.

• For 1-dimensional set of critical values of
c, F−1(c) is a smoothly immersed 3-fold,

with two components each diffeomorphic

to S1 × R2 and intersecting in a circle.

• F−1(0) is a singular cone C.
Link of C has 2 (antipodal) components.

Each component is flat 2-torus (with equi-

lateral conformal structure)



Singularities of SLG varieties

Q: What can we say about singularities of SLG

varieties?

A: In complete generality, very little!

• Generalize from SLG manifolds to SLG rec-

tifiable currents – objects with measure-

theoretic oriented tgt plane a.e.

• SLG rectifiable currents in Cn are mass-

minimizing currents

• Almgren’s Codimension Two or Big reg-

ularity result for general mass minimizing

currents applies

• Very hard and long (1000 page book)!!

• ⇒ Singular set S has Hausdorff codim ≥ 2.

• Not enough information about S for geo-

metric applications.

Want to find interesting but more manageable

classes of singular SLG varieties.



Isolated conical singularities of SLG

n-folds

SLG n-fold with isolated conical singularities

means:

• Compact singular SLG n-fold X in a Calabi-

Yau M .

• Finite number of distinct singular points

x1, . . . , xk.

• Near the singular point xi, X looks like a

SLG cone Ci in Cn with isolated singularity.

Joyce studied the deformation theory of these

singular SLG varieties

• Keep number and local model of singular

points fixed but not their locations.

• Singular deformation theory is obstructed.

• Obstruction space depends on geometry of
each SLG cone Ci.

⇒ To understand this class of singular SL n-

folds need to study the geometry of SL cones.



SLG Cones and Their Links

Defn: A cone C ⊂ Cn is a subset invariant

under all dilations.

For Σ ⊂ S2n−1 ⊂ Cn, let C(Σ) denote the cone
on Σ:

C(Σ) = {tx : t ≥ 0, x ∈ Σ}

Defn: A cone is regular if C = C(Σ) where Σ

is compact, connected, embedded and oriented

submanifold of S2n−1.

Call Σ the link of the regular cone C.

Propn A: C is SLG in Cn (up to a phase) ⇐⇒
Σ is minimal and Legendrian in S2n−1.



SLG cones in dimension 3

Link of a regular SLG cone is a cpt oriented

Riemannian surface of genus g.

The trichotomy:

1. g = 0. Only example is standard round S2

2. g = 1

• ∃ infinitely many explicit examples with
cts symmetries

• Integrable systems (loop group/spectral
curve) methods produce all examples

3. g > 1

• Cts symmetry not possible
• Integrable systems methods not currently
effective

• Can use geometric PDE gluing methods

to construct many examples (Haskins &

Kapouleas)



SL cones in higher dimensions

Thm: (Haskins-Kapouleas 2008-9)

(i) For every n ≥ 3 there are infinitely many

topological types of special Lagrangian cone

in Cn each of which admits infinitely many ge-
ometrically distinct representatives.

(ii) For every n ≥ 5 statement (i) also holds

for Hamiltonian stationary (non SL) cones.

(iii) For every n ≥ 6 there are infinitely many

topological types of SL cone in Cn which can
occur in continuous families of arbitrarily large

dimension.

(iv) For n ≥ 7 statement (iii) also holds for

Hamiltonian stationary (non SL) cones in Cn.

Ingredients of proof:

A. Integrable systems constructions of SL T2

cones

B. Gluing constructions of infinitely many topo-

logical types of SL cones

C. A twisted product construction for pairs of

SL cones



A: SLG T2 cones using integrable systems

Sharipov (1991) studied minimal Legendrian

tori in S5 using finite gap methods.
• Gave formulae for immersions in terms of

theta functions associated to spectral data.

• Did not solve period conditions needed to

obtain tori; so could not produce tori.

• Did not prove uniqueness of spectral data.

Minimal Legendrian surfaces in S5 project via
Hopf map S5 → CP2 to minimal Lagrangians.
Conversely, minimal Lagrangian tori in CP2 lift
(3-fold cover perhaps) to minimal Legendrian

tori in S5.

• Minimal tori in CP2 all come from primitive

harmonic maps to a flag manifold.

