Integrable aspects of global surface geometry

Franz Pedit

joint projects with A. Gerding, S. Heller, N. Schmitt, Y. Shen

University of Tübingen and UMass Amherst

Osaka, December 20, 2008

\[1\] Images by Nicholas Schmitt
Figure: Twizzled Torus
Figure: Wente Torus
Figure: Delaunay Surfaces
Figure: Tetranoid
Figure: Sprungnoid
Figure: Symmetric 4-noids
Figure: Experimental 4-noids
These surfaces have constant mean curvature (CMC) critical for the area functional under volume constraint.
These surfaces have constant mean curvature (CMC) \(\leftrightarrow \) critical for the area functional under volume constraint.

More generally, consider (constrained) Willmore surfaces \(\leftrightarrow \) critical for \(\int H^2 \) under (conformal) variations of the surface.
These surfaces have constant mean curvature (CMC) \(\leftrightarrow\) critical for the area functional under volume constraint.

More generally, consider (constrained) Willmore surfaces \(\leftrightarrow\) critical for \(\int H^2\) under (conformal) variations of the surface.

Minimal surfaces in space forms \(\leadsto\) Willmore surfaces.
These surfaces have constant mean curvature (CMC) \(\leftrightarrow \) critical for the area functional under volume constraint.

More generally, consider (constrained) Willmore surfaces \(\leftrightarrow \) critical for \(\int H^2 \) under (conformal) variations of the surface.

Minimal surfaces in space forms \(\leadsto \) Willmore surfaces.

CMC surfaces in space forms \(\leadsto \) constrained Willmore surfaces.
An immersed surface $f: M \to \mathbb{R}^3$ splits the trivial bundle

$$M \times \mathbb{R}^3 = TM \oplus NM,$$

$$d = \begin{pmatrix} \nabla & B \\ -B^* & \nabla \perp \end{pmatrix}.$$
Classical integrability

- An immersed surface $f : M \rightarrow \mathbb{R}^3$ splits the trivial bundle

$$M \times \mathbb{R}^3 = TM \oplus NM,$$

$$d = \begin{pmatrix} \nabla & B \\ -B^* & \nabla \perp \end{pmatrix}.$$

- Gauß-Codazzi equation:

$$F^\nabla - B \wedge B^* = 0 \quad \text{and} \quad d^\nabla B = 0.$$
Classical integrability

- An immersed surface $f : M \to \mathbb{R}^3$ splits the trivial bundle

\[M \times \mathbb{R}^3 = TM \oplus NM , \]

\[d = \begin{pmatrix} \nabla & B \\ -B^* & \nabla_{\perp} \end{pmatrix} . \]

- Gauß-Codazzi equation:

\[F_{\nabla} - B \wedge B^* = 0 \quad \text{and} \quad d_{\nabla} B = 0 . \]

- With $g = e^{2u}|dz|^2$, $B = Hg + Q + \overline{Q}$ where H is the mean curvature, $Q = qdz^2$ the Hopf differential:

\[\nabla u + e^{2u} H^2 - e^{-2u}|q|^2 = 0 \quad \text{and} \quad H_z e^{2u} = q\bar{z} . \]
Given \((M, g)\) and putative 2\(^{nd}\)-fundamental form \(B\) solving Gauß-Codazzi built:\n
\[
\begin{array}{c}
\text{flat metric rank 3 bundle } V = (TM \oplus \mathbb{R}, g \oplus dt^2, d) \\
\text{On universal cover } \tilde{V} = \tilde{M} \times \mathbb{R}^3 \\
\text{Period closing means holonomy of } d \text{ (rotation periods) is trivial and } df \text{ has no translation periods.}
\end{array}
\]
Given \((M, g)\) and putative \(2^{nd}\)-fundamental form \(B\) solving Gauß-Codazzi built:

