Spectral data for Hamiltonian-minimal

Lagrangian tori in $\mathbb{C} P^{2}$

Andrey Mironov
Sobolev Institute of Mathematics

The 16th Osaka City University International Academic Symposium 2008

Riemann Surfaces, Harmonic Maps and Visualization

- Examples of Hamiltonian-minimal Lagrangian submanifolds in \mathbb{C}^{n} and $\mathbb{C} P^{n}$
- Minimal Lagrangian and Hamiltonian-minimal Lagrangian tori in $\mathbb{C} P^{2}$

1. Integrable deformations of minimal Lagrangian tori under

Novikov-Veselov hierarchy
2. Spectral data for Hamiltonian-minimal Lagrangian tori in $\mathbb{C} P^{2}$
P - Kähler manifold,
$d s^{2}$ - Hermitian metric on P,
$\omega=\operatorname{Im} d s^{2}-$ symplectic form on P
def. Vector field W along L is called Hamiltonian if 1-form $\omega(W,$.$) on$ L is exact.
def. L is called Hamiltonian-minimal (Hamiltonian stationary) if the variations of the volume along all Hamiltonian vector fields with compact support are zero.

$$
\mathbb{C}^{n}, \quad \omega=d x_{1} \wedge d y_{1}+\cdots+d x_{n} \wedge d y_{n}
$$

At each point $x \in L$ choose an orthonormal tangent frame ξ that agrees with the orientation of L (locally)

$$
e^{i \beta(x)}=d z_{1} \wedge \cdots \wedge d z_{n}(\xi)
$$

def. $\beta(x)$ - Lagrangian angle on L.

The values of β does not depend on the choice of ξ.

In general the function β is multivalued. Going round a closed curve it can change its value by $2 k, k \in \mathbb{Z}$.

Mean curvature vector

$$
H=J \nabla \beta
$$

$L \subset \mathbb{C}^{n}$ is Hamiltonian-minimal if and only if Lagrangian angle is harmonic function on L

$$
\Delta \beta=0
$$

Example. Clifford torus is HML-submanifold

$$
S^{1}\left(r_{1}\right) \times \cdots \times S^{1}\left(r_{n}\right) \subset \mathbb{C}^{n}
$$

where $S^{1}\left(r_{j}\right)$ is a circle of radius r_{j} in \mathbb{C}.

Let M be a k-dimensional manifold in \mathbb{R}^{n} defined by

$$
\begin{gathered}
e_{11} u_{1}^{2}+\cdots+e_{n 1} u_{n}^{2}=d_{1}, \\
\cdots \\
e_{1 n-k} u_{1}^{2}+\cdots+e_{n n-k} u_{n}^{2}=d_{n-k}
\end{gathered}
$$

$d_{j} \in \mathbb{R}, e_{i j} \in \mathbb{Z}$
$e_{j}=\left(e_{j 1}, \ldots, e_{j n-k}\right) \subset \mathbb{Z}^{n-k}, j=1, \ldots, n$
$\wedge \subset \mathbb{R}^{n-k}$ - lattice generated by e_{1}, \ldots, e_{n}
$\Lambda^{*}=\left\{\lambda^{*} \in \mathbb{R}^{n-k} \mid\left(\lambda^{*}, \lambda\right) \in \mathbb{Z}, \lambda \in \Lambda\right\}$ - dual lattice
$\Gamma=\wedge^{*} / 2 \wedge^{*} \simeq \mathbb{Z}_{2}^{n-k}$.

