Superconformal surfaces in the Euclidean four space in terms of null complex holomorphic curves

Katsuhiro Moriya (Univ. of Tsukuba)

Overview

explicit bijection by simple calculation

Reference:

[BFLPPP] Burstall, Ferus, Leschke, Pedit, and Pinkall, Lecture Notes in Mathematics 1772 (2002)

Surface

- \bullet (M, J): Riemann surface
- $F: M \to \mathbb{R}^4$: conformal immersion = surface
- dA: the volume form
- K: Gaussian curvature
- K^{\perp} : normal curvature
- II: 2nd fundamental form
- \mathcal{H} : mean curvature vector
- $\Phi_F = (\phi_F, \psi_F) : M \to S^2 \times S^2$: Gauss map

Superconformal surface

- $F: M \to \mathbb{R}^4$: surface
- $X \in \Gamma(T_pM), X \neq 0$
- $c(t) = (\cos t)X + (\sin t)JX$: circle in T_pM
- $\mathbb{I}(c(t), c(t))$: ellipse centered at $\mathcal{H}|df(X)|^2$ in $(T_pM)^{\perp}$ (curvature ellipse)

F is said to be **suggraphing** if its curvature ellipse is a circle. (ex. 2-sphere in \mathbb{R}^4)

$$\int_{M} (|\mathcal{H}|^{2} - K - K^{\perp}) dA = 0$$

Construction

$$M \xrightarrow{h} \mathbb{C}P^3 \xrightarrow{tw} S^4 \xrightarrow{st_p} \mathbb{R}^4$$

- h: holomorphic map
- tw: twistor projection
- st_p: stereographic projection from
 p ∉ tw(h(M))

 $st_p \circ tw \circ h \colon M \to \mathbb{R}^4$: superconformal

Null curve

- $h = (h_1, h_2, h_3, h_4) \colon M \to \mathbb{C}^4$: holomorphic map
- h is said to be in the entering the matrix if $\sum_{m=1}^4 \partial h_m \otimes \partial h_m = 0$
- **Fact.** h is null holomorphic curve $\Leftrightarrow \operatorname{Re} h$ and $\operatorname{Im} h$ are (branched) minimal surfaces in \mathbb{R}^4 conjugate each other.
- h is a null holomorphic curve $\Rightarrow \Phi_{Re h} = \Phi_{Im h}$.

Characterization

$$S^2 \times S^2 \cong \mathbb{C}P^1 \times \mathbb{C}P^1$$

- **Fact.** F is superconformal $\Leftrightarrow \phi_F$ or ψ_F is anti-holomorphic
- F is minimal $\Leftrightarrow \phi_F$ and ψ_F are holomorphic

Result

• $\iota \colon S^2 \to \mathbb{R}^3$: inclusion, $\tilde{\phi}_F = \iota \circ \phi_F$

Theorem (Dajczer and Tojeiro (local), M-). $\{F \mid \text{superconformal}, \phi_F \text{ is anti-holomorphic}, \}$ $\tilde{\phi}_{F}$ is an immersion $\}$ bijective $\{G = G_0 + iG_1 \mid \text{null holomorphic curve, } \bar{\phi}_{G_0} \text{ is }$ extended smoothly at the branch points of G_0 , $\widetilde{\phi}_{G_0}$ is an immersion, $G_0^{-1}(0) = \emptyset$ }

Surfaces in terms quaternions

 $F: M \to \mathbb{R} \cong \mathbb{H}$: surface

 \Leftrightarrow

 $*dF := dF \circ J = N dF = -dF R$

 $N, R: M \rightarrow S^2 \subset \operatorname{Im} \mathbb{H}$

Then F, $G_0 + iG_1$ in Theorem have the relations

$$F = NG_0 - G_1, dF = dN G_0$$
$$*dG_0 = -N dG_0$$

Characterization

Fact. •
$$(N, R) = (\tilde{\phi}_F, \tilde{\psi}_F)$$

- F is superconformal $\Leftrightarrow *dN = -dN \ N \ \text{or} \ *dR = -dR \ R$
- F is minimal $\Leftrightarrow *dN = dN N \text{ and } *dR = dR R$
- $G = G_0 + iG_1$ is a null holomorphic curve $\Leftrightarrow *dG_0 = -dG_1$, G_0 and G_1 are (branched) minimal
- $*dN = N dN \Leftrightarrow *d(-N) = -(-N) d(-N)$

Key Lemma

```
Lemma. M: 2-manifold
f, g: M \to \mathbb{H}: immersions
df \wedge dg = 0
\Leftrightarrow
f, g: (M, \exists J) \to \mathbb{H}: surface
*df = N_f df = -df R_f
*dg = N_g dg = -dg R_g
-R_f = N_g
```

From F to G

- $\circ *dF = N dF, *dN = -dN N$
- $dF = dN G_0$, (def. of G_0)
- $dN \wedge dG_0 = 0$, (exterior derivative)
- *dN = -dN N, (superconformality of F)
- $*dG_0 = -N dG_0$, (key lemma)
- *d(-N) = d(-N)(-N), ((branched) minimality of G_0)
- $G_1 := NG_0 F$, (def. of G_1)
- $\circ dG_1 = dN G_0 + N dG_0 dF = N dG_0 = -*dG_0$

From G to F

- $\circ *dG_0 = -N dG_0 = -dG_1, G^{-1}(0) = \emptyset,$ *d(-N) = d(-N)(-N),
- $F := NG_0 G_1$, (def. of F)
- $dF = dN G_0 + N dG_0 dG_1 = dN G_0$, (exterior derivative)
- $*dN = -dN N = N dN, (N^2 = -1)$
- $*dF = *dN G_0 = N dN G_0 = N dF$ (F is a surface)
- $\circ *dN = -dN N$, (superconformality of F)

Remarks

- If $\tilde{\phi}_F$ is branched, then G_0 is not defined at the branch point.
- If $\overline{\phi}_{G_0}$ is branched, then F is branched exactly at the same branch points.
- If $\tilde{\phi}_{G_0}$ is not extendable at a branch point of G_0 , then F is not defined at the branch point.
- If G₀ vanishes at a point, then F is branched at the point.

Thank you very much Vielen Dank 謝謝

Merci beaucoup Gracias mucho Grazie molto obrigado muito Dank u zeer ありがとう