A PANOPLY OF SPECIAL LAGRANGIAN SINGULARITIES

MARK HASKINS

Imperial College London

1. 'Gluing constructions of special Lagrangian cones', Handbook of Geometric Analysis, (Yau birthday volume) Aug 2008
2. 'Special Lagrangian cones with higher genus link', Inventiones Mathematicae, 167, 223294 (2007)
3. 'Special Lagrangian cones', American Journal of Mathematics 126, 845-871 (2004)

Riemann Surfaces, Harmonic maps \& Visualization,
Osaka City University International Academic Symposium, Dec 2008

Calibrations - Definitions

A calibrated geometry is a distinguished class of minimal submanifolds associated with a differential form.

- A calibrated form is a closed differential p-form ϕ on a Riemannian manifold (M, g) satisfying $\phi \leq \operatorname{vol}_{g}$.
i.e.
$\phi\left(e_{1}, \ldots, e_{p}\right) \leq 1$
for any orthonormal set of p tgt vectors
- For $m \in M$ associate with ϕ the subset $G_{m}(\phi)$ of oriented p-planes for which equality holds in (*) - the calibrated planes.
- A submanifold calibrated by ϕ is an oriented p-dim submanifold whose tangent plane at each point m lies in the subset $G_{m}(\phi)$ of distinguished p-planes.

Lemma: (Harvey-Lawson) Calibrated submanifolds minimize volume in their homology class.

Special Lagrangian Calibration on \mathbb{C}^{n}

On \mathbb{C}^{n} with standard complex coordinates, let $\alpha=\operatorname{Re}(\Omega)$, where $\Omega=d z^{1} \wedge \ldots \wedge d z^{n}$.

- α is a calibrated form.
- Any α-calibrated plane is Lagrangian w.r.t. standard Kähler form

$$
\omega=\sum d x^{i} \wedge d y^{i}
$$

(but not conversely).

- An α-calibrated plane may be obtained from standard "real" $\mathbb{R}^{n} \subseteq \mathbb{C}^{n}$ by action of $A \in$ $\mathrm{SU}(n)$.

Thus the name special Lagrangian calibration.

Other ambient spaces: Calabi-Yau manifolds If (M, g) has holonomy in $\mathrm{SU}(\mathrm{n})$ can use existence of parallel ($n, 0$)-form Ω to define special Lagrangian calibration.

The Lagrangian angle

Oriented Lagn n-planes in $\mathbb{C}^{n} \leadsto \backsim \mathrm{U}(n) / \mathrm{SO}(n)$. Map $\operatorname{det}_{\mathbb{C}}: \mathrm{U}(n) / \mathrm{SO}(n) \longrightarrow \mathbb{S}^{1}$ gives us the phase of the Lagrangian n-plane.

Write phase of oriented Lagrangian submfd L of \mathbb{C}^{n} as $e^{i \theta}: L \rightarrow \mathbb{S}^{1}$.

Locally can lift phase $e^{i \theta}$ to a function $\theta: L \rightarrow$ \mathbb{R}, the Lagrangian angle.
θ not necessarily globally well-defined, but $d \theta$ is and has geometric meaning:

$$
d \theta=\iota_{H} \omega
$$

where H is mean curvature vector of L
$H=0 \longleftrightarrow d \theta_{L}=0 \longleftrightarrow \theta_{L}$ locally constant
$\theta_{L}=0 \longleftrightarrow L$ is special Lagrangian.
L is Hamiltonian stationary if $d \theta$ is a harmonic 1-form

Examples of Special Lagrangian submanifolds in \mathbb{C}^{n}

SLG level sets (Harvey - Lawson 1982)
(explicit examples with symmetries)
$F: \mathbb{C}^{3} \rightarrow \mathbb{R}^{3}$
$F=\left(\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2},\left|z_{1}\right|^{2}-\left|z_{3}\right|^{2}, \operatorname{Im}\left(z_{1} z_{2} z_{3}\right)\right)$
$F^{-1}(c)$ is a (possibly singular) SLG 3-fold invariant under a T^{2} action.

- For a generic $c, F^{-1}(c)$ is nonsingular and diffeomorphic to $T^{2} \times \mathbb{R}$.
- For 1-dimensional set of critical values of $c, F^{-1}(c)$ is a smoothly immersed 3 -fold, with two components each diffeomorphic to $S^{1} \times \mathbb{R}^{2}$ and intersecting in a circle.
- $F^{-1}(\mathbf{0})$ is a singular cone C. Link of C has 2 (antipodal) components.