Denote by T^{n-k} the ($n-k$)-dimensional torus

$$
\begin{gathered}
T^{n-k}=\left\{\left(e^{\pi i\left(e_{1}, y\right)}, \ldots, e^{\pi i\left(e_{n}, y\right)}\right)\right\} \subset \mathbb{C}^{n} \\
y=\left(y_{1}, \ldots, y_{n-k}\right) \in \mathbb{R}^{n-k},\left(e_{j}, y\right)=e_{j 1} y_{1}+\cdots+e_{j n-k} y_{n-k}
\end{gathered}
$$

Define an action of group Γ on manifold $M \times T^{n-k}$. For $\gamma \in \Gamma$ we set

$$
\gamma\left(u_{1}, \ldots, u_{n}, y\right)=\left(u_{1} \cos \pi\left(e_{1}, \gamma\right), \ldots, u_{n} \cos \pi\left(e_{n}, \gamma\right), y+\gamma\right)
$$

Note $\cos \pi\left(e_{j}, \gamma\right)= \pm 1$.

Introduce the map

$$
\begin{gathered}
\varphi: M \times T^{n-k} / \Gamma \rightarrow \mathbb{C}^{n} \\
\varphi\left(u_{1}, \ldots, u_{n}, y\right)=\left(u_{1} e^{\pi i\left(e_{1}, y\right)}, \ldots, u_{n} e^{\pi i\left(e_{n}, y\right)}\right)
\end{gathered}
$$

Theorem (M.) The group Γ acts on $M \times T^{n-k}$ freely. The map φ is HML-immersion. If $e_{1}+\cdots+e_{n}=0$, then φ is ML-immersion.

It is possible to construct HML-embeddings of generalized Klein bottle $K^{2 n+1}, S^{2 n+1} \times S^{1}, K^{2 n+1} \times S^{1}, S^{2 n+1} \times T^{2}$ and others.

The induced metric on $\varphi\left(M \times T^{n-k} / \Gamma\right)$ has block-diagonal form

$$
d s^{2}=\sum_{i, j=1}^{k} g_{i j}(x) d x_{i} d x_{j}+\sum_{i, j=1}^{n-k} \tilde{g}_{i j}(x) d y_{i} d y_{j}
$$

$x=\left(x_{1}, \ldots, x_{k}\right)$,

$$
\beta=\alpha_{1} y_{1}+\cdots+\alpha_{n-k} y_{n-k}, \quad \alpha_{j} \in \mathbb{R}
$$

$$
\Delta \beta=0
$$

Example. Let M be the $(n-1)$-dimensional sphere

$$
u_{1}^{2}+\cdots+u_{n}^{2}=1
$$

A non-zero element $\gamma \in \mathbb{Z}_{2}$ acts on $S^{n-1} \times S^{1}$ by

$$
\gamma(u, y)=(-u,-y)
$$

If $n=2 k$, then $S^{n-1} \times S^{1} / \Gamma \simeq S^{2 k-1} \times S^{1}$.

If $n=2 k+1$, then $S^{n-1} \times S^{1} / \Gamma \simeq K^{2 k+1}$.

If M is cone in \mathbb{R}^{n}

$$
\begin{gathered}
e_{1 j} u_{1}^{2}+\ldots e_{n j} u_{n}^{2}=0, j=1, \ldots, n-k \\
M_{1}=\varphi\left(M \times T^{n-k} / \Gamma\right) \cap S^{2 n-1}
\end{gathered}
$$

$\mathcal{H}: S^{2 n-1} \rightarrow \mathbb{C} P^{n-1}-$ Hopf projection

Theorem(M.) $\mathcal{H}\left(M_{1}\right)-\mathbf{H M L}$ in $\mathbb{C} P^{n-1}$, if $e_{1}+\cdots+e_{n}=0$, then ML.

