Recent progress in the value distribution

 of the hyperbolic Gauss mapYu Kawakami
Kyushu university and OCAMI

December 18, 2008
"Riemann Surfaces, Harmonic Maps and Visualization"

§ 1. Introduction: Value distribution thoery

The little Picard theorem

A noncostant meromorphic function on \mathbb{C} can omit at most 2 values in the Riemann sphere $\widehat{\mathbb{C}}:=\mathbb{C} \cup\{\infty\}$.
※ " 2 " is the best possible because $f(z)=e^{z}$ omits 0 and ∞.

Ahlfors showed that
"The geometric meaning of 2 is the Euler number of $\widehat{\mathbb{C}}$ " by using the Nevanlinna theory.

Theorem (Ahlfors)
$f: \mathbb{C} \rightarrow N$: a nonconstant holomorphic map
(1) If N is the Riemann sphere, then f can omit at most " 2 " values.
(2) If N is the 1-dimensional complex torus, then f is surjective, that is, omit " 0 " values.
(3) If N is the closed Riemann surface with $\gamma \geq 2, f$ does not exist.

\star The goal of our talk

The upper bound of the number of exceptional values of the hyperbolic Gauss map of (CMC-1 and flat) surfaces in the hyperbolic 3 -space represents the topological data of Riemann surfaces.
§ 2. Preliminaries: The hyperbolic 3-space \mathbb{H}^{3}
\mathbb{R}_{1}^{4} : the Lorentz-Minkowski 4-space with the Lorentz metric

$$
\left\langle\left(x_{0}, x_{1}, x_{2}, x_{3}\right),\left(y_{0}, y_{1}, y_{2}, y_{3}\right)\right\rangle=-x_{0} y_{0}+x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

Then the hyperbolic 3-space
$\mathbb{H}^{3}=\left\{\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}_{1}^{4} \mid-\left(x_{0}\right)^{2}+\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}+\left(x_{3}\right)^{2}=-1, x_{0}>0\right\}$ with the induced metric from \mathbb{R}_{1}^{4}, which is a simply connected Riemannian 3-manifold with constant sectional curvature -1 .

The Hermite model of \mathbb{H}^{3}

We identify \mathbb{R}_{1}^{4} with the set of 2×2 Hermitian matrices Herm(2)= $\left\{X^{*}=X\right\}\left(X^{*}:={ }^{t} \bar{X}\right)$ by

$$
\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \longleftrightarrow\left(\begin{array}{cc}
x_{0}+x_{3} & x_{1}+i x_{2} \\
x_{1}-i x_{2} & x_{0}-x_{3}
\end{array}\right) .
$$

In this identification, \mathbb{H}^{3} is represented as

$$
\mathbb{H}^{3}=\left\{a a^{*} \mid a \in S L(2, \mathbb{C})\right\}
$$

(i.e. $\left.\mathbb{H}^{3}=S L(2, \mathbb{C}) / S U(2)\right)$ with the metric

$$
\langle X, Y\rangle=-\frac{1}{2} \operatorname{trace}(X \tilde{Y}), \quad\langle X, X\rangle=-\operatorname{det}(X),
$$

where \tilde{Y} is the cofactor matrix of Y.

- Bryant representation formula for CMC-1 surfaces

Theorem (Bryant, Umehara-Yamada)
\widetilde{M} : a simply connected Riemann surf. with a reference point $z_{0} \in \widetilde{M}$.
g : a meromorphic function
ω : a holomorphic one-form on \widetilde{M} such that

$$
d s^{2}=\left(1+|g|^{2}\right)^{2}|\omega|^{2}
$$

is a Riemann metric on \widetilde{M}.
Take a holom. imm. $F=\left(F_{i j}\right): \widetilde{M} \rightarrow S L(2, \mathbb{C})$ satisfying $F\left(z_{0}\right)=i d$ and

$$
F^{-1} d F=\left(\begin{array}{cc}
g & -g^{2} \\
1 & -g
\end{array}\right) \omega .
$$

Then $f: \widetilde{M} \rightarrow \mathbb{H}^{3}$ defined by

$$
f=F F^{*}, \quad\left(F^{*}:={ }^{t} \bar{F}\right),
$$

is a CMC-1 surface in \mathbb{H}^{3} and the induced metric of f is $d s^{2}$.
The converse is OK!