Each component is flat 2-torus (with equilateral conformal structure)

Singularities of SLG varieties

Q: What can we say about singularities of SLG varieties?

A: In complete generality, very little!

- Generalize from SLG manifolds to SLG rectifiable currents - objects with measuretheoretic oriented tgt plane a.e.
- SLG rectifiable currents in \mathbb{C}^{n} are massminimizing currents
- Almgren's Codimension Two or Big regularity result for general mass minimizing currents applies
- Very hard and long (1000 page book)!!
- \Rightarrow Singular set S has Hausdorff codim ≥ 2.
- Not enough information about S for geometric applications.

Want to find interesting but more manageable classes of singular SLG varieties.

Isolated conical singularities of SLG n-folds

SLG n-fold with isolated conical singularities means:

- Compact singular SLG n-fold X in a CalabiYau M.
- Finite number of distinct singular points x_{1}, \ldots, x_{k}.
- Near the singular point x_{i}, X looks like a SLG cone C_{i} in \mathbb{C}^{n} with isolated singularity.

Joyce studied the deformation theory of these singular SLG varieties

- Keep number and local model of singular points fixed but not their locations.
- Singular deformation theory is obstructed.
- Obstruction space depends on geometry of each SLG cone C_{i}.
\Rightarrow To understand this class of singular SL n folds need to study the geometry of SL cones.

SLG Cones and Their Links

Def n: A cone $C \subset \mathbb{C}^{n}$ is a subset invariant under all dilation.

For $\Sigma \subset \mathbb{S}^{2 n-1} \subset \mathbb{C}^{n}$, let $C(\Sigma)$ denote the cone on Σ :

$$
C(\Sigma)=\{t x: t \geq 0, x \in \Sigma\}
$$

Def n: A cone is regular if $C=C(\Sigma)$ where Σ is compact, connected, embedded and oriented submanifold of $\mathbb{S}^{2 n-1}$.

Call Σ the link of the regular cone C.
$\operatorname{Prop}^{n} \mathbf{A}: C$ is $S L G$ in \mathbb{C}^{n} (up to a phase) \qquad Σ is minimal and Legendrian in $\mathbb{S}^{2 n-1}$.

SLG cones in dimension 3

Link of a regular SLG cone is a cpt oriented Riemannian surface of genus g.

The trichotomy:

1. $g=0$. Only example is standard round \mathbb{S}^{2}
2. $g=1$

- \exists infinitely many explicit examples with cts symmetries
- Integrable systems (loop group/spectral curve) methods produce all examples

3. $g>1$

- Cts symmetry not possible
- Integrable systems methods not currently effective
- Can use geometric PDE gluing methods to construct many examples (Haskins \& Kapouleas)

SL cones in higher dimensions

Th ${ }^{m}$: (Haskins-Kapouleas 2008-9)

(i) For every $n \geq 3$ there are infinitely many topological types of special Lagrangian cone in \mathbb{C}^{n} each of which admits infinitely many geometrically distinct representatives.
(ii) For every $n \geq 5$ statement (i) also holds for Hamiltonian stationary (non SL) cones.
(iii) For every $n \geq 6$ there are infinitely many topological types of SL cone in \mathbb{C}^{n} which can occur in continuous families of arbitrarily large dimension.
(iv) For $n \geq 7$ statement (iii) also holds for Hamiltonian stationary (non SL) cones in \mathbb{C}^{n}.

Ingredients of proof:

A. Integrable systems constructions of SL T^{2} cones
B. Gluing constructions of infinitely many topological types of SL cones
C. A twisted product construction for pairs of SL cones

A: SLG T^{2} cones using integrable systems

Sharipov (1991) studied minimal Legendrian tori in \mathbb{S}^{5} using finite gap methods.

- Gave formulae for immersions in terms of theta functions associated to spectral data.
- Did not solve period conditions needed to obtain tori; so could not produce tori.
- Did not prove uniqueness of spectral data.

Minimal Legendrian surfaces in \mathbb{S}^{5} project via Hopf map $\mathbb{S}^{5} \rightarrow \mathbb{C P}^{2}$ to minimal Lagrangians. Conversely, minimal Lagrangian tori in $\mathbb{C P}^{2}$ lift (3-fold cover perhaps) to minimal Legendrian tori in \mathbb{S}^{5}.