- flat metric rank 3 bundle

\[
V = \left(TM \oplus \mathbb{R}, g \oplus dt^2, d \right), \quad d := \begin{pmatrix}
\nabla & B \\
-B^* & \nabla^\perp
\end{pmatrix}
\]
Given \((M, g)\) and putative \(2^{nd}\)-fundamental form \(B\) solving Gauß-Codazzi built:

- flat metric rank 3 bundle

\[
V = (TM \oplus \mathbb{R}, g \oplus dt^2, d), \quad d := \begin{pmatrix}
\nabla & B \\
-B^* & \nabla_\perp
\end{pmatrix}
\]

- On universal cover

\[
\tilde{V} = \tilde{M} \times \mathbb{R}^3 \quad \text{and inclusion gives} \quad df : T\tilde{M} \rightarrow \mathbb{R}^3
\]
Given \((M, g)\) and putative 2\(^{nd}\)-fundamental form \(B\) solving Gauß-Codazzi built:

- **flat metric rank 3 bundle**

\[
V = (TM \oplus \mathbb{R}, g \oplus dt^2, d), \quad d := \left(\nabla, B, -B^* \nabla \right)
\]

- **On universal cover**

\[
\tilde{V} = \tilde{M} \times \mathbb{R}^3 \quad \text{and inclusion gives} \quad df : T\tilde{M} \to \mathbb{R}^3
\]

- **Period closing** means holonomy of \(d\) (rotation periods) is trivial and \(df\) has no translation periods.
Above recipe is impossible to carry out in general, but works surprisingly well for CMC, due to an observation (insertion of a spectral parameter) coming from mathematical physics.
For $B_\lambda = Hg + \lambda Q + \lambda^{-1} \bar{Q}$ the holomorphic family in $\lambda \in \mathbb{C}_*$ of $\text{SL}(2, \mathbb{C})$-connections with simple poles at $\lambda = 0, \infty$

$$d_\lambda = \begin{pmatrix} \nabla & B_\lambda \\ -(B_\lambda)^* & \nabla_\perp \end{pmatrix}$$

is flat \iff f is CMC \iff Hopf differential $Q \in H^0(K^2)$ is holomorphic.
For $B_\lambda = Hg + \lambda Q + \lambda^{-1} \bar{Q}$ the holomorphic family of $\text{SL}(2, \mathbb{C})$-connections with simple poles at $\lambda = 0, \infty$

$$d_\lambda = \begin{pmatrix} \nabla & B_\lambda \\ -(B_\lambda)^* & \nabla^\perp \end{pmatrix}$$

is flat \iff f is CMC \iff Hopf differential $Q \in H^0(K^2)$ is holomorphic.

Holomorphic family of holonomy representations

$$\rho^p_\lambda : \pi_1(M, p) \to \text{SL}(2, \mathbb{C})$$

based at $p \in M$ with essential (exponential) singularities at $\lambda = 0, \infty$ and unitary for $|\lambda| = 1$.
Basic paradigm: use λ-dependence to reconstruct holomorphic family ρ^p_λ of holonomy representations for each $p \in M \rightsquigarrow$ gives holomorphic family of flat connections $d_\lambda \rightsquigarrow$ constructs f at $\lambda = 1$.
Basic paradigm: use λ-dependence to reconstruct holomorphic family ρ^p_λ of holonomy representations for each $p \in M \xrightarrow{\sim} g$ gives holomorphic family of flat connections $d_\lambda \xrightarrow{\sim} \text{constructs } f$ at $\lambda = 1$.

