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• Examples of Hamiltonian-minimal Lagrangian submanifolds in Cn

and CPn

• Minimal Lagrangian and Hamiltonian-minimal Lagrangian tori in

CP2

1. Integrable deformations of minimal Lagrangian tori under

Novikov-Veselov hierarchy

2. Spectral data for Hamiltonian-minimal Lagrangian tori in CP2
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P — Kähler manifold,

ds2 — Hermitian metric on P ,

ω = Imds2 —symplectic form on P

def. Vector field W along L is called Hamiltonian if 1-form ω(W, .) on

L is exact.

def. L is called Hamiltonian-minimal (Hamiltonian stationary) if the

variations of the volume along all Hamiltonian vector fields with com-

pact support are zero.
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Cn, ω = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn

At each point x ∈ L choose an orthonormal tangent frame ξ that agrees

with the orientation of L (locally)

eiβ(x) = dz1 ∧ · · · ∧ dzn(ξ)

def. β(x) — Lagrangian angle on L.

The values of β does not depend on the choice of ξ.

In general the function β is multivalued. Going round a closed curve it

can change its value by 2k, k ∈ Z.
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Mean curvature vector

H = J∇β.

L ⊂ Cn is Hamiltonian-minimal if and only if Lagrangian angle is har-

monic function on L

∆β = 0.

Example. Clifford torus is HML-submanifold

S1(r1)× · · · × S1(rn) ⊂ Cn,

where S1(rj) is a circle of radius rj in C.
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Let M be a k-dimensional manifold in Rn defined by

e11u2
1 + · · ·+ en1u2

n = d1,

. . .

e1n−ku2
1 + · · ·+ enn−ku2

n = dn−k,

dj ∈ R, eij ∈ Z

ej = (ej1, . . . , ejn−k) ⊂ Zn−k, j = 1, . . . , n

Λ ⊂ Rn−k — lattice generated by e1, . . . , en

Λ∗ = {λ∗ ∈ Rn−k|(λ∗, λ) ∈ Z, λ ∈ Λ} — dual lattice

Γ = Λ∗/2Λ∗ ' Zn−k
2 .
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Denote by Tn−k the (n− k)-dimensional torus

Tn−k = {(eπi(e1,y), . . . , eπi(en,y))} ⊂ Cn,

y = (y1, . . . , yn−k) ∈ Rn−k, (ej, y) = ej1y1 + · · ·+ ejn−kyn−k.

Define an action of group Γ on manifold M × Tn−k. For γ ∈ Γ we set

γ(u1, . . . , un, y) = (u1 cosπ(e1, γ), . . . , un cosπ(en, γ), y + γ).

Note cosπ(ej, γ) = ±1.

Introduce the map

ϕ : M × Tn−k/Γ → Cn,

ϕ(u1, . . . , un, y) = (u1eπi(e1,y), . . . , uneπi(en,y)).
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Theorem (M.) The group Γ acts on M × Tn−k freely. The map ϕ is

HML-immersion. If e1 + · · ·+ en = 0, then ϕ is ML-immersion.

It is possible to construct HML-embeddings of generalized Klein bottle

K2n+1, S2n+1 × S1, K2n+1 × S1, S2n+1 × T2 and others.

The induced metric on ϕ(M × Tn−k/Γ) has block-diagonal form

ds2 =
k∑

i,j=1

gij(x)dxidxj +
n−k∑

i,j=1

g̃ij(x)dyidyj,

x = (x1, . . . , xk),

β = α1y1 + · · ·+ αn−kyn−k, αj ∈ R,

∆β = 0.

8



Example. Let M be the (n− 1)-dimensional sphere

u2
1 + · · ·+ u2

n = 1.

A non-zero element γ ∈ Z2 acts on Sn−1 × S1 by

γ(u, y) = (−u,−y).

If n = 2k, then Sn−1 × S1/Γ ' S2k−1 × S1.

If n = 2k + 1, then Sn−1 × S1/Γ ' K2k+1.
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If M is cone in Rn

e1ju
2
1 + . . . enju

2
n = 0, j = 1, . . . , n− k

M1 = ϕ(M × Tn−k/Γ) ∩ S2n−1,

H : S2n−1 → CPn−1 — Hopf projection

Theorem(M.) H(M1) — HML in CPn−1, if e1 + · · ·+ en = 0, then

ML.
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Define Lagrangian surface Σ ⊂ CP2 as composition

ϕ : R2 → S5 ⊂ C3

and Hopf projection

H : S5 → CP2.

Suppose that induced metric on Σ has form

ds2 = 2ev(x,y)(dx2 + dy2).