- Minimal tori in $\mathbb{C P}^{2}$ all come from primitive harmonic maps to a flag manifold.
- McIntosh (1995-96) used this to give a spectral curve construction of these tori.
- Lagrangian condition \Rightarrow spectral curve has an extra involution.

A: SLG T^{2} cones using integrable systems
McIntosh (2003): Minimal Lagrangian tori in $\mathbb{C} P^{2}$ (up to congruence) are in bijective correspondence with certain spectral data, ($X, \lambda, \rho, \mu, \mathcal{L}$).

- X is a compact Riemann surface of even genus $g=2 p, \mathcal{L}$ is a holo line bundle on X.
- $p=0 \Rightarrow$ must get Clifford torus.
$p=1 \Rightarrow$ get S^{1}-invariant tori ($\mathrm{H}_{-} 2000$).
$p=2, \exists$ examples due to Joyce (2001).
- Spectral data gives rise to torus \Rightarrow strong restrictions on spectral data - a kind of "rationality condition".
- Not obvious that for $p>2$ there are any spectral curves giving rise to tori.

McIntosh-Carberry (2004): For each $p>2$, there exist countably many spectral curves of genus $2 p$, each yielding a p-2-dimensional real family of minimal Lagrangian tori.

- periodicity conditions don't change if we vary \mathcal{L} in Jacobian variety
- Lagrangian deformations \longleftrightarrow move \mathcal{L} in Prym

B: SL cones via gluing constructions

Th ${ }^{\mathbf{m}}$ 1: (Haskins-Kapouleas 2007)

For any $d \in \mathbb{N}$ there exist infinitely many SLG cones C with a link a surface of genus $g=$ $2 d+1$. Also true for genus 4 .

Th ${ }^{\mathbf{m}}$ 2: (Haskins-Kapouleas 2008-9)

For every $n \geq 3$ there are infinitely many topological types of special Lagrangian cone in \mathbb{C}^{n} each of which admits infinitely many geometrically distinct representatives.

- Proofs use delicate gluing techniques - singular perturbation theory for geometric PDE à la Schoen (singular Yamabe problem), Kapouleas (CMC surfaces) ...
- Links composed of large number of almost spherical regions connected to each other via small highly curved regions.
- Reminiscent of use of Delaunay surfaces to construct new CMC surfaces in \mathbb{R}^{3} by Kapouleas.

Outline of proofs of Theorems $1 \& 2$

1. Use ODE methods to construct SL analogues of Delaunay cylinders:

- highly symmetric SL necklaces w/ many almost spherical regions connected by highly curved neck regions.
- \exists finitely many topological types of necklace in each dimension.

2. Combine many SL necklaces to form topologically more complicated Legendrian submanifolds that are approximately minimal.
3. Linear theory.
(a) Understand linearization \mathcal{L} of condition that graph (f) over Σ is minimal.
(b) Understand (approx) kernel of \mathcal{L}.
(c) Understand how to compensate for the (approx) kernel of \mathcal{L}.
4. Deal with nonlinear terms.
(a) Set up iteration/ fixed point scheme.
(b) Prove nonlinear estimates to guarantee convergence.

The Building Blocks for $n=3$:
SL analogues of Delaunay cylinders in \mathbb{S}^{5}
$S O(2)$-invariant $S L$ cylinders in \mathbb{S}^{5}.
$\mathrm{SO}(2) \subset \mathrm{SO}(3)$: std $\mathrm{SO}(3)$ action on \mathbb{C}^{3} $\mathrm{SO}(2)$: stabilizer of $(1,0,0) \in \mathbb{S}^{5}$.

Thm: (H 2000) There exists a 1-parameter family of SO(2)-invariant SL cylinders

$$
X_{\tau}: \mathbb{R} \times \mathbb{S}^{1} \rightarrow \mathbb{S}^{5}
$$

interpolating between:

- a flat cylinder when $\tau=\tau_{\text {max }}$, and
- the round sphere $\mathbb{S}^{2} \backslash(\pm 1,0,0)$ when $\tau=0$.

For $\tau \sim 0, X_{\tau}$ is periodic and consists of infinitely many almost spherical regions (ASRs) connected by small highly curved necks.

