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CP2

1. Integrable deformations of minimal Lagrangian tori under
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P — Kahler manifold,

ds? — Hermitian metric on P,

w = Imds?2 —symplectic form on P

def. Vector field W along L is called Hamiltonian if 1-form w(W,.) on

L is exact.

def. L is called Hamiltonian-minimal (Hamiltonian stationary) if the
variations of the volume along all Hamiltonian vector fields with com-

pact support are zero.



C", w=dxqiANdyy+ -+ den Adyn

At each point x € L choose an orthonormal tangent frame £ that agrees

with the orientation of L (locally)

eB(@) — dz1 A - Adzn(§)

def. 8(x) — Lagrangian angle on L.
The values of 3 does not depend on the choice of &.

In general the function 3 is multivalued. Going round a closed curve it

can change its value by 2k, k € Z.



Mean curvature vector

H=JV3.

L C C"™ is Hamiltonian-minimal if and only if Lagrangian angle is har-

monic function on L
AB = 0.
Example. Clifford torus is HML-submanifold
St(ry) x - x St(ry) c C™,

where S1(r;) is a circle of radius r; in C.



Let M be a k-dimensional manifold in R™ defined by

2 2 _
e11uy + - +epiu;, = d,

2 2 __
€ln—kU1 + -+ Cnn—kUn — dn—ka

di €R, e;; €7

e; = (€1,---,ejn—k) C Znk j=1,....n

A C R"—k — |attice generated by eq,...,en

A* = {2\ € R"F|(A*,\) € Z, X € A} — dual lattice

_ ~ gk
M= A*/2A* ~ 787k,



Denote by 7" % the (n — k)-dimensional torus
Tk = f(emilery) | emileny))) - O,

y= (Y1, Yn—r) ER"F (ej,9) =ej1y1+  + €jn_i¥Un_k.

Define an action of group T on manifold M x T"~%. For v € I we set
’Y(ul: c ooy Uny, y) — (’lL]_ COSW(e].?,V)a ceey Uny COSW(€n77)7y + ,7)
Note cosm(e;,v) = £1.
Introduce the map
o: MxT"k/r - c,

SO(U’17 ey Uny, y) — (uleﬂ-i(eljy% cee 7un€ﬂ-i(en,y))'



Theorem (M.) The group I acts on M x T" % freely. The map ¢ is
HML-immersion. If e +--- 4+ ¢ep = 0, then ¢ is ML-immersion.

It is possible to construct HML-embeddings of generalized Klein bottle
K?2n+1l g2n+1 . gl pg2n+1 . gl g2n+1 o 72 3nd others.

The induced metric on (M x T" % /") has block-diagonal form

k n—k
ds* = > gij(@)dwidz; + > Gij(x)dydy;,

x=(x1,...,TL),
f=aiy1+  + ap_kYn—k; Qaj € R,

AB=0.



Example. Let M be the (n — 1)-dimensional sphere
u%—l—---—l—u%: 1.

A non-zero element v € Z, acts on S"~1 x S by
v(u,y) = (—u, —y).

If n = 2k, then S"~1 x S1/I ~ §2k=1 » g1

If n=2k+ 1, then S" 1 x S1/I ~ K2k+1



If M is cone in R™
elju%—l-...enjugzo, 7=1,....,n—k
M= oM x TV */ryns?"1,

H: Ss2n—1 ., cpr—1 — Hopf projection

Theorem(M.) H(M;) — HML in CP* 1, if ey +---+ e, = 0, then
ML.
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Define Lagrangian surface >~ ¢ CP? as composition

QO - R? — §° c C3
and Hopf projection

H:S° — CP2
Suppose that induced metric on 2 has form
ds? = 2¢v(@Y) (dz? + dy?).
From Lagrangiality and the conformality of H o ¢ it is follows
<@, 01 >=< 0,0y >=< @z, 0y >= 0, |pz|® = |py|* = 2€"

where < ... > is a Hermitian product in C3.

~
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~ 1 _w 1 _
b = (Sﬁa ﬁe 290507ﬁ6

eP@Y) = detd

. T

def. 3(x,y) — Lagrangian angle

H=JV3

> c CP? is Hamiltonian-minimal if and only if Lagrangian angle is

harmonic function on X

AB =0
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From the definition of a Lagrangian angle we get

T
1 v_ [ 1 v_ 3
b = (90, ﬁ6_7_7’790g;, ﬁe_ﬁ_fb?@y) c SU(3)

Matrix ¢ satisfies equations

q)x — Aq), be — Bq),

where
A= | _ /3515 if ~%+i(h4 1) | €sul,
0 ¥+ith+) —if
0 0 V25t
B = 0 ih Y+i(—f+3) | esu®),
Vb Y pi(—f + ) ~ih

f(x,y) and h(z,y) being some real functions.
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The zero-curvature equation Ay — Bz + [A, B] = 0 implies the following

Lemma Lagrangian surfaces are defined by a system of equations
2Vy + 22Uy = (Bez — Byy)e’,
2Uy — 2Vy = (Byve + Bavy)e”,
Av=4(U? 4+ V?)e 2V — 4¢e” — 2(UBy — VBy)e Y,
where U = feV, V = he".