Definition

(a) The mero. fct. g is called a secondary Gauss map of f.
(b) The pair (g, ω) is called Weierstrass data of f
(c) The holom. 2-diff. $Q=\omega d g$ is called the Hopf differential of f.
(d) F is called a holom. null lift of f. ("null" means $\operatorname{det}\left(F^{-1} d F\right)=0$))
※ Remark
$f: M \rightarrow \mathbb{H}^{3}$: a CMC-1 surface of a (not necessarily simply connected) Riemann surface M.
The holom. null lift F is defined only the universal cover \widetilde{M} of M. So the W-data (g, ω) is not single-valued on M.

However, the hyperbolic Gauss map and the Hopf differential of f are well-defined on M and have geometric meanings.

- The hyperbolic Gauss map of CMC-1 surfaces.
$f: M \rightarrow \mathbb{H}^{3}:$ a CMC-1 surface, $F: \widetilde{M} \rightarrow \mathbb{H}^{3}$: its holom. null lift The hyperbolic Gauss map G of f is defined by,

$$
G=\frac{d F_{11}}{d F_{21}}=\frac{d F_{12}}{d F_{22}}, \quad \text { where } F(z)=\left(\begin{array}{ll}
F_{11}(z) & F_{12}(z) \\
F_{21}(z) & F_{22}(z)
\end{array}\right)
$$

Geometric meaning of G
Identifying the ideal boundary \mathbb{S}_{∞}^{2} of \mathbb{H}^{3} with $\widehat{\mathbb{C}}$. Then, G sends each $p \in M$ to the point $G(p)$ at \mathbb{S}_{∞}^{2} reached by the oriented normal geodesics of \mathbb{H}^{3} that starts at $f(p)$.
In particular, G is a meromorphic function on M !

- The dual surface f^{\sharp} of f

The inverse matrix F^{-1} is also a holomorphi null immersion. Thus it produces a new CMC-1 surface $f^{\sharp}=F^{-1}\left(F^{-1}\right)^{*}: \widetilde{M} \rightarrow \mathbb{H}^{3}$, the surface is called the dual of f.
By definition, we can define the W-data ($g^{\sharp}, \omega^{\sharp}$) of f^{\sharp}.
Theorem (Umehara-Yamada)

$$
g^{\sharp}=G, \quad \omega^{\sharp}=-\frac{Q}{d G}, \quad Q^{\sharp}=-Q, \quad G^{\sharp}=g .
$$

So this duality between f and f^{\sharp} interchanges the roles of the hyperbolic Gauss map and secondary Gauss map.
We call the pair (G, ω^{\sharp}) the dual Weierstrass data of f.

The induced metric $d s^{2 \sharp}$ of f^{\sharp} is given by

$$
d s^{2 \sharp}=\left(1+\left|g^{\sharp}\right|^{2}\right)^{2}\left|\omega^{\sharp}\right|^{2}=\left(1+|G|^{2}\right)^{2}\left|\frac{Q}{d G}\right|^{2} .
$$

We call the metric $d s^{2 \sharp}$ the dual metric of f.
Since the dual metric $d s^{2 \sharp}$ is single-valued on M, we can define the dual total absolute curvature

$$
\operatorname{TA}\left(f^{\sharp}\right):=\int_{M}\left(-K^{\sharp}\right) d A^{\sharp}=\int_{M} \frac{4|d G|^{2}}{\left(1+|G|^{2}\right)^{2}},
$$

$K^{\sharp}(\leq 0)$: the Gaussian curvature of $d s^{2 \#}$
$d A^{\sharp}$: the area element of $d s^{2 \sharp}$
$\Rightarrow \mathrm{TA}\left(f^{\sharp}\right)$ is the area of G on $\widehat{\mathbb{C}}$.