For any $m \gg 0, \exists!\tau_{m} \sim 0$ s.t. $\quad X_{\tau_{m}}$ factors through an embedded SL torus with exactly m ASRs.
$\Rightarrow \quad \exists$ embedded $S L$ toroidal necklaces in \mathbb{S}^{5} with any (sufficiently large) number of almost spherical beads.

Higher dimensional building blocks I: SO $(n-1)$-invariant $S L$ cylinders in $\mathbb{S}^{2 n-1}$ $\mathrm{SO}(n-1) \subset \mathrm{SO}(n):$ std $\mathrm{SO}(n)$ action on \mathbb{C}^{n} $\mathrm{SO}(n-1)$ is stabilizer of $(1,0, \ldots, 0) \in \mathbb{S}^{2 n-1}$.

Thm: (HK 06) There exists a 1-parameter family of SO $(n-1)$-invariant SL cylinders

$$
X_{\tau}: \mathbb{R} \times \mathbb{S}^{n-2} \rightarrow \mathbb{S}^{2 n-1}
$$

interpolating between:

- a "product" cylinder $\mathbb{R} \times \mathbb{S}^{n-2}\left(\tau=\tau_{\max }\right)$,
- the round sphere $\mathbb{S}^{n-1} \backslash(\pm 1,0 \ldots, 0)(\tau=0)$.

For $\tau>0, X_{\tau}$ is periodic and for $\tau \sim 0$ consists of infinitely many almost spherical regions (ASRs) connected by small highly curved necks.

For any $m \gg 0, \exists!\tau_{m} \sim 0$ s.t. $\quad X_{\tau_{m}}$ factors through an $S L$ submfd $\mathbb{S}^{1} \times \mathbb{S}^{n-2}$ with exactly m ASRs.

Higher dimensional building blocks II:
 $\mathbf{S O}(p) \times \mathbf{S O}(q)$-invariant SL cylinders

Choose positive integers p and q, s.t. $p+q=n$. $\mathrm{SO}(p) \times \mathrm{SO}(q) \subset \mathrm{SO}(n)$: std $\mathrm{SO}(n)$ action

Thm: (HK 06) There exists a 1-parameter family of $\mathrm{SO}(p) \times \mathrm{SO}(q)$-invariant SL cylinders

$$
X_{\tau}: \mathbb{R} \times \mathbb{S}^{p-1} \times \mathbb{S}^{q-1} \rightarrow \mathbb{S}^{2 n-1}
$$

interpolating between:

- a "product" cylinder $\mathbb{R} \times \mathbb{S}^{p-1} \times \mathbb{S}^{q-1}$ when $\tau=\tau_{\text {max }}$,
- the round sphere $\mathbb{S}^{n-1} \backslash\left(\mathbb{S}^{p-1}, 0\right) \cup\left(0, \mathbb{S}^{q-1}\right)$ when $\tau=0$.
For $\tau>0, X_{\tau}$ is periodic and for $\tau \sim 0$ consists of infinitely many almost spherical regions (ASRs) connected by small highly curved necks. For any $m \gg 0, \exists!\tau_{m} \sim 0$ s.t. $X_{\tau_{m}}$ factors through an SL submfd $\mathbb{S}^{1} \times \mathbb{S}^{p-1} \times \mathbb{S}^{q-1}$ with exactly m ASRs.
\Rightarrow for fixed n get SL necklaces of type (p, q) with any (suff large) number of almost spherical beads.

Geometry of SL cylinders.

I. $S O(n-1)$-invariant SL cylinders:

- for $\tau \sim 0$ curvature of X_{τ} blows up near 2 antipodal points $\pm e_{1}$.
- Near $\pm e_{1}, X_{\tau} \sim$ Lagrangian catenoid in \mathbb{C}^{n-1}.
II. $S O(p) \times S O(q)$-invariant SL cylinders:
- for $\tau \sim 0$ curvature blows along an orthogonal generalized Hopf link

$$
\left(\mathbb{S}^{p-1}, 0\right) \cup\left(0, \mathbb{S}^{q-1}\right) .
$$

- Now have 2 types of highly curved region:
(a) near $\left(\mathbb{S}^{p-1}, 0\right) X_{\tau}$ resembles
$\mathbb{S}^{p-1} \times$ Lagn catenoid in \mathbb{C}^{q}
(b) near $\left(0, \mathbb{S}^{q-1}\right) X_{\tau}$ resembles

Lagn catenoid in $\mathbb{C}^{p} \times \mathbb{S}^{q-1}$

Adjacent spheres in necklace as $\tau \rightarrow 0$.
Case I: consecutive spheres meet at a point.
Case II: consecutive spheres meet along an equatorial sphere of dimension $p-1$ or $q-1$

Construction of initial submanifolds

Basic idea: fuse a finite number of SL necklaces at one common central sphere.