Period closing: at $\lambda = 1$

$$\rho^p_\lambda = 1 \quad \text{and} \quad \frac{d}{d\lambda} \rho^p_\lambda = 0$$

to close rotational and translational periods of f.
This works for tori (Pinkall & Sterling, Hitchin, Bobenko):
This works for tori (Pinkall&Sterling, Hitchin, Bobenko):

- $M = T^2 = \mathbb{R}^2/\Lambda$ and thus ρ^p_λ diagonalizes for generic $\lambda \in \mathbb{C}_*$.
This works for tori (Pinkall&Sterling, Hitchin, Bobenko):

- $M = T^2 = \mathbb{R}^2/\Lambda$ and thus ρ^p_λ diagonalizes for generic $\lambda \in \mathbb{C}_*$;
- eigenlines $e^p_\lambda, \tilde{e}^p_\lambda$ of ρ^p_λ define hyper-elliptic Riemann surface over \mathbb{C}_* branched where eigenlines coincide;
This works for tori (Pinkall & Sterling, Hitchin, Bobenko):

- $M = T^2 = \mathbb{R}^2 / \Lambda$ and thus ρ^p_λ diagonalizes for generic $\lambda \in \mathbb{C}_*$;
- eigenlines e^p_λ, \tilde{e}^p_λ of ρ^p_λ define hyper-elliptic Riemann surface over \mathbb{C}_* branched where eigenlines coincide;
- 2-dim ellipticity (of CMC equation) allows to compactify to hyper-elliptic curve $\Sigma \to \mathbb{P}^1$ independent of $p \in M$, the spectral curve Σ of f;
This works for tori (Pinkall&Sterling, Hitchin, Bobenko):

- $M = T^2 = \mathbb{R}^2/\Lambda$ and thus ρ_λ^p diagonalizes for generic $\lambda \in \mathbb{C}_*$;
- eigenlines $e_\lambda^p, \tilde{e}_\lambda^p$ of ρ_λ^p define hyper-elliptic Riemann surface over \mathbb{C}_* branched where eigenlines coincide;
- 2-dim ellipticity (of CMC equation) allows to compactify to hyper-elliptic curve $\Sigma \to \mathbb{P}^1$ independent of $p \in M$, the spectral curve Σ of f;
- eigenlines then define holomorphic line bundle $\mathcal{E}^p \to \Sigma$;
This works for tori (Pinkall&Sterling, Hitchin, Bobenko):

- $M = T^2 = \mathbb{R}^2/\Lambda$ and thus ρ^p_λ diagonalizes for generic $\lambda \in \mathbb{C}_*$;
- eigenlines $e^p_\lambda, \bar{e}^p_\lambda$ of ρ^p_λ define hyper-elliptic Riemann surface over \mathbb{C}_* branched where eigenlines coincide;
- 2-dim ellipticity (of CMC equation) allows to compactify to hyper-elliptic curve $\Sigma \to \mathbb{P}^1$ independent of $p \in M$, the spectral curve Σ of f;
- eigenlines then define holomorphic line bundle $\mathcal{E}^p \to \Sigma$;
- eigenline bundle flow

$$T^2 \to \text{Pic}(\Sigma) : p \mapsto \mathcal{E}^p$$

is linear tangent to Abel map of Σ in $\text{Pic}(\Sigma)$.

explain this some more in real time...
Figure: Delaunay cylinders, the embedded unduloids and immersed nodoids, have spectral genus 1.
Figure: Equivariant CMC tori in \mathbb{S}^3 with increasing numbers of lobes have spectral genus 1. The surfaces are stereographically projected to \mathbb{R}^3.
Figure: The Wente and Dobriner CMC tori have respective spectral genera 2 and 3.
Figure: Spectral genus 3 CMC tori (Nick Schmitt 2008).
Figure: Spectral genus 3 CMC torus (Nick Schmitt 2008).
Figure: Spectral genus 4 CMC tori (Matthias Heil Ph D thesis, 1995).
Figure: Spectral genus 5 CMC torus (Matthias Heil Ph D thesis, 1995).
Conjecture: To any closed space curve γ there is a CMC torus inside a small circular tube around γ.

explain this some more in real time...
What have we done:
What have we done:

- associate to a CMC torus in space holomorphic data (hyperelliptic curve and holomorphic line bundle) which in turn reconstruct the surface from linear line bundle flow:

\[
T^2 \xrightarrow{\text{linear}} \text{Pic}(\Sigma) \xrightarrow{\Theta} \mathbb{R}^3
\]

Period closing means line bundle flow gives a subtorus of the generalized Picard group of the curve.
What have we done:

- associate to a **CMC torus** in space holomorphic data (hyperelliptic curve and holomorphic line bundle) which in turn reconstruct the surface from linear line bundle flow:

\[
T^2 \xrightarrow{\text{linear}} \text{Pic}(\Sigma) \xrightarrow{\Theta} \mathbb{R}^3
\]

Period closing means line bundle flow gives a **subtorus** of the generalized Picard group of the curve.

- This description is central to understand the moduli space of all CMC cylinders of finite spectral genus, and hence all CMC tori in \(\mathbb{R}^3\) and also \(S^3 \rightsquigarrow \text{Lawson conjecture}\) (Kilian and Schmidt).
What have we done:

- associate to a **CMC torus** in space holomorphic data (hyperelliptic curve and holomorphic line bundle) which in turn reconstruct the surface from linear line bundle flow:

\[
\begin{align*}
T^2 \xrightarrow{\text{linear}} & \text{Pic}(\Sigma) \xrightarrow{\Theta} \mathbb{R}^3
\end{align*}
\]

Period closing means line bundle flow gives a **subtorus** of the generalized Picard group of the curve.

- This description is central to understand the moduli space of all CMC cylinders of finite spectral genus, and hence all CMC tori in \(\mathbb{R}^3\) and also \(S^3 \rightsquigarrow \text{Lawson conjecture} \) (Kilian and Schmidt).

- Similar result for constrained Willmore tori (Bohle, Schmidt): \(\text{SL}(2, \mathbb{C}) \rightsquigarrow \text{SL}(4, \mathbb{C})\) and have 4-fold cover of \(\mathbb{P}^1 \rightsquigarrow \text{Willmore conjecture}\)?
A flat connection determines and is determined by its holonomy representation of the fundamental group.

If the fundamental group is complicated (higher genus surfaces) this representation is complicated.

If the surface is not CMC we do not even have holomorphic families of flat connections and thus no hope to obtain classifying holomorphic data from flat connections.

So what shall we do?
Hope that the holonomy for a CMC surface is abelian even in higher genus?

Theorem (Gerding 2009):
Let \(f : M \to \mathbb{R}^3 \) be a genus \(g \) compact CMC surface with holonomy \(\rho_\lambda : \pi_1(M) \to \text{SL}(2, \mathbb{C}) \) abelian for all \(\lambda \in \mathbb{C}_* \). Then \(f \) has a spectral curve \(\Sigma \) and factors via

\[
\begin{array}{ccc}
\text{Pic}(M) & \xrightarrow{\text{linear}} & \text{Pic}(\Sigma) \\
\uparrow \quad \text{Abel} & & \downarrow \Theta \\
M & \xrightarrow{f} & \mathbb{R}^3
\end{array}
\]

In other words, \(f(M) \subset \mathbb{R}^3 \) is a CMC torus onto which \(M \) maps with branch points.
Different paradigm: work with “half connections”, or holomorphic structures, which are not determined by their monodromy, so that we have freedom to choose the type of monodromy we want (e.g., abelian ones).

This works for all surfaces of any genus...
Conformal immersion $f : M \to \mathbb{R}^3$ induces quaternionic spin bundle $L \to M$:
Conformal immersion $f: M \to \mathbb{R}^3$ induces quaternionic spin bundle $L \to M$:

- **Skew-hermitian spin pairing**

 $$(,) : L \times L \to TM^* \otimes \mathbb{H} \quad \sim \quad (\varphi, \varphi) \in \Omega^1(M, \mathbb{R}^3)$$

 for $\varphi \in \Gamma(L)$.
Conformal immersion $f : M \to \mathbb{R}^3$ induces quaternionic spin bundle $L \to M$:

- Skew-hermitian spin pairing

 $\langle , \rangle : L \times L \to TM^* \otimes \mathbb{H} \sim (\varphi, \varphi) \in \Omega^1(M, \mathbb{R}^3)$

 for $\varphi \in \Gamma(L)$.