From &, = AP, &y, = BP we get

Lemma (M.) The components ¢’ of the vector function ¢ satisfy the
Schrodinger equation

02¢) 4+ 8207 — i(BeOz? + Bydyp?) + 4e¥y! = 0.
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If mapping H o ¢ is HML doubly periodic, then the Lagrangian angle
is the linear function 8(x,y) = ax + by + ¢, a,b,c e R.

Lemma HML-tori in CP?2 are described by the following equations
2Uy — 2‘/33 — (b'Ugj _I— CL'Uy)ev, Vy _I_ Ux — O,
Av=4U?+V?e 2V —4e" — 2(Ua — Vb)e .

Shrodinger operator has the form: L = A — ta0; — 1b0y + 4€"

In the minimal case we have Tzizéica equation
2v + Byzfu = 4e7 2V — 4¢Y

and potential Shrodinger operator: L = A + 4¢eY
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Let X C CP? be ML-torus defined by the map ¢ : R?2 — S°.

Theorem (M.) There is a mapping @¢(t),t = (t1,t2,...),0(0) = ¢,
defining a deformation of torus > in the class of minimal Lagrangian

tori in CP2. The map ¢ satisfies the equations
Lo =076+ 0,6+ 4" =0,  0,p = Ang,
where A,, are operators of order (2n-+1) on the variables (x,y). Deform

the potential V = 4eV,5(0) = v, according to the Novikov—Veselov

hierarchy

oL
— = (L, A BnL
8tn [7 ’n]_l_ nt,

where B, are operators of order (2n — 1) on the variables (xz,y). The

deformations ¢(t) preserve the spectrum of torus 3~ and its conformal

type.
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Theorem (M.) Stationary Novikov-Veselov equation

[L, A3] + BoL = 0,
where

L = 0.9; + (%7,
A3 =82+ 82 — (v2 4+ v22)0; — (v2 + v33)05,
Bo = —8.(vZ + vz2) — 9z(vZ + vzz),
IS equivivalent to the system
9z(e7%Y — e’ —w,z) + 2v.(e %Y — e’ —w,z) =0,

O:(e 2V — eV —u,5) + 2vs(e 2V —e¥ —v,5) = 0.

Theorem (M.) The first three equations from the Novikov-Veselov
hierarhy give symmetries of the Tzizéica equation.
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All problem witch are solvable by the finite-gap theory are divided by

two part.
there is direct and inverse problem.
Example.
A" dn—l
Ly = Fun—1(2)——5 + -+ uolz),
dm dm—l
Lo =—0 Fvm-1(@)——— + -+ volz).

Lemma (Burchnall, Chaundy, 1923)

If L1L> = LoLq, then there exist a non-trivial polynomial ¢ of two

commuting variables such that Q(Lq,L>) = 0.

Spectral curve: I = {(\,pn) € C2: Q(\, ) = 0}
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there is only inverse problem.

Example. n-orthogonal curvilinear coordinate systems in R"

oxl ozl ox™ "
BTt
ou® OuJ ou® ouJ

33] — w(ulw .- 7un7Qj)7 Q] S r7

=0, 17

[-spectral curve, ¥ (u, P) — n-point Baker-Akhiezer function.
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Example. (M.-Taimanov). Polar coordinate system

x = pCOSp, y= pSiny

Spectral curve
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The equation

1-1 22 _
< @, py >= or@y + p565 + oy = 0,
is ""similar’ to equation

oxl ozl 02 Ox2 ox3 0x3 — 0
oulou2 ' oulou? ' oulou2

21



The two-points Baker-Akhiezer function, corresponding to spectral
data

{C, P, Po kit kst 4+ g r i+ 4

is called a function ¢ (x,y, P), P € I, with the following characteristics:

1) in the neighborhood of P; and P, function 1 has following form

¢:€k1$ (fl(x’y)_l_gl(x?y)_I_hl(xzny)_l_))
k1 k2

w — ekzy (fz(x’y) _I_ 92(33,?;) _|_ h2($2, y) + N ) .
ko k2

2) on M\{Py1, P>}, function + is meromorphic with simple poles on ~.

3) Yv(x,y,7) = d, Y(x,y,7;) = 0, i = 1,...,l, where d is a non-zero
constant.
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Let o1, ©2 3 denote the following functions

0 = an(z,y,Q;),

Q1,Q>2,Q3 € [ is an additional set of points, a; are some constants.

Suppose that surface ' has a holomorphic involution ¢ and an anti-

holomorphic involution u
ol —=T, u: I —1T,
for which points Py, P> and r are fixed, and

ki(a(P)) = —ki(P), ki(u(P)) = k;i(P).

Let 7 denote involution ou. Involution 7 acts on local parameters as

follows
ki(T(P)) = —k;(P).