Initial configuration determined by

1. type (p, q) of SL necklaces used
2. position of attachment sets on central sphere
3. number of beads in SL necklace

To simplify treatment of approximate kernel look only at "maximally symmetric" configurations.
\Rightarrow
A. only use one necklace type per construction and same number m of beads for all fused necklaces
B. attachment sets must be highly symmetrically arranged

Describe two families of gluing constructions A. using type ($1, n-1$) necklaces,

- each attachment set is pair of antipodal pts B. using type (p, p) necklaces
- each attachment set is an orthogonal generalized Hopf link

Attachment sets Δ in case A :

(i) $\Delta \subset \mathbb{S}^{1} \subset \mathbb{S}^{n-1} \subset \mathbb{S}^{2 n-1}$
$\Delta=$ vertices of regular g-gon, g odd plus all its antipodal points.
(ii) $\Delta \subset \mathbb{S}^{k-1} \subset \mathbb{S}^{n-1} \subset \mathbb{S}^{2 n-1}$
$\Delta=$ vertices of a regular k-simplex plus all its antipodal points.

Attachment sets Δ in case B :

$$
\begin{gathered}
\Delta=\Delta_{0} \cup \ldots \cup \Delta_{g-1}, \quad g \text { odd } \\
\Delta_{0}=\left(\mathbb{S}^{p-1}, 0\right) \cup\left(0, \mathbb{S}^{p-1}\right) \\
\Delta_{k}=\left(R_{g}\right)^{k} \Delta_{0}
\end{gathered}
$$

where

$$
R_{g}=\left(\begin{array}{ll}
\cos (2 \pi / g) I d_{p} & \sin (2 \pi / g) I d_{p} \\
-\sin (2 \pi / g) I d_{p} & \cos (2 \pi / g) I d_{p}
\end{array}\right)
$$

B: Main Gluing Theorem

Thm: (HK 08-09) For any m sufficiently large the initial Legn submfds constructed using the attachment sets Δ described above and SL necklaces with m beads can be corrected to be special Legendrian.

Cor: For any $n \geq 3 \exists$ infinitely many topological types of SL cone in \mathbb{C}^{n} each of which has infinitely many geometrically distinct representatives.

Source of main technical difficulties in proof:

1. Initial submfds contain $\sim g m$ almost spherical regions where g is number of necklaces fused.
2. Each ASR contributes

$$
\operatorname{dim}(S U(n))-\operatorname{dim}(S O(n))
$$

small eigenvalues to \mathcal{L}
3. Construction works for m large.
$1-3 \Rightarrow$ linearization \mathcal{L} has huge approx kernel.

C: Twisted products of SL cones

Product cones: C_{1}, C_{2} regular cones in $\mathbb{C}^{p}, \mathbb{C}^{q}$ \Rightarrow

- $C_{1} \times C_{2} \subset \mathbb{C}^{p} \times \mathbb{C}^{q}$ also a cone,
- C_{i} both Lagn cones $\Rightarrow C_{1} \times C_{2}$ also Lagn
- C_{i} both SL cones $\Rightarrow C_{1} \times C_{2}$ also SL

But $\Sigma_{1,2}$ the link of $C_{1} \times C_{2}$ is singular.

$$
\Sigma_{1,2}=\left\{\cos t \Sigma_{1}, \sin t \Sigma_{2}\right\} \subset \mathbb{S}^{2(p+q)-1}
$$

Map from $\left[0, \frac{\pi}{2}\right] \times \Sigma_{1} \times \Sigma_{2} \rightarrow \Sigma_{1,2}$ given by

$$
\left(t, \sigma_{1}, \sigma_{2}\right) \mapsto\left(\cos t \sigma_{1}, \sin t \sigma_{2}\right)
$$

fails to be immersion at $t=0$ and $t=\frac{\pi}{2}$.