Define Lagrangian surface $\Sigma \subset \mathbb{C} P^{2}$ as composition

$$
\varphi: \mathbb{R}^{2} \rightarrow S^{5} \subset \mathbb{C}^{3}
$$

and Hopf projection

$$
\mathcal{H}: S^{5} \rightarrow \mathbb{C} P^{2}
$$

Suppose that induced metric on Σ has form

$$
d s^{2}=2 e^{v(x, y)}\left(d x^{2}+d y^{2}\right)
$$

From Lagrangiality and the conformality of $\mathcal{H} \circ \varphi$ it is follows

$$
<\varphi, \varphi_{x}>=<\varphi, \varphi_{y}>=<\varphi_{x}, \varphi_{y}>=0,\left|\varphi_{x}\right|^{2}=\left|\varphi_{y}\right|^{2}=2 e^{v}
$$

where $<, .$.$\rangle is a Hermitian product in \mathbb{C}^{3}$.

$$
\begin{gathered}
\tilde{\Phi}=\left(\varphi, \frac{1}{\sqrt{2}} e^{-\frac{v}{2}} \varphi_{x}, \frac{1}{\sqrt{2}} e^{-\frac{v}{2}} \varphi_{y}\right)^{\top} \in U(3) \\
e^{i \beta(x, y)}=\operatorname{det} \tilde{\Phi}
\end{gathered}
$$

def. $\beta(x, y)$ - Lagrangian angle

$$
H=J \nabla \beta
$$

$\Sigma \subset \mathbb{C} P^{2}$ is Hamiltonian-minimal if and only if Lagrangian angle is harmonic function on Σ

$$
\Delta \beta=0
$$

From the definition of a Lagrangian angle we get

$$
\Phi=\left(\varphi, \frac{1}{\sqrt{2}} e^{-\frac{v}{2}-i \frac{\beta}{2}} \varphi_{x}, \frac{1}{\sqrt{2}} e^{-\frac{v}{2}-i \frac{\beta}{2}} \varphi_{y}\right)^{\top} \in \operatorname{SU}(3)
$$

Matrix Φ satisfies equations

$$
\Phi_{x}=A \Phi, \Phi_{y}=B \Phi
$$

where

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
0 & \sqrt{2} e^{\frac{v}{2}+i \frac{\beta}{2}} & 0 \\
-\sqrt{2} e^{\frac{v}{2}-i \frac{\beta}{2}} & i f & -\frac{v_{y}}{2}+i\left(h+\frac{\beta_{y}}{2}\right) \\
0 & \frac{v_{y}}{2}+i\left(h+\frac{\beta_{y}}{2}\right) & -i f
\end{array}\right) \in \operatorname{su}(3), \\
B=\left(\begin{array}{ccc}
0 & 0 & \sqrt{2} e^{\frac{v}{2}+i \frac{\beta}{2}} \\
0 & i h & \frac{v_{x}}{2}+i\left(-f+\frac{\beta_{x}}{2}\right) \\
-\sqrt{2} e^{\frac{v}{2}-i \frac{\beta}{2}} & -\frac{v_{x}}{2}+i\left(-f+\frac{\beta_{x}}{2}\right) & -i h
\end{array}\right) \in \operatorname{su}(3),
\end{gathered}
$$

$f(x, y)$ and $h(x, y)$ being some real functions.

The zero-curvature equation $A_{y}-B_{x}+[A, B]=0$ implies the following

Lemma Lagrangian surfaces are defined by a system of equations

$$
\begin{gathered}
2 V_{y}+2 U_{x}=\left(\beta_{x x}-\beta_{y y}\right) e^{v} \\
2 U_{y}-2 V_{x}=\left(\beta_{y} v_{x}+\beta_{x} v_{y}\right) e^{v} \\
\Delta v=4\left(U^{2}+V^{2}\right) e^{-2 v}-4 e^{v}-2\left(U \beta_{x}-V \beta_{y}\right) e^{-v}
\end{gathered}
$$

where $U=f e^{v}, V=h e^{v}$.

From $\Phi_{x}=A \Phi, \Phi_{y}=B \Phi$ we get

Lemma (M.) The components φ^{j} of the vector function φ satisfy the Schrödinger equation

$$
\partial_{x}^{2} \varphi^{j}+\partial_{y}^{2} \varphi^{j}-i\left(\beta_{x} \partial_{x} \varphi^{j}+\beta_{y} \partial_{y} \varphi^{j}\right)+4 e^{v} \varphi^{j}=0
$$

If mapping $\mathcal{H} \circ \varphi$ is $\mathbf{H M L}$ doubly periodic, then the Lagrangian angle is the linear function $\beta(x, y)=a x+b y+c, a, b, c \in \mathbb{R}$.