- f gives canonical section $\psi \in \Gamma(L)$ with

 $$(\psi, \psi) = df : M \to \mathbb{R}^3.$$
Holomorphic spin structure on L:
Holomorphic spin structure on L:

- $D : \Gamma(L) \to \Gamma(K \otimes L)$, a Dirac operator

\[
D = \begin{pmatrix}
\bar{\partial} & H \\
-H & \partial
\end{pmatrix}
\]

with potential $H \in \Gamma((K K)^{1/2})$ the mean curvature density.
Holomorphic spin structure on L:

- $D : \Gamma(L) \to \Gamma(K \otimes L)$, a Dirac operator

\[
D = \begin{pmatrix}
\bar{\partial} & H \\
-H & \partial
\end{pmatrix}
\]

with potential $H \in \Gamma((K^2)^{1/2})$ the mean curvature density.

- Product rule

\[
d(\varphi, \bar{\varphi}) = (D\varphi, \bar{\varphi}) + (\varphi, D\bar{\varphi})
\]
Holomorphic spin structure on L:

- $D : \Gamma(L) \to \Gamma(\bar{K} \otimes L)$, a Dirac operator

\[
D = \begin{pmatrix}
\bar{\partial} & H \\
-H & \partial
\end{pmatrix}
\]

with potential $H \in \Gamma((\bar{K}K)^{1/2})$ the mean curvature density.

- Product rule

\[
d(\varphi, \tilde{\varphi}) = (D\varphi, \tilde{\varphi}) + (\varphi, D\tilde{\varphi})
\]

- Weierstraß representation

\[
\varphi \in H^0(L) = \ker D \quad \leadsto \quad g = \int_M (\varphi, \varphi) : \tilde{\mathcal{M}} \to \mathbb{R}^3
\]

gives conformal immersion with translational periods;
$\psi \in H^0(L)$ reconstructs f.
Holomorphic spin structure on L:

- $D: \Gamma(L) \to \Gamma(K \otimes L)$, a Dirac operator

$$D = \begin{pmatrix} \bar{\partial} & H \\ -H & \partial \end{pmatrix}$$

with potential $H \in \Gamma((KK)^{1/2})$ the mean curvature density.

- Product rule

$$d(\varphi, \bar{\varphi}) = (D\varphi, \bar{\varphi}) + (\varphi, D\bar{\varphi})$$

- Weierstraß representation

$$\varphi \in H^0(L) = \ker D \leadsto g = \int_M (\varphi, \varphi): \tilde{M} \to \mathbb{R}^3$$

gives conformal immersion with translational periods;

$\psi \in H^0(L)$ reconstructs f.

- Potential $H = 0 \leadsto$ classical Weierstraß representation of minimal surfaces.
In contrast to a connection, D has many abelian monodromies. A representation $h: \pi_1(M) \to \mathbb{H}_\ast$ is contained in the spectral variety Σ of D iff

\exists non-trivial kernel of D on \tilde{M} with monodromy h, i.e., $\phi \in \Gamma(\tilde{M}, L)$ with $D\phi = 0$ and $\gamma^*\phi = \phi h(\gamma)$.