- near $t=0$ link singularity looks like $\Sigma_{1} \times C_{2}$
- near $t=\frac{\pi}{2}$ singularity looks like $C_{1} \times \Sigma_{2}$

Twisted product cones: look for deformations of $C_{1} \times C_{2}$ to a regular SL cone.

C: Twisted products of SL cones

If $w=\left(w_{1}, w_{2}\right): I \rightarrow \mathbb{S}^{3} \subset \mathbb{C}^{2}$ define the w twisted product of Σ_{1} with Σ_{2} by

$$
\left(t, \sigma_{1}, \sigma_{2}\right) \rightarrow\left(w_{1}(t) \sigma_{1}, w_{2}(t) \sigma_{2}\right)
$$

Lemma: If w is a Legendrian curve in \mathbb{S}^{3} and Σ_{1}, Σ_{2} are both Legendrian then away from zeros of w_{i} the w-twisted product $\Sigma_{1} *_{w} \Sigma_{2}$ is also Legendrian with phase $e^{i \theta}$ given by

$$
(-1)^{p-1} e^{i \theta_{1}} e^{i \theta_{2}} e^{i \theta_{w}+i(p-1) \arg w_{1}+i(q-1) \arg w_{2}}
$$

where θ_{i}, θ_{w} are Lagn phases of Σ_{i} and w
Defn: A Legn curve w in \mathbb{S}^{3} is a (p, q)-twisted SL curve if its phase satisfies

$$
e^{i \theta_{w}}=(-1)^{p-1} e^{-i(p-1) \arg w_{1}-i(q-1) \arg w_{2}}
$$

Cor: If Σ_{i} are both $S L$ then the w-twisted product is $\mathrm{SL} \Longleftrightarrow w$ is a (p, q)-twisted SL curve.

Main point: want to find closed (p, q)-twisted SL curves.

C: Twisted products of SL cones

Prop: Any curve $w: I \rightarrow \mathbb{C}^{2}$ satisfying

$$
\bar{w}_{1} \dot{w}_{1}=-\bar{w}_{2} \dot{w}_{2}=(-1)^{p} \bar{w}_{1}^{p} \bar{w}_{2}^{q},
$$

with initial condition $|w(0)|=1$, is a (p, q) twisted SL curve in \mathbb{S}^{3}.
Conversely, any (p, q)-twisted SL curve in \mathbb{S}^{3} containing no points with $w_{i}(t)=0$ admits a parametrization satisfying these ODEs.

Thm: (HK 08) Up to symmetry \exists a 1-parameter family of (p, q)-twisted SL curves w_{τ}. For a countable dense set of values of τ these curves are closed.

Cor: HK 08 (i) There exist infinitely many topological types of SL cone in \mathbb{C}^{n} for $n \geq 3$, each of which admits infinitely many distinct geometric representatives.
(ii) For every $n \geq 6$ there are infinitely many topological types of SL cone in \mathbb{C}^{n} which can occur in continuous families of arbitrarily large dimension.

Proof: (needs gluing results in $n=3$ and integrable systems construction of families of SL 2-tori)
(i) For $n=4$ any closed (1,3)-twisted SL curve and any $S L$ surface in \mathbb{S}^{5} give rise to a $S L$ submanifold of \mathbb{S}^{7} with link $\mathbb{S}^{1} \times \Sigma$.

For $n>4$ any closed ($n-3,3$)-twisted SL curve, any $S L$ surface Σ in \mathbb{S}^{5} and any $S L$ submfd $\Sigma_{2(n-3)}$ in $\mathbb{S}^{2(n-3)-1}$ (e.g. the equatorial sphere) gives rise to a SL submfd of $\mathbb{S}^{2 n-1}$ with link $\mathbb{S}^{1} \times \Sigma \times \Sigma_{2(n-3)}$.
(ii) To get infinitely many top types of SL cones that come in at least a p dimensional cts family of SL cones for $n \geq 6$:

Take any closed ($n-3,3$)-twisted SL curve, Σ to be any SL T^{2} of sufficiently high spectral curve genus and $\Sigma_{2(n-3)}$ to be any of the infinitely many top types of SL cones already constructed in \mathbb{C}^{n-3}
\Rightarrow get at least at p-diml cts family of SL submfds of $\mathbb{S}^{2 n-1}$ with topology $\mathbb{S}^{1} \times T^{2} \times \Sigma_{2(n-3)}$.

