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Lagrangian surfaces

Consider R4 with canonical complex structure J such that
ω(., .) =< J., . > where < ., . > is the scalar product on
R4 and ω the standard symplectic form.

V ∈ Lag(R4) Lagrangian subspace if and only if ω|V = 0.

An immersion f : M → R4 of a Riemann surface M into
R4 = C2 is called Lagrangian if f ∗ω = 0.

The Gauss map γ of a Lagrangian immersion has values in
the space of Lagrangian subspaces Lag(R4):

γ : M → Lag(R4) .
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Lagrangian angle and Maslov form

U(2) operates on Lag(R4)

Lag(R4) = U(2)/S0(2)

thus we can define

s = det ◦γ : M → S1.

The Lagrangian angle β is the lift of s to the universal cover:

s = e iβ .

Moreover, when M = T 2 = C/Γ is a 2-torus,

β(z) = 2π < β0, z >

where β0 ∈ Γ∗ ⊂ C is called the Maslov form.
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Variational problems

Consider Hamiltonian stationary Lagrangians (HSL), that is
immersions f : M → C2 which are critical points of the area
functional

A(f ) =

∫
M
|df |2

under variations by Hamiltonian vector fields.

Fact: f : M → C2 is Hamiltonian stationary Lagrangian if and
only if its Lagrangian angle map β is harmonic.
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Results

Oh: first and second variational formulae of the area
functional

Oh’s conjecture: Clifford torus minimizes the area in its
Hamiltonian isotopy class

Ilmanen, Anciaux: if there exists a smooth minimizer, it
has to be the Clifford torus.

Castro, Chen, Urbano: non-trivial examples.

Helein-Romon: complete description of HSL tori by
Fourier polynomials; frequencies lie on a circle whose
radius is governed by the Maslov class.
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Left normal of a HSL surface

Let f : M → R4 be a conformal immersion. Then the Gauss
map of f is given by

(N,R) : M → S2 × S2 = Gr2(R4) .

Helein-Romon: f Hamiltonian stationary Lagrangian iff the left
normal N : M → S1 of f takes values in S1 and is harmonic.
In fact, identifying R4 = H we can write

df = e
jβ
2 dz g

and the left normal
N = e jβ i

satisfies ∗df = Ndf .
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Spectral curves

Helein-Romon: family of flat connections

dλ = λ−2α−2 + λ−1α−1 + α0 + λα1 + λ2α2

where αj lie in the eigenspaces of an order 4 autmorphism
of the Lie algebra of the group of symplectic isometries of
R4.

(McIntosh-Romon) Associate minimal polynomial Killing
field to define a spectral curve of f .

Gives all weakly conformal Hamiltonian stationary
Lagrangian tori

Gives Hamiltonian stationary Lagrangian tori with branch
points and ”no” control on the branch locus.
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Spectral curves

HSL tori f : T 2 → R4 are conformal: have multiplier
spectral curve (Schmidt, Taimanov, Bohle-L-Pedit-Pinkall)

The left normal of a HSL torus N : T 2 → S1 is harmonic:
have spectral curve of the harmonic left normal (Hitchin).
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The family of flat connections

A map N : M → S2 ⊂ Im H is harmonic if and only if the
family of complex connections

dµ = d + (µ− 1)A1,0 + (µ−1 − 1)A0,1

on the trivial bundle H is flat, where A = 1
4 (∗dN + NdN) and

µ ∈ C∗.

Here C = span{1, I} where the complex structure I on H is
defined by right multiplication by i .
Moreover, for ω ∈ Ω1

ω1,0 =
1

2
(ω − I ∗ ω), ω0,1 =

1

2
(ω + I ∗ ω)

denote the (1, 0) and (0, 1) parts with respect to the complex
structure I .
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The spectral curve of a harmonic map [Hitchin]

Let N : M → S2 and dµ the associated family of flat
connections.

If M = C/Γ is a 2-torus, the parallel sections α ∈ Γ(H) of
dµ with multiplier, that is

γ∗α = αhγ , γ ∈ Γ, hγ ∈ C∗,C = span{1, i},

are the eigenvectors of the monodromy of dµ.

The spectral curve Σe of N : T 2 → S2 is the
normalization of

Eig := {(µ, h) | ∃α : dµα = 0, γ∗α = αhγ , γ ∈ Γ}
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The eigenline bundle [Hitchin]

Let N : M → S2 and dµ the associated family of flat
connections.

Generically, the space of parallel sections of dµ with a
given multiplier is 1-dimensional, and one obtains the
eigenline bundle E → Σe .

The harmonic map can be reconstructed by linear flow in
the Jacobian of Σe .
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The spectral curve of the left normal

Let f : T 2 → C2 be a Hamiltonian stationary Lagrangian torus
with harmonic left normal N and family of flat connections dµ.