23



Theorem Let @; be fixed points of the antiholomorphic involution
7. Suppose that on ' there exists a meromorphic 1-form €2 with the

following set of divisors of zeros and a pole

(Qo=v+7+P1+ P>, (Deoc=Q1+Q>+Q3+r+ R+ TR,

where R=1r; 4+ --- 4+ r; and ResQiQ > 0, ResC2 < 0. Then, for

—1
ReSrQ7

; = \/ResQiQ, d=

following equality holds:

<P, p>= 17 < @, pr >=< @, Py >=< Pz, Py >= 07

i.e. the mapping Ho ¢ : R2 — CP? is Lagrangian, with the induced

metric on > having a diagonal form
ds® = | f11%]e1]dz® + | f2|*|caldy?.
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Consider the 1-form 21 = ¢¥(P)y(7P)S2. By the definition of involution

7, function ¥ (7P) has the following form near P; and P>

DGP) = e k17 <f1(x,y> _a@y) hl(wz,y) n ) |
= k2

_ koy [ 7 - g2z, y) | ha(z,y)
Y(TP) =e y(fz(%y) = + 2 -I-)

Consequently, form €21 has no essential singularities in points P; and
P>. The simple poles v+ 7~ of function ¥(P)vy (7 P) reduce with the ze-
ros in these points of form Q. The zeros R+ 7R of function ¢ (P)y(rP)
reduce with the simple poles of form €2. The form €27 has only simple

poles in points Q1,Q>, Q3 and r with residues

9019517 9029527 3039537 —1.
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Let form €2 near points P; and P> has form:

Q = (crwq —I—ia'w% +...)dwy, w1 = 1/kq,

Q= (CQ’LUQ—I—?:bw%"— c)dwo, wpy = 1/ko.

Consider function

F(z,y,P) = 02¢ + 0% + A(=,y)0x¢ + B(z,y)dyy + C(z,y)v.
Chose functions A(z,y),B(xz,y) and C(z,y) such that F(z,y,Q;) =
0, + = 1,2,3. We need to find spectral data such that the metric
on surface 2 has a conformal form, and the coefficients A, B are con-

stants.

Lemma 1. The following equality holds:

A(z,y) = (—c1f1(g1+2f1,) + f1(—iafi+c1(G1+ f12)) +eafaf2.),

C1|f1|2

B(z,y) = |2( c2fo(go+2f2,) + fo(—ibfo+co(ga+ f2,)) +c1f1f1y).
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Theorem Suppose that on surface I there exists a meromorphic form

w With the following divisors of zeros and poles

(w)o=v4+07v, (Woo=P,+ P>+ R+ 0oR,

where Resp w + Resp,w = 0. And suppose that

p(y) =, u(R) =R,

then induced metric on surface > has the form
ds® = f2(dz? + dy?).
and Lagrangian angle looks as follows

B =ax + by + c,

where ¢ is some real constant, i.e. surface > is Hamiltonian-minimal.
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Example. Suppose that T = CP!, P; = 00, P, = 0.

0(z) = -z, wu(z) =2 7(z)=-%
Let [ = 0, then the Baker-Akhiezer function has the form

P(z,y,2) = e T f(2,y).

Let points Q1,Q>,Q3 and r have the coordinates 23, 2@, 5 and 5.

zdz

T (z-2i)(z+20)(z— 1) (= + 1)

We have

1 3 Liety) 2 1 ZBi(2ety) 3_ 2 _-3i(%+y)

7 T /14 Y T 6 YT a1
The induced metric looks as follows:
7 : 11 : .9 .
ds® = Z(dazz + dy?), AT+ 7;783;@9 + 0y’ + Egoj =0,

11

oo (Brrs).
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Example. Let [ be a hyperelliptic surface of genus g given by
y? = P(z),

where P(x) is a polynomial of degree 2g 4+ 2 with real coefficients
without multiple roots. Let f denote a meromorphic function on g

r—f

y
r —

f =
where «, 8 are some real numbers such that P(a) # 0, P(8) # 0. Let
[ denote the Riemannian surface of function +/f. The affine part of
surface I is given in C3 with coordinates x,y,z by the system
T — [

r — &
Surface I allows a holomorphic and antiholomorphic involution

y*> = P(z), 2° =

O-(x7 y? Z) — (x7 y? _Z)7 “('r? y? Z) — (:E,y, Z)'
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Function f has two simple zeros in points

pl — (/67 \/P(ﬁ))a p2: (67_\/P(ﬁ))

and two simple poles in points

7= (a,\/P(a)), Q1= (a, —/P(a)).

Py, P>,Q1,r — the inverse images of points Py, P>, Q1, under the pro-

jection I — Ig.

where ¢ some constant.
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Open problems:

e Classify topological types of M x Tk /I

e Hamiltonian stability of HML-submanifolds in C"* and CP"

e Integrable deformations of HML-tori in CP2

e Symmetries of the system
2Uy — QVCC — (b’U;C —I_ Cl/Uy)ev, Vy _I_ Uw — O,

Av=4(U?+V?)e 2 —4¢” —2(Ua — Vb)e .

e Problem of the periodicity for the HML-immersions of R? in CP?
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