Lemma HML-tori in $\mathbb{C} P^{2}$ are described by the following equations

$$
\begin{gathered}
2 U_{y}-2 V_{x}=\left(b v_{x}+a v_{y}\right) e^{v}, \quad V_{y}+U_{x}=0, \\
\Delta v=4\left(U^{2}+V^{2}\right) e^{-2 v}-4 e^{v}-2(U a-V b) e^{-v}
\end{gathered}
$$

Shrödinger operator has the form: $L=\Delta-i a \partial_{x}-i b \partial_{y}+4 e^{v}$

In the minimal case we have Tzizéica equation

$$
\partial_{x}^{2} v+\partial_{y}^{2} v=4 e^{-2 v}-4 e^{v}
$$

and potential Shrödinger operator: $L=\Delta+4 e^{v}$

Let $\Sigma \subset \mathbb{C} P^{2}$ be ML-torus defined by the map $\varphi: \mathbb{R}^{2} \rightarrow S^{5}$.

Theorem (M.) There is a mapping $\widetilde{\varphi}(t), t=\left(t_{1}, t_{2}, \ldots\right), \widetilde{\varphi}(0)=\varphi$, defining a deformation of torus Σ in the class of minimal Lagrangian tori in $\mathbb{C} P^{2}$. The map $\widetilde{\varphi}$ satisfies the equations

$$
L \widetilde{\varphi}=\partial_{x}^{2} \widetilde{\varphi}+\partial_{y}^{2} \widetilde{\varphi}+4 e^{\widetilde{v}} \widetilde{\varphi}=0, \quad \partial_{t_{n}} \widetilde{\varphi}=A_{n} \widetilde{\varphi}
$$

where A_{n} are operators of order $(2 n+1)$ on the variables (x, y). Deform the potential $\tilde{V}=4 e^{\widetilde{v}}, \widetilde{v}(0)=v$, according to the Novikov-Veselov hierarchy

$$
\frac{\partial L}{\partial t_{n}}=\left[L, A_{n}\right]+B_{n} L
$$

where B_{n} are operators of order $(2 n-1)$ on the variables (x, y). The deformations $\widetilde{\varphi}(t)$ preserve the spectrum of torus Σ and its conformal type.

Theorem (M.) Stationary Novikov-Veselov equation

$$
\left[L, A_{3}\right]+B_{0} L=0,
$$

where

$$
\begin{gathered}
L=\partial_{z} \partial_{\bar{z}}+e^{v(z, \bar{z})}, \\
A_{3}=\partial_{z}^{3}+\partial_{\bar{z}}^{3}-\left(v_{z}^{2}+v_{z z}\right) \partial_{z}-\left(v_{\bar{z}}^{2}+v_{\bar{z} \bar{z}}\right) \partial_{\bar{z}}, \\
B_{0}=-\partial_{z}\left(v_{z}^{2}+v_{z z}\right)-\partial_{\bar{z}}\left(v_{\bar{z}}^{2}+v_{\bar{z} \bar{z}}\right),
\end{gathered}
$$

is equivivalent to the system

$$
\begin{aligned}
& \partial_{z}\left(e^{-2 v}-e^{v}-v_{z \bar{z}}\right)+2 v_{z}\left(e^{-2 v}-e^{v}-v_{z \bar{z}}\right)=0, \\
& \partial_{\bar{z}}\left(e^{-2 v}-e^{v}-v_{z \bar{z}}\right)+2 v_{\bar{z}}\left(e^{-2 v}-e^{v}-v_{z \bar{z}}\right)=0 .
\end{aligned}
$$

Theorem (M.) The first three equations from the Novikov-Veselov hierarhy give symmetries of the Tzizéica equation.