The conformal immersions $\int_M(\phi, \phi)$ for various $h \in \Sigma$ all have rotational periods around same axis and translational periods (analog of associated family in CMC case). Original surface f recovered at the trivial representation $h = 1$.
In contrast to a connection, D has many abelian monodromies. A representation $h: \pi_1(M) \rightarrow \mathbb{H}_*$ is contained in the spectral variety Σ of D iff

- h is abelian $\iff h: H_1(M, \mathbb{Z}) \rightarrow \mathbb{C}_*$;
In contrast to a connection, D has many abelian monodromies. A representation $h: \pi_1(M) \to \mathbb{H}_*$ is contained in the spectral variety Σ of D iff

- h is abelian $\iff h: H_1(M, \mathbb{Z}) \to \mathbb{C}_*$;
- there exists a non-trivial kernel of D on \tilde{M} with monodromy h, i.e., $\varphi \in \Gamma(\tilde{M}, L)$ with $D\varphi = 0$ and $\gamma^*\varphi = \varphi h_\gamma$.

The conformal immersions $\int M(\varphi, \varphi)$ for various $h \in \Sigma$ all have rotational periods around the same axis and translational periods (analog of associated family in CMC case). The original surface f is recovered at the trivial representation $h = 1$.

In contrast to a connection, D has many abelian monodromies. A representation $h: \pi_1(M) \to \mathbb{H}_\ast$ is contained in the spectral variety Σ of D iff

- h is abelian $\Leftrightarrow h: H_1(M, \mathbb{Z}) \to \mathbb{C}_\ast$;
- there exists a non-trivial kernel of D on \tilde{M} with monodromy h, i.e., $\varphi \in \Gamma(\tilde{M}, L)$ with $D\varphi = 0$ and $\gamma^*\varphi = \varphi h_\gamma$.

The conformal immersions $\int_M (\varphi, \varphi)$ for various $h \in \Sigma$ all have rotational periods around same axis and translational periods (analog of associated family in CMC case). Original surface f recovered at the trivial representation $h = 1$.
Theorem (Heller, Shen 2009): The spectral variety Σ of a conformal immersion $f : M \to \mathbb{R}^3$ of a compact surface M of genus $g \geq 1$ is an analytic hypersurface

$$\Sigma^{2g-1} \subset \text{Hom}(H_1(M, \mathbb{Z}), \mathbb{C}_*) \cong \mathbb{C}^{2g} / \mathbb{Z}^{2g}$$

which is asymptotic, for $\ln|h| \to \pm \infty$, to the vacuum spectrum Σ_0 corresponding to the operator D with zero potential $H = 0$.
Basic idea:
Basic idea:

- Rewrite existence of sections with monodromy for D as the non-invertibility in a holomorphic family of Dirac type operators

$$D_\omega = \begin{pmatrix} \bar{\partial} + \omega'' & H \\ -H & \partial + \omega' \end{pmatrix}$$

where $h = e^{\int \omega}$ and $\omega \in \text{Harm}^1(M, \mathbb{C})$.
Basic idea:

▸ Rewrite existence of sections with monodromy for D as the non-invertibility in a holomorphic family of Dirac type operators

$$D_\omega = \begin{pmatrix} \bar{\partial} + \omega'' & H \\ -H & \partial + \omega' \end{pmatrix}$$

where $h = e^{\int \omega}$ and $\omega \in \text{Harm}^1(M, \mathbb{C})$.

▸ L spin \leadsto index $D_\omega = 0 \leadsto \det D_\omega$ holomorphic and Σ is the quotient under $\text{Harm}^1(M, 2\pi \mathbb{Z})$ of the analytic variety

$$\{ \det D_\omega = 0 \} \subset \text{Harm}^1(M, \mathbb{C}).$$
Basic idea:

- Rewrite existence of sections with monodromy for \(D \) as the non-invertibility in a holomorphic family of Dirac type operators

\[
D_\omega = \begin{pmatrix}
\overline{\partial} + \omega'' & H \\
-H & \partial + \omega'
\end{pmatrix}
\]

where \(h = e^{\int \omega} \) and \(\omega \in \text{Harm}^1(M, \mathbb{C}) \).