From Lagrangiality and the conformality of H ◦ ϕ it is follows

< ϕ, ϕx >=< ϕ, ϕy >=< ϕx, ϕy >= 0, |ϕx|2 = |ϕy|2 = 2ev,

where < ., . > is a Hermitian product in C3.
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Φ̃ =

(
ϕ,

1√
2

e−
v
2ϕx,

1√
2

e−
v
2ϕy

)>
∈ U(3)

eiβ(x,y) = detΦ̃

def. β(x, y) — Lagrangian angle

H = J∇β

Σ ⊂ CP2 is Hamiltonian-minimal if and only if Lagrangian angle is

harmonic function on Σ

∆β = 0
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From the definition of a Lagrangian angle we get

Φ =

(
ϕ,

1√
2

e−
v
2−iβ

2ϕx,
1√
2

e−
v
2−iβ

2ϕy

)>
∈ SU(3)

Matrix Φ satisfies equations

Φx = AΦ, Φy = BΦ,

where

A =




0
√

2e
v
2+iβ

2 0

−√2e
v
2−iβ

2 if −vy
2 + i(h +

βy
2 )

0
vy
2 + i(h +

βy
2 ) −if


 ∈ su(3),

B =




0 0
√

2e
v
2+iβ

2

0 ih vx
2 + i(−f + βx

2 )

−√2e
v
2−iβ

2 −vx
2 + i(−f + βx

2 ) −ih


 ∈ su(3),

f(x, y) and h(x, y) being some real functions.
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The zero-curvature equation Ay−Bx +[A, B] = 0 implies the following

Lemma Lagrangian surfaces are defined by a system of equations

2Vy + 2Ux = (βxx − βyy)e
v,

2Uy − 2Vx = (βyvx + βxvy)e
v,

∆v = 4(U2 + V 2)e−2v − 4ev − 2(Uβx − V βy)e
−v,

where U = fev, V = hev.

From Φx = AΦ, Φy = BΦ we get

Lemma (M.) The components ϕj of the vector function ϕ satisfy the

Schrödinger equation

∂2
xϕj + ∂2

y ϕj − i(βx∂xϕj + βy∂yϕj) + 4evϕj = 0.
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If mapping H ◦ ϕ is HML doubly periodic, then the Lagrangian angle

is the linear function β(x, y) = ax + by + c, a, b, c ∈ R.

Lemma HML-tori in CP2 are described by the following equations

2Uy − 2Vx = (bvx + avy)e
v, Vy + Ux = 0,

∆v = 4(U2 + V 2)e−2v − 4ev − 2(Ua− V b)e−v.

Shrödinger operator has the form: L = ∆− ia∂x − ib∂y + 4ev

In the minimal case we have Tzizéica equation

∂2
xv + ∂2

y v = 4e−2v − 4ev

and potential Shrödinger operator: L = ∆ + 4ev
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Let Σ ⊂ CP2 be ML-torus defined by the map ϕ : R2 → S5.

Theorem (M.) There is a mapping ϕ̃(t), t = (t1, t2, . . . ), ϕ̃(0) = ϕ,

defining a deformation of torus Σ in the class of minimal Lagrangian

tori in CP2. The map ϕ̃ satisfies the equations

Lϕ̃ = ∂2
x ϕ̃ + ∂2

y ϕ̃ + 4eṽϕ̃ = 0, ∂tnϕ̃ = Anϕ̃,

where An are operators of order (2n+1) on the variables (x, y). Deform

the potential Ṽ = 4eṽ, ṽ(0) = v, according to the Novikov–Veselov

hierarchy

∂L

∂tn
= [L, An] + BnL,

where Bn are operators of order (2n − 1) on the variables (x, y). The

deformations ϕ̃(t) preserve the spectrum of torus Σ and its conformal

type.
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Theorem (M.) Stationary Novikov-Veselov equation

[L, A3] + B0L = 0,

where

L = ∂z∂z̄ + ev(z,z̄),

A3 = ∂3
z + ∂3

z̄ − (v2
z + vzz)∂z − (v2

z̄ + vz̄z̄)∂z̄,

B0 = −∂z(v
2
z + vzz)− ∂z̄(v

2
z̄ + vz̄z̄),

is equivivalent to the system

∂z(e
−2v − ev − vzz̄) + 2vz(e

−2v − ev − vzz̄) = 0,

∂z̄(e
−2v − ev − vzz̄) + 2vz̄(e

−2v − ev − vzz̄) = 0.

Theorem (M.) The first three equations from the Novikov-Veselov

hierarhy give symmetries of the Tzizéica equation.
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All problem witch are solvable by the finite-gap theory are divided by

two part.

I PART: there is direct and inverse problem.