Theorem (L-Romon, Moriya)

All parallel sections with multiplier can be computed explicitely:

αµ± = e j β
2 (1∓ k

√
µ−1)e±2π(<Aµ,.>+i<Cµ,.>)

with Aµ = iβ0
4 (
√
µ−1 −√µ), Cµ = β0

4 (
√
µ−1 +

√
µ).
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The spectral curve of the left normal

Lef f : T 2 → C2 be a Hamiltonian stationary Lagrangian torus
with spectral curve Σe of its harmonic left normal N.

Theorem (L-Romon)

Σe compactifies with Σ̄e = CP1.

µ : Σ̄e → CP1, (µ, h) 7→ µ is a 2-fold covering, branched
over 0,∞.

The eigenline bundle E extends holomorphically to Σ̄e .

Let J ∈ Γ(End(H)), J2 = −1, be the complex structure
given by the quaternionic extension of

J|Ex∞ = I |Ex∞ , µ(x∞) =∞ .

Then J is in fact the complex structure given by left
multiplication by N.
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multiplication by N.
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µ-Darboux transforms

Let f : M → C2, be a Hamiltonian stationary Lagrangian torus
with harmonic left normal N.

Theorem (L-Romon)

Let α ∈ Γ(H) be a parallel section of dµ and put

T−1 =
1

2
(Nα(a− 1)α−1 + αbα−1)

a = µ+µ−1

2 , b = i µ
−1−µ

2 .
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µ-Darboux transforms

Let f : M → C2, be a Hamiltonian stationary Lagrangian torus
with harmonic left normal N.

Theorem (L-Romon)

Let α ∈ Γ(H) be a parallel section of dµ and put

T−1 =
1

2
(Nα(a− 1)α−1 + αbα−1)

a = µ+µ−1

2 , b = i µ
−1−µ

2 .
Then

N̂ = −TNT−1

is a harmonic map N̂ : M → S2 of M into the 2-sphere.
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µ-Darboux transforms

Let f : M → C2, be a Hamiltonian stationary Lagrangian torus
with harmonic left normal N.

Theorem (L-Romon)

Let α be a parallel section with multiplier and put

T−1 =
1

2
(Nα(a− 1)α−1 + αbα−1)

a = µ+µ−1

2 , b = i µ
−1−µ

2 .

Katrin Leschke HSL tori



HSL tori

Katrin
Leschke

HSL in C2

HSL tori

The Hitchin
spectral curve

µ-Darboux
transforms

The multiplier
spectral curve

Darboux
transforms

µ-Darboux transforms

Let f : M → C2, be a Hamiltonian stationary Lagrangian torus
with harmonic left normal N.

Theorem (L-Romon)

Let α be a parallel section with multiplier and put

T−1 =
1

2
(Nα(a− 1)α−1 + αbα−1)

a = µ+µ−1

2 , b = i µ
−1−µ

2 .

Then T−1 is again globally defined and

N̂ = −TNT−1

is a harmonic map N̂ : M → S2 from M into the 2-sphere.
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µ-Darboux transforms

Let f : T 2 → C2, be a Hamiltonian stationary Lagrangian torus

with harmonic left normal N and df = e
jβ
2 dzg .

Theorem (L-Romon)

If α ∈ Γ(H) is a parallel section with multiplier, than N̂ is the
left normal of a HSL torus

f̂ = f + TH−1,

where H = πg−1β̄0e
jβ
2 k.

We call f̂ a µ-Darboux transform of f .
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µ-Darboux transforms

Remark

Locally, a µ-Darboux transform is always at least
constrained Willmore .

A similar theorem holds both for µ-Darboux transforms of
CMC tori (Carberry-L-Pedit), and (constrained) Willmore
tori (Bohle).
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µ-Darboux transforms

Remark

The µ-Darboux transformation is a generalization of the
classical Darboux transformation.

f ] is called a classical Darboux transformation of f if there
exists a sphere congruence enveloping f and f ].

The µ-Darboux transformation satisfies a weaker
enveloping condition.
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Special cases

For special parameter µ the transform on the left normal is
trivial

:

if µ ∈ S1 then N̂ = −N.

if µ > 0 then N̂ = N.

Question: Is f̂ for µ > 0 the orginal HSL torus?

More generally, does the Lagrangian angle β determine f ?

What is the condition for the existence of a HSL torus with
Lagrangian angle β?
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For special parameter µ the transform on the left normal is
trivial:

if µ ∈ S1 then N̂ = −N.

if µ > 0 then N̂ = N.

Question: Is f̂ for µ > 0 the orginal HSL torus?

More generally, does the Lagrangian angle β determine f ?

What is the condition for the existence of a HSL torus with
Lagrangian angle β?
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Holomorphic sections with multiplier

Recall: A Hamiltonian stationary Lagrangian immersion f has
Lagrangian angle β ⇐⇒ ∗df = Ndf with N = e jβ i .

The operator D : Γ(H)→ Γ(K̄H)

D :=
1

2
(d + J ∗ d)

is a (quaternionic) holomorphic structure where the complex
structure J on H is given by left multiplication by N.

Note: dµα = 0 =⇒ Dα = 0.
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Holomorphic sections with multiplier

Recall: A Hamiltonian stationary Lagrangian immersion f has
Lagrangian angle β ⇐⇒ ∗df = Ndf with N = e jβ i .