- The definition of algebraic CMC-1 surfaces

When the dual total absolute curvature of a complete CMC-1 surface is finite, the surface is called an algebraic CMC-1 surface.
Theorem (Braynt, Huber, Z.Yu)
An algebraic CMC-1 surface $f: M \rightarrow \mathbb{H}^{3}$ satisfies:
(i) M is biholomorphic to $\bar{M}_{\gamma} \backslash\left\{p_{1}, \ldots, p_{k}\right\}$, where \bar{M}_{γ} is a closed

Riemann surface of genus γ and $p_{j} \in \bar{M}_{\gamma}(j=1, \ldots, k)$.
(ii) The dual W-data (G, ω^{\sharp}) can be extended meromorphically to \bar{M}_{γ}.
※ Remark
Theorem (Umehara-Yamada, Z.Yu)
The $d s^{2 \sharp}$ is complete (nondeg.) $\Leftrightarrow d s^{2}$ is complete (nondeg.)
§ 3. Main result: Ramification estimate for G

Main Result (1) (Ka,2008)
$f: M=\bar{M}_{\gamma} \backslash\left\{p_{1}, \ldots, p_{k}\right\} \rightarrow \mathbb{H}^{3}$ a non-flat algebraic CMC-1 surface.
d : the degree of G considered as a map on \bar{M}_{γ}.
$a_{1}, \ldots, a_{q} \in \widehat{\mathbb{C}}$
For each $a_{j} \in \widehat{\mathbb{C}}, \nu_{j}$: the minimum of the multiplicity of G at $G^{-1}\left(a_{j}\right)$. (If a_{j} is the exceptional value of G, then $\nu_{j}=\infty$.)
Then we have

$$
\sum_{j=1}^{q}\left(1-\frac{1}{\nu_{j}}\right) \leq 2+\frac{2}{R}, \quad \frac{1}{R}=\frac{\gamma-1+k / 2}{d}<1
$$

Corollary (Ka, 2008)
The hyperbolic Gauss map of a non-flat algebraic CMC-1 surface can omit at most 3 values.

※ Remark

However, we do not know the best possible upper bound of the excep. values of G. (The Osserman problem for the hyperbolic Gauss map) (The case of " 2 ")

- The hyperbolic Gauss map of a catenoid cousin omits 2 values. In fact, the surface $f: M=\mathbb{C} \backslash\{0\} \rightarrow \mathbb{H}^{3}$ is given by

$$
g=\frac{1-l^{2}}{4 l} z^{l}, \quad Q=\frac{1-l^{2}}{4 z^{2}} d z^{2}, \quad G=z
$$

where $l(\neq 1)$ is a positive number.

- For some special topological cases, we show that 2 is the best possible upper bound. (Ka, 2008)
- Geometric meaning of the upper bound
" $2+2 / R$ " has the following geometric meaning:
(1) The geometric meaning of " 2 " is the Euler number of $\widehat{\mathbb{C}}$.
(2) The geometric meaning of " $1 / R$ " is as follows:

If the universal cover of $M=\bar{M}_{\gamma} \backslash\left\{p_{1}, \ldots, p_{k}\right\}$ is the unit disk \mathbb{D}, $A_{\text {hyp }}(M)$: the area of M w.r.t. the hyperbolic metric on \mathbb{D} $A_{F S}(M)$: the area of M w.r.t. the induced metric $G^{*} \omega_{F S}$ then

$$
\frac{1}{R}=\frac{\gamma-1+k / 2}{d}=\frac{A_{h y p}(M)}{A_{F S}(M)}
$$

- Proof of Ramification estimate
\star Point 1. $R^{-1}<1$ (Osserman-type inequality)
$\omega^{\sharp}(=-Q / d G)$ is well-defined on $M=\bar{M}_{\gamma} \backslash\left\{p_{1}, \ldots, p_{k}\right\}$.
(1) $d s^{2 \sharp}$ is nondegenerate $\Leftrightarrow\left(\omega^{\sharp}\right)_{0}=2(g)_{\infty}$
(2) $d s^{2 \sharp}$ is cplt $\Leftrightarrow \omega^{\sharp}$ has a pole at each $p_{j} \Leftrightarrow \mu_{j}{ }^{\sharp}-d_{j} \geq 1$
($\mu_{j}{ }^{\sharp} \in \mathbb{Z}$ is the branching order of G at p_{j} and $d_{j}:=\operatorname{ord}_{p_{j}} Q$)
Applying the Riemann-Roch formula to ω^{\sharp} on \bar{M}_{γ}, we obtain

$$
2 d-\sum_{j=1}^{k}\left(\mu_{j}^{\sharp}-d_{j}\right)=2 \gamma-2 .
$$

Umehara and Yamada showed that $\mu_{j}^{\sharp}-d_{j} \geq 2$. Thus we get

$$
d=\gamma-1+\frac{1}{2} \sum_{j=1}^{k}\left(\mu_{j}^{\sharp}-d_{j}\right)>\gamma-1+\frac{k}{2} \text {, s.t. } R^{-1}<1 .
$$

