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An anisotropic surface energy assigns to a surface a value
which depends on the direction of the surface at each point.
e.g.

F =

∫
Σ
γ(X , ν) dΣ ,

Here X : Σ→ R3 is an immersed, oriented surface with unit
normal ν.



Small liquid drop







Free energy = F =

∫
Σ
γ(ν) dΣ

We will assume that a convexity condition holds:

χ := Dγ + γν : S2 → R3

defines a smooth, convex surface W := χ(S2) called the Wulff
shape.

For example, if γ = || · || is a smooth norm on R3, with dual
norm || . ||∗, then

F :=

∫
Σ
||ν|| dΣ ,

satisfies the convexity condition and W = { ||χ||∗ = 1 }.



First variation

Free energy = F =

∫
Σ
γ(ν) dΣ

Variation: Xε = X + ε(δX ) + ...

First variation
δF = −

∫
Σ

Λ δX · ν dΣ

Λ = anisotropic mean curvature.

Λ ≡ constant characterizes critical points of F subject to a
volume constraint.



Local expressions for Λ.

Dγ = gradient of γ on S2

D2γ = Hessian of γ on S2

−Λ = DivΣ(Dγ)− 2Hγ = TraceΣ[(D2γ + γI) · dν] .

If W and Σ are both surfaces of revolution, then

Λ =
k1

µ1
+

k2

µ2
.

0 < µi = principal curvatures of W .



Constant anisotropic mean curvature surfaces have much in
common with constant mean curvature surfaces. For example
we have:

Theorem
The Wulff shape W is the unique minimizer of the free energy
F among all closed surfaces enclosing the same volume as W.

Theorem
The only closed, stable surface with constant anisotropic mean
curvature is the Wulff shape.

Recently, Yijun He, Haizhong Li, Hui Ma, Jianquan Ge
generalized the Alexandrov Theorem:

Theorem
The only embedded closed surface with Λ ≡constant is the
Wulff shape.



Variation of the anisotropic mean curvature

Xε = X + ε(δX ) + ....

δX = ψν + ξ

δΛ = J[ψ] +∇Λ · ξ where

J[ψ] = DivΣ[(D2γ + γI)∇ψ] + 〈(D2γ + γI) · dν,dν〉ψ ,

Because of the convexity condition, the operator J is elliptic for
any sufficiently smooth surface. This implies that the equation
for constant, or more generally prescribed, anisotropic mean
curvature has a Maximum Principle.



Capillary problem
Consider a fixed volume of material trapped between two
horizontal planes.



Consider the volume as the body of a physical drop. We will
assign an energy to each part of the boundary of the drop.

I Σ −→ F [Σ].

I Ai −→ ωi ·Area (Ai) where ωi are constants. This is called
the wetting energy. ωi > 0 is called lyophobic wetting,
ωi < 0 is called lyophilic wetting.

I Ci −→ τiL[Ci ] where τi are constants and L is a one
dimensional anisotropic energy. This term is called the line
tension.



We consider a Wulff shape W of product form:

χ(σ, τ) = (u(σ)[α(t), β(t)], v(σ)) 0 ≤ σ ≤ σ̄ ,0 ≤ t ≤ t̄ .

It is assumed that (u, v) and (α, β) are smooth, convex, closed
curves. The curve parameterized by (α, β) will be denoted by
Ω.



Winterbottom’s Theorem: The part of the Wulff shape Ŵ
between two planes is the absolute minimizer of the energy

E = F + ω0 · A0 + ω1 · A1 ,

among all surfaces enclosing the same volume and having free
boundary on the two planes. Here, ω = (ω0, ω1) are the values
of the wetting constants for which Ŵ is in equilibrium.



We now consider an anisotropic line tension given by the one
dimensional parametric functional whose Wulff shape is the
curve Ω given by (α, β). To do this we define:

LΩ[C] =

∫
C

Γ[N] dL ,

Here N is the unit normal to the curve C.
With this definition and appropriate constants (ωi , τi), the parts
of the Wulff shape between horizontal planes is still in
equilibrium when the line tension is included in the total energy:

E := F + ω · A+ τ · L , ω, α ∈ R .

Here: ω · A = ω0A0 + ω1A1, etc.