All problem witch are solvable by the finite-gap theory are divided by two part.

I PART: there is direct and inverse problem.

Example.

$$
\begin{aligned}
& L_{1}=\frac{d^{n}}{d x^{n}}+u_{n-1}(x) \frac{d^{n-1}}{d x^{n-1}}+\cdots+u_{0}(x) \\
& L_{2}=\frac{d^{m}}{d x^{m}}+v_{m-1}(x) \frac{d^{m-1}}{d x^{m-1}}+\cdots+v_{0}(x)
\end{aligned}
$$

Lemma (Burchnall, Chaundy, 1923)

If $L_{1} L_{2}=L_{2} L_{1}$, then there exist a non-trivial polynomial Q of two commuting variables such that $Q\left(L_{1}, L_{2}\right)=0$.

Spectral curve: $\Gamma=\left\{(\lambda, \mu) \in \mathbb{C}^{2}: Q(\lambda, \mu)=0\right\}$

II PART: there is only inverse problem.

Example. n-orthogonal curvilinear coordinate systems in \mathbb{R}^{n}

$$
\begin{gathered}
\frac{\partial x^{1}}{\partial u^{i}} \frac{\partial x^{1}}{\partial u^{j}}+\cdots+\frac{\partial x^{n}}{\partial u^{i}} \frac{\partial x^{n}}{\partial u^{j}}=0, i \neq j \\
x^{j}=\psi\left(u^{1}, \ldots, u^{n}, Q_{j}\right), Q_{j} \in \Gamma
\end{gathered}
$$

「-spectral curve, $\psi(u, P)$ - n-point Baker-Akhiezer function.

Example. (M.-Taimanov). Polar coordinate system

$$
x=\rho \cos \varphi, y=\rho \sin \varphi
$$

Spectral curve

The equation

$$
<\varphi_{x}, \varphi_{y}>=\varphi_{x}^{1} \bar{\varphi}_{y}^{1}+\varphi_{x}^{2} \bar{\varphi}_{y}^{2}+\varphi_{x}^{3} \bar{\varphi}_{y}^{3}=0
$$

is "similar" to equation

$$
\frac{\partial x^{1}}{\partial u^{1}} \frac{\partial x^{1}}{\partial u^{2}}+\frac{\partial x^{2}}{\partial u^{1}} \frac{\partial x^{2}}{\partial u^{2}}+\frac{\partial x^{3}}{\partial u^{1}} \frac{\partial x^{3}}{\partial u^{2}}=0 .
$$

The two-points Baker-Akhiezer function, corresponding to spectral data

$$
\left\{\Gamma, P_{1}, P_{2}, k_{1}^{-1}, k_{2}^{-1}, \gamma_{1}+\cdots+\gamma_{g+l}, r+r_{1}+\cdots+r_{l}\right\}
$$

is called a function $\psi(x, y, P), P \in \Gamma$, with the following characteristics:

1) in the neighborhood of P_{1} and P_{2} function ψ has following form

$$
\begin{aligned}
& \psi=e^{k_{1} x}\left(f_{1}(x, y)+\frac{g_{1}(x, y)}{k_{1}}+\frac{h_{1}(x, y)}{k_{1}^{2}}+\ldots\right) \\
& \psi=e^{k_{2} y}\left(f_{2}(x, y)+\frac{g_{2}(x, y)}{k_{2}}+\frac{h_{2}(x, y)}{k_{2}^{2}}+\ldots\right)
\end{aligned}
$$

2) on $\Gamma \backslash\left\{P_{1}, P_{2}\right\}$, function ψ is meromorphic with simple poles on γ.
3) $\psi(x, y, r)=d, \psi\left(x, y, r_{i}\right)=0, i=1, \ldots, l$, where d is a non-zero constant.