The operator D : Γ(H)→ Γ(K̄H)

D :=
1

2
(d + J ∗ d)

is a (quaternionic) holomorphic structure where the complex
structure J on H is given by left multiplication by N.

Goal: given N = e jβ i find all holomorphic sections α ∈ ker D.

Note: dµα = 0 =⇒ Dα = 0.
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Holomorphic sections with multiplier

Recall: A Hamiltonian stationary Lagrangian immersion f has
Lagrangian angle β ⇐⇒ ∗df = Ndf with N = e jβ i .

The operator D : Γ(H)→ Γ(K̄H)

D :=
1

2
(d + J ∗ d)

is a (quaternionic) holomorphic structure where the complex
structure J on H is given by left multiplication by N.

Goal: given N = e jβ i find all holomorphic sections α with
multiplier, that is α ∈ ker D with γ∗α = αhγ , γ ∈ Γ.

Note: dµα = 0 =⇒ Dα = 0.
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Holomorphic sections with multiplier

Let f : C/Γ→ R4 be a Hamiltonian stationary torus. For
(A,B) ∈ C2 consider

|δ − B|2 − |A|2 =
|β0|2

4
, < A, δ − B >= 0 (1)

with δ ∈ Γ∗ + β0
2 .

Denote by

Γ∗A,B = {δ ∈ Γ∗ +
β0

2
| δ satisfies (1)}

the set of admissible frequencies.
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Let f : C/Γ→ R4 be a Hamiltonian stationary torus. For
(A,B) ∈ C2 consider

|δ − B|2 − |A|2 =
|β0|2

4
, < A, δ − B >= 0 (1)

with δ ∈ Γ∗ + β0
2 . Denote by
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2
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Holomorphic sections with multiplier

Let f : C/Γ→ R4 be a Hamiltonian stationary torus, and D
the quaternionic holomorphic structure given by the complex
structure J.

Theorem (L-Romon)

Multipliers of holomorphic sections are exactly given by

hA,B = e2π(<A,·>−i<B,·>)

with Γ∗A,B 6= ∅.

For δ ∈ Γ∗A,B

αδ = e
jβ
2 (1− kλδ)e2π(<A,·>+<δ−B,·>)

with λδ ∈ C∗ is a (monochromatic) holomorphic section.
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HSL tori with prescribed Lagrangian angle
[Helein-Romon, L-Romon]

Let Γ be a lattice in C, and let β0 ∈ Γ∗. Then β = 2π < β0, >
is a Lagrangian angle of a Hamiltonian stationary torus f if and
only if

Γ∗0,0 ) {±β0

2
}

In this case, all HSL tori with Lagrangian angle β are (up to
translation) of the form

f =
∑

δ∈Γ∗0,0\{±
β0
2
}

αδmδ, mδ ∈ C .
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Holomorphic sections with multiplier

Theorem (L-Romon)

Every holomorphic section with multiplier hA,B is given by

α =
∑
δ∈Γ∗A,B

αδmδ

mδ ∈ C.

|Γ∗A,B | = 1 away from a discrete set of pairs (A,B).
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The multiplier spectral curve

Let Spec := {h | ∃α ∈ ker D : γ∗α = αhγ , γ ∈ Γ}, and Σ its
normalization.

Then there exists a line bundle L such that

Lσ = H0
σ

for generic points σ ∈ Σ.
(see Bohle-L-Pedit-Pinkall for general conformal tori).

Theorem (L-Romon)

The spectral curves Σe and Σ of a Hamiltonian stationary
torus are biholomorphic, and the eigenline bundle E and L
coincide.

In particular, the multiplier spectral curve of a
Hamiltonian stationary torus can be compactified and has
geometric genus 0.
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Darboux transforms

Again, we can use holomorphic sections with multiplier to
define a Darboux transform

f̂ = f + TH−1

of a HSL torus f where T = αβ−1, dα = −dfHβ and

H = πg−1β̄0e
jβ
2 k .

Theorem (L-Romon)

If α = αδ is a monochromatic holomorphic section then f̂
is HSL with (after reparametrization) Lagrangian angle β.

f is obtained as limit of Darboux transforms with
multiplier σ → σ∞ ∈ Σ̄.
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The Darboux transformation is a further generalization of the
µ-Darboux transformation:

Theorem (L-Romon)

The monochromatic holomorphic sections are exactly the
dµ-parallel sections for some µ ∈ C∗.

In other words, the monochromatic Darboux transforms are
exactly the µ-Darboux transforms.
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Theorem (L-Romon)

If |Γ∗0,0| = 4 then all monochromatic Darboux transforms
are after reparametrization f .

However, there exist examples where |Γ∗0,0| > 4, and the
resulting monochromatic Darboux transforms are not
Möbius transformations of f .

Moreover, there exists HSL tori with polychromatic
holomorphic sections α so that the corresponding Darboux
transforms are not Lagrangian in C2.
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Theorem (L-Romon)
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