• McIntosh (1995-96) used this to give a spec-

tral curve construction of these tori.

• Lagrangian condition ⇒ spectral curve has

an extra involution.



A: SLG T2 cones using integrable systems

McIntosh (2003): Minimal Lagrangian tori in

CP2 (up to congruence) are in bijective corre-
spondence with certain spectral data, (X,λ, ρ, μ,L).

• X is a compact Riemann surface of even

genus g = 2p, L is a holo line bundle on X.
• p = 0⇒ must get Clifford torus.

p = 1⇒ get S1-invariant tori (H 2000).

p = 2, ∃ examples due to Joyce (2001).

• Spectral data gives rise to torus ⇒ strong

restrictions on spectral data – a kind of

“rationality condition”.

• Not obvious that for p > 2 there are any

spectral curves giving rise to tori.

McIntosh-Carberry (2004): For each p > 2,

there exist countably many spectral curves of

genus 2p, each yielding a p−2-dimensional real
family of minimal Lagrangian tori.

• periodicity conditions don’t change if we vary
L in Jacobian variety
• Lagrangian deformations←→move L in Prym



B: SL cones via gluing constructions

Thm 1: (Haskins-Kapouleas 2007)

For any d ∈ N there exist infinitely many SLG

cones C with a link a surface of genus g =

2d+1. Also true for genus 4.

Thm 2: (Haskins-Kapouleas 2008-9)

For every n ≥ 3 there are infinitely many topo-
logical types of special Lagrangian cone in Cn

each of which admits infinitely many geomet-

rically distinct representatives.

• Proofs use delicate gluing techniques – sin-
gular perturbation theory for geometric PDE

à la Schoen (singular Yamabe problem),

Kapouleas (CMC surfaces) . . .

• Links composed of large number of almost
spherical regions connected to each other

via small highly curved regions.

• Reminiscent of use of Delaunay surfaces

to construct new CMC surfaces in R3 by
Kapouleas.



Outline of proofs of Theorems 1 & 2

1. Use ODE methods to construct SL ana-

logues of Delaunay cylinders:

• highly symmetric SL necklaces w/ many
almost spherical regions connected by highly

curved neck regions.

• ∃ finitely many topological types of neck-
lace in each dimension.

2. Combine many SL necklaces to form topo-

logically more complicated Legendrian sub-

manifolds that are approximately minimal.

3. Linear theory.

(a) Understand linearization L of condition
that graph(f) over Σ is minimal.

(b) Understand (approx) kernel of L.
(c) Understand how to compensate for

the (approx) kernel of L.

4. Deal with nonlinear terms.

(a) Set up iteration/ fixed point scheme.

(b) Prove nonlinear estimates to guarantee

convergence.



The Building Blocks for n = 3:
SL analogues of Delaunay cylinders in S5

SO(2)-invariant SL cylinders in S5.

SO(2) ⊂ SO(3): std SO(3) action on C3

SO(2): stabilizer of (1,0,0) ∈ S5.

Thm: (H 2000) There exists a 1-parameter
family of SO(2)-invariant SL cylinders

Xτ : R× S1 → S5

interpolating between:

• a flat cylinder when τ = τmax, and
• the round sphere S2 \(±1,0,0) when τ = 0.

For τ ∼ 0, Xτ is periodic and consists of in-

finitely many almost spherical regions (ASRs)

connected by small highly curved necks.

For any m � 0, ∃ ! τm ∼ 0 s.t. Xτm factors

through an embedded SL torus with exactly m

ASRs.

⇒ ∃ embedded SL toroidal necklaces in
S5 with any (sufficiently large) number of
almost spherical beads.



Higher dimensional building blocks I:

SO(n− 1)-invariant SL cylinders in S2n−1

SO(n− 1) ⊂ SO(n): std SO(n) action on Cn

SO(n− 1) is stabilizer of (1,0, . . . ,0) ∈ S2n−1.

Thm: (HK 06) There exists a 1-parameter

family of SO(n− 1)-invariant SL cylinders

Xτ : R× Sn−2 → S2n−1

interpolating between:

• a “product” cylinder R× Sn−2 (τ = τmax),

• the round sphere Sn−1\(±1,0 . . . ,0) (τ = 0).