Let $\varphi^{1}, \varphi^{2}, \varphi^{3}$ denote the following functions

$$
\varphi^{i}=\alpha_{i} \psi\left(x, y, Q_{i}\right)
$$

$Q_{1}, Q_{2}, Q_{3} \in \Gamma$ is an additional set of points, α_{i} are some constants.

Suppose that surface Γ has a holomorphic involution σ and an antiholomorphic involution μ

$$
\sigma:\ulcorner\rightarrow \Gamma, \mu:\ulcorner\rightarrow \Gamma
$$

for which points P_{1}, P_{2} and r are fixed, and

$$
k_{i}(\sigma(P))=-k_{i}(P), k_{i}(\mu(P))=\bar{k}_{i}(P)
$$

Let τ denote involution $\sigma \mu$. Involution τ acts on local parameters as follows

$$
k_{i}(\tau(P))=-\bar{k}_{i}(P)
$$

Theorem Let Q_{i} be fixed points of the antiholomorphic involution τ. Suppose that on Γ there exists a meromorphic 1-form Ω with the following set of divisors of zeros and a pole

$$
(\Omega)_{0}=\gamma+\tau \gamma+P_{1}+P_{2}, \quad(\Omega)_{\infty}=Q_{1}+Q_{2}+Q_{3}+r+R+\tau R
$$

where $R=r_{1}+\cdots+r_{l}$ and $\operatorname{Res}_{Q_{\mathrm{i}}} \Omega>0, \operatorname{Res} \Omega<0$. Then, for

$$
\alpha_{i}=\sqrt{\operatorname{Res}_{\mathrm{Q}_{\mathrm{i}}} \Omega}, d=\sqrt{\frac{-1}{\operatorname{Res}_{\mathrm{r}} \Omega}}
$$

following equality holds:

$$
<\varphi, \varphi>=1,<\varphi, \varphi_{x}>=<\varphi, \varphi_{y}>=<\varphi_{x}, \varphi_{y}>=0
$$

i.e. the mapping $\mathcal{H} \circ \varphi: \mathbb{R}^{2} \rightarrow \mathbb{C} P^{2}$ is Lagrangian, with the induced metric on Σ having a diagonal form

$$
d s^{2}=\left|f_{1}\right|^{2}\left|c_{1}\right| d x^{2}+\left|f_{2}\right|^{2}\left|c_{2}\right| d y^{2}
$$

Consider the 1-form $\Omega_{1}=\psi(P) \overline{\psi(\tau P)} \Omega$. By the definition of involution τ, function $\overline{\psi(\tau P)}$ has the following form near P_{1} and P_{2}

$$
\begin{aligned}
& \overline{\psi(\tau P)}=e^{-k_{1} x}\left(\bar{f}_{1}(x, y)-\frac{\bar{g}_{1}(x, y)}{k_{1}}+\frac{\bar{h}_{1}(x, y)}{k_{1}^{2}}+\ldots\right), \\
& \overline{\psi(\tau P)}=e^{-k_{2} y}\left(\bar{f}_{2}(x, y)-\frac{\bar{g}_{2}(x, y)}{k_{2}}+\frac{\bar{h}_{2}(x, y)}{k_{2}^{2}}+\ldots\right) .
\end{aligned}
$$

Consequently, form Ω_{1} has no essential singularities in points P_{1} and P_{2}. The simple poles $\gamma+\tau \gamma$ of function $\psi(P) \overline{\psi(\tau P)}$ reduce with the zeros in these points of form Ω. The zeros $R+\tau R$ of function $\psi(P) \overline{\psi(\tau P)}$ reduce with the simple poles of form Ω. The form Ω_{1} has only simple poles in points Q_{1}, Q_{2}, Q_{3} and r with residues

$$
\varphi^{1} \bar{\varphi}^{1}, \varphi^{2} \bar{\varphi}^{2}, \varphi^{3} \bar{\varphi}^{3},-1
$$