Line tension was introduced by Gibbs in 1878. It is known play
an important role in determining the geometry of drops on a
very small scale (microns). It is insignificant for larger drops.



Proposition

I Assume that ω = (ω0, ω1) and τ = (τ0, τ1), with τi < 0 are
chosen so that Ŵ is in equilibrium. Then, Ŵ is the
absolute minimizer of the energy

E = F + ω · A+ τ · L ,

among all symmetric surfaces enclosing the same volume
and having free boundary on the two planes.

For some choices of ω and τ < 0, the problem has no
minimizer.





Equilibrium conditions

Define κ̃ = anisotropic curvature of Ci ,

δL :=

∫
C
κ̃ δC · N ds

Critical points of E are characterized by:

(∗) Λ ≡ contant , in Σ ,

(∗∗) χ · E3 + (−1)i(ωi + τi κ̃) ≡ 0 on Ci , i = 0,1

Solutions of (*), (**) will be called capillary surfaces.



For rotationally symmetric functionals and τ ≥ 0, it is possible
to show using the Maximum Principle that a capillary surface
for this configuration is, a priori, a surface of revolution.

A surface with Λ ≡ constant having the form
X (s, t) = (x(s)α(t), x(s)β(t), z(s)) will be called an
(anisotropic) Delaunay surfaces.

They can be classified into basic types, (Wulff shape,cylinder
over Ω, plane, anisotropic catenoid, anisotropic unduloid,
anisotropic nodoids ) which are analogous to the classical
Delaunay surface.





For a Delaunay surface, the equilibrium boundary condition
becomes

χ · E3 + (−1)i(ωi + τi/xi) = 0 , on Ci .

where xi are the ‘radii’ of the boundary curves. Note that there
is a whole continuum of pairs (ωi , τi), with

(]) ωi + τi/xi =: ω∗
i .

for which the surface is in equilibrium.

Note that if we cut any Delaunay surface by two horizontal
planes, we can always define

ω∗
i := χ|Ci · E3 ,

then surface Σ̂ is an equilibrium for E = F + ω · A+ τ · L
whenever (ωi , τi) satisfy ( ] ).



Second variation
If Σ is a capillary surface,

δ2E = −
∫

Σ
ψJ[ψ] dΣ +

∮
∂Σ
ψB[ψ] dL ,

where
ψ := δX · ν cotφ := ν3/n3

J[ψ] = δΛ = DivΣ[(D2γ + γI)∇ψ] + 〈(D2γ + γI) · dν,dν〉ψ ,

The boundary operator B is defined as follows: First define B1
by

B1[ψ] = −δχ · n = A(∇ψ +
ν3

n3
ψdν(n)) · n .

A := (D2γ + γI)ν . Then

B[ψ] = B1[ψ]− τ

n3

[
(

1
m

(
ψ

n3
)L)L +

κ2

mn3
ψ
]
.



A capillary surface is called stable if δ2E ≥ 0 holds for all ψ such
that ∫

Σ
ψ dΣ = 0

holds. Consider the spectral problem:

(∗) J[ψ] + λψ = 0 , B[ψ] = 0 , on ∂Σ .

Proposition
Assume that λ1 < 0 ≤ λ2 holds. If there exists a solution of

(∗) J[φ] = 1 , in Σ, B[φ] = 0 on ∂Σ .

Then, the surface is stable if and only∫
Σ
φ dΣ ≥ 0 ,

holds.
If no solution of (*) exists, the surface is unstable.



Schwarz symmetrization

Theorem
Let S be an embedded surface having no horizontal tangent
planes. Define the ‘symmetrized’ surface S̃ by replacing each
cross section z = constant of S by the curve homothetic to Ω
which encloses the same area. Then the volume within the
surface is preserved and the free energy of S is diminished:

(F + ω · A)[S̃] ≤ (F + ω · A)[S] .

In addition, if τi ≥ 0 holds, then

E [S̃] ≤ E [S] .



Corollary
Let Σ̂ be a capillary Delaunay surface with no horizontal
tangent planes. Assume τi , i = 0,1 ≥ 0 holds. Then, Σ̂ is stable
if and only if it is stable with respect to symmetric variations.
Note that, except for the Wulff shape, the parts of the Delaunay
surfaces which are embedded between horizontal planes do
not have any horizontal tangent planes.