For τ > 0, Xτ is periodic and for τ ∼ 0 con-

sists of infinitely many almost spherical regions

(ASRs) connected by small highly curved necks.

For any m � 0, ∃ ! τm ∼ 0 s.t. Xτm factors

through an SL submfd S1 × Sn−2 with exactly
m ASRs.



Higher dimensional building blocks II:

SO(p)× SO(q)-invariant SL cylinders

Choose positive integers p and q, s.t. p+q = n.

SO(p)× SO(q) ⊂ SO(n): std SO(n) action

Thm: (HK 06) There exists a 1-parameter

family of SO(p)×SO(q)-invariant SL cylinders

Xτ : R× Sp−1 × Sq−1 → S2n−1

interpolating between:

• a “product” cylinder R× Sp−1 × Sq−1 when
τ = τmax,
• the round sphere Sn−1\(Sp−1,0)∪(0, Sq−1)

when τ = 0.

For τ > 0, Xτ is periodic and for τ ∼ 0 con-

sists of infinitely many almost spherical regions

(ASRs) connected by small highly curved necks.

For any m � 0, ∃ ! τm ∼ 0 s.t. Xτm factors

through an SL submfd S1 × Sp−1 × Sq−1 with
exactly m ASRs.

⇒ for fixed n get SL necklaces of type

(p, q) with any (suff large) number of al-

most spherical beads.



Geometry of SL cylinders.

I. SO(n− 1)-invariant SL cylinders:

• for τ ∼ 0 curvature of Xτ blows up near 2

antipodal points ±e1.
• Near ±e1, Xτ ∼ Lagrangian catenoid in Cn−1.

II. SO(p)× SO(q)-invariant SL cylinders:

• for τ ∼ 0 curvature blows along an orthogonal
generalized Hopf link

(Sp−1,0) ∪ (0, Sq−1).

• Now have 2 types of highly curved region:

(a) near (Sp−1,0) Xτ resembles

Sp−1 × Lagn catenoid in Cq

(b) near (0, Sq−1) Xτ resembles

Lagn catenoid in Cp × Sq−1

Adjacent spheres in necklace as τ → 0.

Case I: consecutive spheres meet at a point.

Case II: consecutive spheres meet along an

equatorial sphere of dimension p− 1 or q − 1



Construction of initial submanifolds

Basic idea: fuse a finite number of SL neck-

laces at one common central sphere.

Initial configuration determined by

1. type (p, q) of SL necklaces used

2. position of attachment sets on central sphere

3. number of beads in SL necklace

To simplify treatment of approximate kernel

look only at “maximally symmetric” configu-

rations.

⇒

A. only use one necklace type per construc-

tion and same number m of beads for all fused

necklaces

B. attachment sets must be highly symmetri-

cally arranged



Describe two families of gluing constructions

A. using type (1, n− 1) necklaces,
• each attachment set is pair of antipodal pts

B. using type (p, p) necklaces
• each attachment set is an orthogonal gener-
alized Hopf link

Attachment sets Δ in case A:

(i) Δ ⊂ S1 ⊂ Sn−1 ⊂ S2n−1

Δ = vertices of regular g-gon, g odd plus all
its antipodal points.

(ii) Δ ⊂ Sk−1 ⊂ Sn−1 ⊂ S2n−1

Δ = vertices of a regular k-simplex plus all its
antipodal points.

Attachment sets Δ in case B:

Δ=Δ0 ∪ . . . ∪Δg−1, g odd

Δ0 = (Sp−1,0) ∪ (0, Sp−1)

Δk = (Rg)
kΔ0

where

Rg =

(
cos(2π/g)Idp sin(2π/g)Idp
− sin(2π/g)Idp cos(2π/g)Idp

)



B: Main Gluing Theorem

Thm: (HK 08-09) For any m sufficiently

large the initial Legn submfds constructed us-

ing the attachment sets Δ described above and

SL necklaces with m beads can be corrected

to be special Legendrian.

Cor: For any n ≥ 3 ∃ infinitely many topolog-
ical types of SL cone in Cn each of which has
infinitely many geometrically distinct represen-

tatives.