Example.

L1 =
dn

dxn
+ un−1(x)

dn−1

dxn−1
+ · · ·+ u0(x),

L2 =
dm

dxm
+ vm−1(x)

dm−1

dxm−1
+ · · ·+ v0(x).

Lemma (Burchnall, Chaundy, 1923)

If L1L2 = L2L1, then there exist a non-trivial polynomial Q of two

commuting variables such that Q(L1, L2) = 0.

Spectral curve: Γ = {(λ, µ) ∈ C2 : Q(λ, µ) = 0}
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II PART: there is only inverse problem.

Example. n-orthogonal curvilinear coordinate systems in Rn

∂x1

∂ui

∂x1

∂uj
+ · · ·+ ∂xn

∂ui

∂xn

∂uj
= 0, i 6= j

xj = ψ(u1, . . . , un, Qj), Qj ∈ Γ,

Γ-spectral curve, ψ(u, P ) — n-point Baker-Akhiezer function.
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Example. (M.-Taimanov). Polar coordinate system

x = ρ cosϕ, y = ρ sinϕ

Spectral curve

r
r

r r r
r

r
r
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The equation

< ϕx, ϕy >= ϕ1
xϕ̄1

y + ϕ2
xϕ̄2

y + ϕ3
xϕ̄3

y = 0,

is ”similar” to equation

∂x1

∂u1

∂x1

∂u2
+

∂x2

∂u1

∂x2

∂u2
+

∂x3

∂u1

∂x3

∂u2
= 0.
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The two-points Baker-Akhiezer function, corresponding to spectral

data

{Γ, P1, P2, k−1
1 , k−1

2 , γ1 + · · ·+ γg+l, r + r1 + · · ·+ rl},

is called a function ψ(x, y, P ), P ∈ Γ, with the following characteristics:

1) in the neighborhood of P1 and P2 function ψ has following form

ψ = ek1x

(
f1(x, y) +

g1(x, y)

k1
+

h1(x, y)

k2
1

+ . . .

)
,

ψ = ek2y

(
f2(x, y) +

g2(x, y)

k2
+

h2(x, y)

k2
2

+ . . .

)
.

2) on Γ\{P1, P2}, function ψ is meromorphic with simple poles on γ.

3) ψ(x, y, r) = d, ψ(x, y, ri) = 0, i = 1, . . . , l, where d is a non-zero

constant.
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Let ϕ1, ϕ2, ϕ3 denote the following functions

ϕi = αiψ(x, y, Qi),

Q1, Q2, Q3 ∈ Γ is an additional set of points, αi are some constants.

Suppose that surface Γ has a holomorphic involution σ and an anti-

holomorphic involution µ

σ : Γ → Γ, µ : Γ → Γ,

for which points P1, P2 and r are fixed, and

ki(σ(P )) = −ki(P ), ki(µ(P )) = k̄i(P ).

Let τ denote involution σµ. Involution τ acts on local parameters as

follows

ki(τ(P )) = −k̄i(P ).
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Theorem Let Qi be fixed points of the antiholomorphic involution

τ . Suppose that on Γ there exists a meromorphic 1-form Ω with the

following set of divisors of zeros and a pole

(Ω)0 = γ + τγ + P1 + P2, (Ω)∞ = Q1 + Q2 + Q3 + r + R + τR,

where R = r1 + · · ·+ rl and ResQi
Ω > 0, ResrΩ < 0. Then, for

αi =
√

ResQi
Ω, d =

√
−1

ResrΩ
,

following equality holds:

< ϕ, ϕ >= 1, < ϕ, ϕx >=< ϕ, ϕy >=< ϕx, ϕy >= 0,

i.e. the mapping H ◦ ϕ : R2 → CP2 is Lagrangian, with the induced

metric on Σ having a diagonal form

ds2 = |f1|2|c1|dx2 + |f2|2|c2|dy2.
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Consider the 1-form Ω1 = ψ(P )ψ(τP )Ω. By the definition of involution

τ , function ψ(τP ) has the following form near P1 and P2

ψ(τP ) = e−k1x

(
f̄1(x, y)− ḡ1(x, y)

k1
+

h̄1(x, y)

k2
1

+ . . .

)
,

ψ(τP ) = e−k2y

(
f̄2(x, y)− ḡ2(x, y)

k2
+

h̄2(x, y)

k2
2

+ . . .

)
.