\star Point 2. $\sum_{j=1}^{q}\left(1-\frac{1}{\nu_{j}}\right) \leq 2+\frac{2}{R}$ (Ka-Kobayashi-Miyaoka inequality) G omits r_{0} values
n_{0} : the sum of the branching orders at the inverse image of these exceptional values of G
Then

$$
k \geq d r_{0}-n_{0} \Leftrightarrow r_{0} \leq \frac{n_{0}+k}{d}
$$

G has l_{0} totally ramified values which are not exceptional values.

$$
d l_{0}-n_{r} \leq \sum_{i=1}^{l_{0}} \frac{d}{\nu_{i}} \Leftrightarrow l_{0}-\sum_{i=1}^{l_{0}} \frac{1}{\nu_{i}} \leq \frac{n_{r}}{d}
$$

n_{G} : the total branching order of G on \bar{M}_{γ}
Then applying the Riemann-Hurwitz theorem to the meromorphic function G on \bar{M}_{γ}, we obtain

$$
n_{G}=2(d+\gamma-1)
$$

Therefore

$$
\sum_{j=1}^{q}\left(1-\frac{1}{\nu_{j}}\right) \leq \frac{n_{0}+k+n_{r}}{d} \leq \frac{n_{G}+k}{d} \leq 2+\frac{2}{R}
$$

§4. Further Topic:

The hyperbolic Gauss map of flat fronts in \mathbb{H}^{3}
The hyperbolic Gauss map in \mathbb{H}^{3}
For each $p \in M, \exists\left(G(p), G_{*}(p)\right) \in \widehat{\mathbb{C}} \times \widehat{\mathbb{C}}$ a pair of distinct points on \mathbb{S}_{∞}^{2} s.t. the geod. in \mathbb{H}^{3} starting from $G^{*}(p)$ toward $G(p)$ coincides with the oriented normal geodesic at $f(p)$.
Fact 1. (Kokubu-Takahashi-Umehara-Yamada)
If the surface(or front) in \mathbb{H}^{3} is flat, then G and G_{*} are holomorphic.
Fact 2. (Ossreman type inequality, Kokubu-Umahara-Yamada)
A cplt flat front $f: \bar{M}_{\gamma} \backslash\left\{p_{1}, \ldots, p_{k}\right\} \rightarrow \mathbb{H}^{3}$ with regular ends satisfies the inequality

$$
\operatorname{deg} G+\operatorname{deg} G_{*} \geq k
$$

where $\operatorname{deg} G\left(\operatorname{deg} G_{*}\right)$ is the degree of the holom. map $G\left(G_{*}\right): \bar{M}_{\gamma} \rightarrow \widehat{\mathbb{C}}$

Main Result (2) (Ka, 2008 NEW)

$f: \bar{M}_{\gamma} \backslash\left\{p_{1}, \ldots, p_{k}\right\} \rightarrow \mathbb{H}^{3}$: a cplt flat front with regular ends If G omits p values and G^{*} omits q values, then $p \leq 2$ or $q \leq 2$ or

$$
\frac{1}{p-2}+\frac{1}{q-2} \geq \frac{k}{2 \gamma-2+k}
$$

※ The inequality is similar to the case of the Gauss map of minimal surfaces in \mathbb{R}^{4}. (Fujimoto, Ka 2008)

Corollary (Ka, 2008 NEW)
($\gamma=0$) If $p \geq 4$ and $q \geq 4$, then f is horosphere.
$(\gamma=1)$ If $p \geq 5$ and $q \geq 5$, then f is horosphere.
($\gamma \geq 2$)
?

Thank you very much! Let's enjoy the dinner time!!