Let form Ω near points P_{1} and P_{2} has form:

$$
\begin{aligned}
& \Omega=\left(c_{1} w_{1}+i a w_{1}^{2}+\ldots\right) d w_{1}, w_{1}=1 / k_{1} \\
& \Omega=\left(c_{2} w_{2}+i b w_{2}^{2}+\ldots\right) d w_{2}, w_{2}=1 / k_{2}
\end{aligned}
$$

Consider function

$$
F(x, y, P)=\partial_{x}^{2} \psi+\partial_{y}^{2} \psi+A(x, y) \partial_{x} \psi+B(x, y) \partial_{y} \psi+C(x, y) \psi
$$

Chose functions $A(x, y), B(x, y)$ and $C(x, y)$ such that $F\left(x, y, Q_{i}\right)=$ $0, i=1,2,3$. We need to find spectral data such that the metric on surface Σ has a conformal form, and the coefficients A, B are constants.

Lemma 1. The following equality holds:

$$
\begin{aligned}
& A(x, y)=\frac{1}{c_{1}\left|f_{1}\right|^{2}}\left(-c_{1} \bar{f}_{1}\left(g_{1}+2 f_{1 x}\right)+f_{1}\left(-i a \bar{f}_{1}+c_{1}\left(\bar{g}_{1}+\bar{f}_{1 x}\right)\right)+c_{2} f_{2} \bar{f}_{2 x}\right) \\
& B(x, y)=\frac{1}{c_{2}\left|f_{2}\right|^{2}}\left(-c_{2} \bar{f}_{2}\left(g_{2}+2 f_{2 y}\right)+f_{2}\left(-i b \bar{f}_{2}+c_{2}\left(\bar{g}_{2}+\bar{f}_{2 y}\right)\right)+c_{1} f_{1} \bar{f}_{1 y}\right)
\end{aligned}
$$

Theorem Suppose that on surface Γ there exists a meromorphic form ω with the following divisors of zeros and poles

$$
(\omega)_{0}=\gamma+\sigma \gamma, \quad(\omega)_{\infty}=P_{1}+P_{2}+R+\sigma R
$$

where $\operatorname{Res}_{P_{1}} \omega+\operatorname{Res}_{P_{2}} \omega=0$. And suppose that

$$
\mu(\gamma)=\gamma, \mu(R)=R
$$

then induced metric on surface Σ has the form

$$
d s^{2}=f_{1}^{2}\left(d x^{2}+d y^{2}\right)
$$

and Lagrangian angle looks as follows

$$
\beta=a x+b y+c
$$

where c is some real constant, i.e. surface Σ is Hamiltonian-minimal.

Example. Suppose that $\Gamma=\mathbb{C} P^{1}, P_{1}=\infty, P_{2}=0$.

$$
\sigma(z)=-z, \quad \mu(z)=\bar{z}, \quad \tau(z)=-\bar{z}
$$

Let $l=0$, then the Baker-Akhiezer function has the form

$$
\psi(x, y, z)=e^{x z+\frac{y}{z}} f(x, y)
$$

Let points Q_{1}, Q_{2}, Q_{3} and r have the coordinates $2 i,-2 i, \frac{i}{2}$ and $\frac{i}{2}$.

$$
\Omega=\frac{z d z}{(z-2 i)(z+2 i)\left(z-\frac{i}{2}\right)\left(z+\frac{i}{2}\right)}
$$

We have

$$
\varphi^{1}=\frac{3}{\sqrt{14}} e^{\frac{1}{2} i(2 x+y)}, \varphi^{2}=\frac{1}{\sqrt{6}} e^{\frac{3}{2} i(-2 x+y)}, \varphi^{3}=\frac{2}{\sqrt{21}} e^{-3 i\left(\frac{x}{4}+y\right)}
$$

The induced metric looks as follows:

$$
\begin{gathered}
d s^{2}=\frac{7}{4}\left(d x^{2}+d y^{2}\right), \Delta \varphi^{j}+i \frac{11}{4} \partial_{x} \varphi^{j}+i \partial_{y} \varphi^{j}+\frac{9}{2} \varphi^{j}=0 \\
\beta=-\left(\frac{11}{4} x+y-\pi\right)
\end{gathered}
$$