Consequently, form Ω1 has no essential singularities in points P1 and

P2. The simple poles γ+τγ of function ψ(P )ψ(τP ) reduce with the ze-

ros in these points of form Ω. The zeros R+τR of function ψ(P )ψ(τP )

reduce with the simple poles of form Ω. The form Ω1 has only simple

poles in points Q1, Q2, Q3 and r with residues

ϕ1ϕ̄1, ϕ2ϕ̄2, ϕ3ϕ̄3, −1.
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Let form Ω near points P1 and P2 has form:

Ω = (c1w1 + iaw2
1 + . . . )dw1, w1 = 1/k1,

Ω = (c2w2 + ibw2
2 + . . . )dw2, w2 = 1/k2.

Consider function

F (x, y, P ) = ∂2
xψ + ∂2

y ψ + A(x, y)∂xψ + B(x, y)∂yψ + C(x, y)ψ.

Chose functions A(x, y), B(x, y) and C(x, y) such that F (x, y, Qi) =

0, i = 1,2,3. We need to find spectral data such that the metric

on surface Σ has a conformal form, and the coefficients A, B are con-

stants.

Lemma 1. The following equality holds:

A(x, y) =
1

c1|f1|2
(−c1f̄1(g1+2f1x)+f1(−iaf̄1+c1(ḡ1+ f̄1x))+c2f2f̄2x),

B(x, y) =
1

c2|f2|2
(−c2f̄2(g2+2f2y)+f2(−ibf̄2+c2(ḡ2+ f̄2y))+c1f1f̄1y).
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Theorem Suppose that on surface Γ there exists a meromorphic form

ω with the following divisors of zeros and poles

(ω)0 = γ + σγ, (ω)∞ = P1 + P2 + R + σR,

where ResP1
ω + ResP2

ω = 0. And suppose that

µ(γ) = γ, µ(R) = R,

then induced metric on surface Σ has the form

ds2 = f2
1(dx2 + dy2).

and Lagrangian angle looks as follows

β = ax + by + c,

where c is some real constant, i.e. surface Σ is Hamiltonian-minimal.
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Example. Suppose that Γ = CP1, P1 = ∞, P2 = 0.

σ(z) = −z, µ(z) = z̄, τ(z) = −z̄.

Let l = 0, then the Baker-Akhiezer function has the form

ψ(x, y, z) = exz+y
zf(x, y).

Let points Q1, Q2, Q3 and r have the coordinates 2i,−2i, i
2 and i

2.

Ω =
zdz

(z − 2i)(z + 2i)(z − i
2)(z + i

2)

We have

ϕ1 =
3√
14

e
1
2i(2x+y), ϕ2 =

1√
6

e
3
2i(−2x+y), ϕ3 =

2√
21

e−3i(x
4+y).

The induced metric looks as follows:

ds2 =
7

4
(dx2 + dy2), ∆ϕj + i

11

4
∂xϕj + i∂yϕj +

9

2
ϕj = 0,

β = −
(
11

4
x + y − π

)
.
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Example. Let Γ0 be a hyperelliptic surface of genus g given by

y2 = P (x),

where P (x) is a polynomial of degree 2g + 2 with real coefficients

without multiple roots. Let f denote a meromorphic function on Γ0

f =
x− β

x− α
,

where α, β are some real numbers such that P (α) 6= 0, P (β) 6= 0. Let

Γ denote the Riemannian surface of function
√

f . The affine part of

surface Γ is given in C3 with coordinates x, y, z by the system

y2 = P (x), z2 =
x− β

x− α
.

Surface Γ allows a holomorphic and antiholomorphic involution

σ(x, y, z) = (x, y,−z), µ(x, y, z) = (x̄, ȳ, z̄).
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Function f has two simple zeros in points

P̃1 = (β,
√

P (β)), P̃2 = (β,−
√

P (β))

and two simple poles in points

r̃ = (α,
√

P (α)), Q̃1 = (α,−
√

P (α)).

P1, P2, Q1, r — the inverse images of points P̃1, P̃2, Q̃1, r̃ under the pro-

jection Γ → Γ0.

Q2 =




β − c2α

1− c2
,

√√√√P

(
β − c2α

1− c2

)
, c


 ,

Q3 =




β − c2α

1− c2
,−

√√√√P

(
β − c2α

1− c2

)
, c


 ,

where c some constant.
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Open problems:

• Classify topological types of M × Tn−k/Γ

• Hamiltonian stability of HML-submanifolds in Cn and CPn

• Integrable deformations of HML-tori in CP2

• Symmetries of the system

2Uy − 2Vx = (bvx + avy)e
v, Vy + Ux = 0,

∆v = 4(U2 + V 2)e−2v − 4ev − 2(Ua− V b)e−v.

• Problem of the periodicity for the HML-immersions of R2 in CP2
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• Spectral data for Hamiltonian-minimal Lagrangian tori in CP2.
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