Proposition
Let X (s, t) = (x(s)α(t), x(s)β(t), z(s)) be an immersion of a
capillary surface for an anisotropic energy with Wulff shape
χ(σ, t) = (u(σ)α(t),u(σ)β(t), v(σ)). Let

X̄ (s, t) = (x(s) cos(t), x(s) sin(t), z(s)),

χ̄(σ, t) = (u(σ) cos(t),u(σ) sin(t), v(σ)) .

Then X is stable with respect to symmetric variations, if and
only if X̄ is stable with respect to symmetric variations for the
free energy with Wulff shape given by χ̄.





I Assume τi ≥ 0 holds. For surfaces with no horizontal
tangent planes, we need only consider symmetric
variations.

I For symmetric variations, stability of capillary Delaunay
surface depends on the numbers ω∗

i = χ · E3 which are
determined from the surface, not on the values ωi , τi .

I For symmetric variations, the surface can be replaced by
the surface having circular cross sections if the functional is
replaced by the Wulff shape having circular cross sections.

I One or two vertical supporting planes can be included if
their wetting constants are all zero and they cut the Wulff
shape at a right angle.

As long as τi ≥ 0 holds, the stability of any anisotropic
Delaunay surface can be determined numerically.



Theorem
Assume τi ≥ 0 holds. Suppose Σ̂ is a capillary Delaunay
surface with ω∗

0 = 0 = ω∗
1. Then Σ̂ is stable if and only if Σ̂ is a

cylinder over Ω whose height is small compared to its volume.
(The isotropic case γ ≡ 1 without line tension is due to
Athanassenas and Vogel. (1987))



Theorem
Assume that τi ≥ 0. Suppose Σ̂ is a capillary Delaunay surface
with ω∗

0, ω
∗
1 > 0. Then Σ̂ is stable if and only if the generating

curve (x(s), z(s)) of Σ̂ has no interior inflection points.





An anisotropic unduloid (with lyophilic wetting) is stable if it is
‘close to being a cylinder".

If the neck size N satisfies
√

3N ≥ x∗, where x∗ is the radius of
the circle at an inflection point, then for any T , with 0 ≤ T ≤ −ω,
the part of the unduloid with T ≤ v ≤ −T is stable.



Theorem
The part of an anisotropic catenoid z0 ≤ z ≤ z1 is stable for the
anisotropic energy with wetting and line tenision if and only if
the integral∫

Σ
φ dΣ =

π

6

{
9
( ∫ z1

z0

x2 dz
)2
− 5
(
z1 − z0

)∫ z1

z0

x4 dz
}

is non negative.



Lyophobic wetting

Theorem
Let Σ be a capillary surface with free boundary on two
horizontal planes for the functional F with ω0 = ω1 = ω ≥ 0 and
with the Wulff shape for the functional satisfying the conditions
(W1) through (W3) stated above.
(i) If ω = 0, then Σ is stable if and only if the surface is either
homothetic to a half of the Wulff shape or a cylinder which is
perpendicular to Π0 ∪ Π1 which satisfies

µ1(0)

µ2(0)
h2 ≤ (πR)2 .

(ii) If ω > 0 holds, then Σ is stable if and only if Σ is a portion of
an anisotropic Delaunay surface whose generating curve has
no inflection points in its interior.



Theorem
We assume (W1) through (W3) stated above.
(I) Assume 0 < ω < ω̄ :=maximum height on W. Then, there
exist constants 0 < V0 < V1 such that

(i) For volumes V0 ≤ V < V1, there exists a unique stable
spanning capillary surface with volume V, height h and wetting
constant ω, and the surface is an anisotropic unduloid. This
surface has inflection points on the boundary exactly when
V = V0.

(ii) For V = V1, there exists a unique stable capillary surface
with volume V, height h and wetting constant ω, and the
surface is homothetic to a part of the Wulff shape.

(iii) For V1 < V, there exists a unique stable capillary surface
with volume V, height h and wetting constant ω, and the
surface is an anisotropic nodoid.

(II) Assume ω = ω̄. Then, for V0 < V, there exists a unique
stable capillary surface with volume V, height h and wetting
constant ω, and the surface is an anisotropic nodoid.
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