Source of main technical difficulties in proof:

1. Initial submfds contain ∼ gm almost spher-

ical regions where g is number of necklaces

fused.

2. Each ASR contributes

dim(SU(n))− dim(SO(n))

small eigenvalues to L

3. Construction works for m large.

1−3 ⇒ linearization L has huge approx kernel.



C: Twisted products of SL cones

Product cones: C1, C2 regular cones in Cp, Cq

⇒

• C1 × C2 ⊂ Cp × Cq also a cone,

• Ci both Lagn cones ⇒ C1 × C2 also Lagn

• Ci both SL cones ⇒ C1 × C2 also SL

But Σ1,2 the link of C1 × C2 is singular.

Σ1,2 = {cos tΣ1, sin tΣ2} ⊂ S
2(p+q)−1.

Map from [0, π2]×Σ1 ×Σ2 → Σ1,2 given by

(t, σ1, σ2) 7→ (cos t σ1, sin t σ2)

fails to be immersion at t = 0 and t = π
2.

• near t = 0 link singularity looks like Σ1 × C2

• near t = π
2 singularity looks like C1 ×Σ2

Twisted product cones: look for deformations

of C1 × C2 to a regular SL cone.



C: Twisted products of SL cones

If w = (w1, w2) : I → S3 ⊂ C2 define the w-
twisted product of Σ1 with Σ2 by

(t, σ1, σ2)→ (w1(t)σ1, w2(t)σ2).

Lemma: If w is a Legendrian curve in S3 and
Σ1, Σ2 are both Legendrian then away from

zeros of wi the w-twisted product Σ1 ∗w Σ2 is
also Legendrian with phase eiθ given by

(−1)p−1eiθ1eiθ2eiθw+i(p−1) argw1+i(q−1) argw2

where θi, θw are Lagn phases of Σi and w

Defn: A Legn curve w in S3 is a (p, q)-twisted
SL curve if its phase satisfies

eiθw = (−1)p−1e−i(p−1) argw1−i(q−1) argw2.

Cor: If Σi are both SL then the w-twisted

product is SL⇐⇒ w is a (p, q)-twisted SL curve.

Main point: want to find closed (p, q)-twisted

SL curves.



C: Twisted products of SL cones

Prop: Any curve w : I → C2 satisfying

w1ẇ1 = −w2ẇ2 = (−1)pwp1w
q
2,

with initial condition |w(0)| = 1, is a (p, q)-

twisted SL curve in S3.

Conversely, any (p, q)-twisted SL curve in S3

containing no points with wi(t) = 0 admits a

parametrization satisfying these ODEs.

Thm: (HK 08) Up to symmetry ∃ a 1-parameter
family of (p, q)-twisted SL curves wτ . For a

countable dense set of values of τ these curves

are closed.

Cor: HK 08 (i) There exist infinitely many

topological types of SL cone in Cn for n ≥ 3,
each of which admits infinitely many distinct

geometric representatives.

(ii) For every n ≥ 6 there are infinitely many

topological types of SL cone in Cn which can
occur in continuous families of arbitrarily large

dimension.



Proof: (needs gluing results in n = 3 and in-

tegrable systems construction of families of SL

2-tori)

(i) For n = 4 any closed (1,3)-twisted SL curve

and any SL surface in S5 give rise to a SL

submanifold of S7 with link S1 ×Σ.

For n > 4 any closed (n − 3,3)-twisted SL

curve, any SL surface Σ in S5 and any SL

submfd Σ2(n−3) in S
2(n−3)−1 (e.g. the equato-

rial sphere) gives rise to a SL submfd of S2n−1

with link S1 ×Σ×Σ2(n−3).

(ii) To get infinitely many top types of SL

cones that come in at least a p dimensional

cts family of SL cones for n ≥ 6:

Take any closed (n − 3,3)-twisted SL curve,

Σ to be any SL T2 of sufficiently high spec-

tral curve genus and Σ2(n−3) to be any of the

infinitely many top types of SL cones already

constructed in Cn−3

⇒ get at least at p-diml cts family of SL submfds

of S2n−1 with topology S1 × T2 ×Σ2(n−3).