- \(L \) spin \(\rightsquigarrow \) index \(D_\omega = 0 \) \(\rightsquigarrow \) \(\det D_\omega \) holomorphic and \(\Sigma \) is the quotient under \(\text{Harm}^1(M, 2\pi \mathbb{Z}) \) of the analytic variety

\[
\{ \det D_\omega = 0 \} \subset \text{Harm}^1(M, \mathbb{C}).
\]

- \(\Sigma_0 = \Theta \times H^0(K) \cup \overline{H^0(K)} \times \overline{\Theta} + \text{Harm}^1(M, 2\pi \mathbb{Z}). \)
What makes this integrable in the sense of a linear flow?
What makes this integrable in the sense of a linear flow?

- $\omega \in \Sigma \rightsquigarrow \dim_{\mathbb{C}} \ker D_\omega = 1$ generically \rightsquigarrow holomorphic line bundle

$$\mathcal{E}^p \to \Sigma$$

where $\varphi_\omega \in \ker D_\omega \subset \Gamma(L)$, \hspace{1em} $\mathcal{E}_\omega^p = \varphi_\omega(p)\mathbb{C} \subset L_p \cong \mathbb{C}^2$.

What makes this integrable in the sense of a linear flow?

- $\omega \in \Sigma \leadsto \dim_{\mathbb{C}} \ker D_\omega = 1$ generically \leadsto holomorphic line bundle

 $$\mathcal{E}^p \rightarrow \Sigma$$

where $\varphi_\omega \in \ker D_\omega \subset \Gamma(L)$, $\mathcal{E}_\omega^p = \varphi_\omega(p) \mathbb{C} \subset L_p \cong \mathbb{C}^2$.

- Is it true that $M \rightarrow \text{Pic}(\Sigma) : p \mapsto \mathcal{E}^p$ factorizes via

 $$\begin{array}{ccc}
 \text{Pic}(M) & \xrightarrow{\text{linear}} & \text{Pic}(\Sigma) \\
 \uparrow \text{Abel} & & \\
 M & & \\
 \end{array}$$
What makes this integrable in the sense of a linear flow?

- $\omega \in \Sigma \leadsto \dim_{\mathbb{C}} \ker D\omega = 1$ generically \leadsto holomorphic line bundle

$$\mathcal{E}^p \rightarrow \Sigma$$

where $\varphi_\omega \in \ker D\omega \subset \Gamma(L)$, $\mathcal{E}_\omega = \varphi_\omega(p)\mathbb{C} \subset L_p \cong \mathbb{C}^2$.

- Is it true that $M \rightarrow \text{Pic}(\Sigma) : p \mapsto \mathcal{E}^p$ factorizes via

$$\begin{array}{ccc}
\text{Pic}(M) & \xrightarrow{\text{linear}} & \text{Pic}(\Sigma) \\
\uparrow \text{Abel} & & \\
M & & \\
\end{array}$$

- $f : M \rightarrow \mathbb{R}^3$ CMC (Willmore), both elliptic problems, Σ can be compactified? \leadsto algebro-geometric data.
Main evidence from $g = 1$ case, where all of above has been proven (Bohle, P., Pinkall):

$\Sigma \subset \mathbb{C}^2/\mathbb{Z}^2$ analytic curve, vacuum $\Sigma_0 = \{0\} \times \mathbb{C} \cup \mathbb{C} \times \{0\} + \mathbb{Z}^2$ and f factorizes via

$$\begin{align*}
\text{Pic}(T^2) \xrightarrow{\text{linear}} \text{Pic}(\Sigma) \\
\downarrow \Theta \\
T^2 \xrightarrow{f} \mathbb{R}^3
\end{align*}$$

For CMC (and Willmore) the holonomy and monodromy constructions coincide in this case (Bohle; Carberry, Leschke, P.)
How does one detect CMC (or Willmore) in the spectral variety Σ? Can one obtain Lawson’s genus 2 minimal surface this way?