Example. Let Γ_{0} be a hyperelliptic surface of genus g given by

$$
y^{2}=P(x)
$$

where $P(x)$ is a polynomial of degree $2 g+2$ with real coefficients without multiple roots. Let f denote a meromorphic function on Γ_{0}

$$
f=\frac{x-\beta}{x-\alpha}
$$

where α, β are some real numbers such that $P(\alpha) \neq 0, P(\beta) \neq 0$. Let Γ denote the Riemannian surface of function \sqrt{f}. The affine part of surface Γ is given in \mathbb{C}^{3} with coordinates x, y, z by the system

$$
y^{2}=P(x), z^{2}=\frac{x-\beta}{x-\alpha}
$$

Surface Γ allows a holomorphic and antiholomorphic involution

$$
\sigma(x, y, z)=(x, y,-z), \mu(x, y, z)=(\bar{x}, \bar{y}, \bar{z})
$$

Function f has two simple zeros in points

$$
\tilde{P}_{1}=(\beta, \sqrt{P(\beta)}), \quad \tilde{P}_{2}=(\beta,-\sqrt{P(\beta)})
$$

and two simple poles in points

$$
\tilde{r}=(\alpha, \sqrt{P(\alpha)}), \quad \widetilde{Q}_{1}=(\alpha,-\sqrt{P(\alpha)})
$$

P_{1}, P_{2}, Q_{1}, r - the inverse images of points $\tilde{P}_{1}, \tilde{P}_{2}, \widetilde{Q}_{1}, \tilde{r}$ under the projection $\Gamma \rightarrow \Gamma_{0}$.

$$
\begin{aligned}
Q_{2} & =\left(\frac{\beta-c^{2} \alpha}{1-c^{2}}, \sqrt{P\left(\frac{\beta-c^{2} \alpha}{1-c^{2}}\right)}, c\right) \\
Q_{3} & =\left(\frac{\beta-c^{2} \alpha}{1-c^{2}},-\sqrt{P\left(\frac{\beta-c^{2} \alpha}{1-c^{2}}\right)}, c\right)
\end{aligned}
$$

where c some constant.

Open problems:

- Classify topological types of $M \times T^{n-k} / \Gamma$
- Hamiltonian stability of HML-submanifolds in \mathbb{C}^{n} and $\mathbb{C} P^{n}$
- Integrable deformations of HML-tori in $\mathbb{C} P^{2}$
- Symmetries of the system

$$
\begin{gathered}
2 U_{y}-2 V_{x}=\left(b v_{x}+a v_{y}\right) e^{v}, \quad V_{y}+U_{x}=0, \\
\Delta v=4\left(U^{2}+V^{2}\right) e^{-2 v}-4 e^{v}-2(U a-V b) e^{-v}
\end{gathered}
$$

- Problem of the periodicity for the $\mathbf{H M L}$-immersions of \mathbb{R}^{2} in $\mathbb{C} P^{2}$
- Spectral data for Hamiltonian-minimal Lagrangian tori in $\mathbb{C} P^{2}$. Proceedings of the Steklov Institute of Math. 2008. V. 263.
- Relationship between symmetries of the Tzitzeica equation and the Novikov-Veselov hierarchy. Math. Notes. 2007. V. 82. N. 4. P. 569-572.
- The Novikov-Veselov hierarchy of equations and integrable deformations of minimal Lagrangian tori in $\mathbb{C} P^{2}$. Siberian Electronic Mathematical Reports. 2004. V. 1. P. 38-46.
- On new examples of Hamiltonian-minimal and minimal Lagrangian submanifolds in \mathbb{C}^{n} and $\mathbb{C} P^{n}$. Sbornik: Math. 2004. V. 195. N.1. P.85-96.

