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Figure: Twizzled Torus



Figure: Wente Torus



Figure: Delaunay Surfaces



Figure: Tetranoid



Figure: Sprungnoid



Figure: Symmetric 4-noids



Figure: Experimental 4-noids



I These surfaces have constant mean curvature (CMC) !
critical for the area functional under volume constraint.

I More generally, consider (constrained) Willmore surfaces !
critical for

∫
H2 under (conformal) variations of the surface.

I Minimal surfaces in space forms  Willmore surfaces.

I CMC surfaces in space forms  constrained Willmore
surfaces.
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Classical integrability

I An immersed surface f : M → R3 splits the trivial bundle

M × R3 = TM ⊕ NM ,

d =

(
∇ B
−B∗ ∇⊥

)
.

I Gauß-Codazzi equation:

F∇ − B ∧ B∗ = 0 and d∇B = 0 .

I With g = e2u|dz |2, B = Hg + Q + Q̄ where H is the mean
curvature, Q = qdz2 the Hopf differential:

4u + e2uH2 − e−2u|q|2 = 0 and Hze
2u = qz̄ .
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Given (M, g) and putative 2nd -fundamental form B solving
Gauß-Codazzi built :

I flat metric rank 3 bundle

V = (TM ⊕ R, g ⊕ dt2, d) , d :=

(
∇ B
−B∗ ∇⊥

)

I On universal cover

Ṽ = M̃ × R3 and inclusion gives df : TM̃ → R3

I Period closing means holonomy of d (rotation periods) is
trivial and df has no translation periods.
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Ṽ = M̃ × R3 and inclusion gives df : TM̃ → R3

I Period closing means holonomy of d (rotation periods) is
trivial and df has no translation periods.



Above recipe is impossible to carry out in general, but works
surprisingly well for CMC, due to an observation (insertion of a
spectral parameter) coming from mathematical physics.



I For Bλ = Hg + λQ + λ−1Q̄ the holomorphic family in
λ ∈ C∗ of SL(2,C)-connections with simple poles at λ = 0,∞

dλ =

(
∇ Bλ

−(Bλ)∗ ∇⊥
)

is flat ⇐⇒ f is CMC ⇐⇒ Hopf differential Q ∈ H0(K 2) is
holomorphic.

I Holomorphic family of holonomy representations

ρp
λ : π1(M, p)→ SL(2,C)

based at p ∈ M with essential (exponential) singularities at
λ = 0,∞ and unitary for |λ| = 1.



I For Bλ = Hg + λQ + λ−1Q̄ the holomorphic family in
λ ∈ C∗ of SL(2,C)-connections with simple poles at λ = 0,∞

dλ =

(
∇ Bλ

−(Bλ)∗ ∇⊥
)

is flat ⇐⇒ f is CMC ⇐⇒ Hopf differential Q ∈ H0(K 2) is
holomorphic.

I Holomorphic family of holonomy representations

ρp
λ : π1(M, p)→ SL(2,C)

based at p ∈ M with essential (exponential) singularities at
λ = 0,∞ and unitary for |λ| = 1.



Basic paradigm: use λ-dependence to reconstruct holomorphic
family ρp

λ of holonomy representations for each p ∈ M  gives
holomorphic family of flat connections dλ  constructs f at λ = 1.

Period closing: at λ = 1

ρp
λ = 1 and d

dλρ
p
λ = 0

to close rotational and translational periods of f .
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This works for tori (Pinkall&Sterling, Hitchin, Bobenko):

I M = T 2 = R2/Λ and thus ρp
λ diagonalizes for generic λ ∈ C∗;

I eigenlines ep
λ , ẽp

λ of ρp
λ define hyper-elliptic Riemann surface

over C∗ branched where eigenlines coincide;

I 2-dim ellipticity (of CMC equation) allows to compactify to
hyper-elliptic curve Σ→ P1 independent of p ∈ M, the
spectral curve Σ of f ;

I eigenlines then define holomorphic line bundle Ep → Σ;

I eigenline bundle flow

T 2 → Pic(Σ) : p 7→ Ep

is linear tangent to Abel map of Σ in Pic(Σ).

explain this some more in real time...



This works for tori (Pinkall&Sterling, Hitchin, Bobenko):

I M = T 2 = R2/Λ and thus ρp
λ diagonalizes for generic λ ∈ C∗;

I eigenlines ep
λ , ẽp
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Figure: Delaunay cylinders, the embedded unduloids and immersed
nodoids, have spectral genus 1.



Figure: Equivariant CMC tori in S3 with increasing numbers of lobes have
spectral genus 1. The surfaces are stereographically projected to R3.



Figure: The Wente and Dobriner CMC tori have respective spectral
genera 2 and 3.



Figure: Spectral genus 3 CMC tori (Nick Schmitt 2008).



Figure: Spectral genus 3 CMC torus (Nick Schmitt 2008).



Figure: Spectral genus 4 CMC tori (Matthias Heil Ph D thesis, 1995).



Figure: Spectral genus 5 CMC torus (Matthias Heil Ph D thesis, 1995).



Conjecture: To any closed space curve γ there is a CMC torus
inside a small circular tube around γ.

explain this some more in real time...



What have we done:

I associate to a CMC torus in space holomorphic data
(hyperelliptic curve and holomorphic line bundle) which in
turn reconstruct the surface from linear line bundle flow:

T 2 linear−−−−→ Pic(Σ)
Θ−−−−→ R3

Period closing means line bundle flow gives a subtorus of the
generalized Picard group of the curve.

I This description is central to understand the moduli space of
all CMC cylinders of finite spectral genus, and hence all CMC
tori in R3 and also S3  Lawson conjecture (Kilian and
Schmidt).

I Similar result for constrained Willmore tori (Bohle, Schmidt):
SL(2,C)  SL(4,C) and have 4-fold cover of P1  Willmore
conjecture?
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General integrability

A flat connection determines and is determined by its holonomy
representation of the fundamental group.

If the fundamental group is complicated (higher genus surfaces)
this representation is complicated.

If the surface is not CMC we do not even have holomorphic
families of flat connections and thus no hope to obtain classifying
holomorphic data from flat connections.

So what shall we do?



Hope that the holonomy for a CMC surface is abelian even in
higher genus?

Theorem(Gerding 2009):
Let f : M → R3 be a genus g compact CMC surface with
holonomy ρλ : π1(M)→ SL(2,C) abelian for all λ ∈ C∗. Then f
has a spectral curve Σ and factors via

Pic(M)
linear−−−−→ Pic(Σ)xAbel

yΘ

M
f−−−−→ R3

In other words, f (M) ⊂ R3 is a CMC torus onto which M maps
with branch points.



Different paradigm: work with “half connections”, or holomorphic
structures, which are not determined by their monodromy, so that
we have freedom to choose the type of monodromy we want (e.g.,
abelian ones).

This works for all surfaces of any genus...



Conformal immersion f : M → R3 induces quaternionic spin bundle
L→ M:

I Skew-hermitian spin pairing

( , ) : L× L→ TM∗ ⊗H  (ϕ,ϕ) ∈ Ω1(M,R3)

for ϕ ∈ Γ(L).

I f gives canonical section ψ ∈ Γ(L) with

(ψ,ψ) = df : M → R3 .
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Holomorphic spin structure on L:

I D : Γ(L)→ Γ(K ⊗ L), a Dirac operator

D =

(
∂̄ H
−H ∂

)
with potential H ∈ Γ((KK )1/2) the mean curvature density.

I Product rule

d(ϕ, ϕ̃) = (Dϕ, ϕ̃) + (ϕ,Dϕ̃)

I Weierstraß representation

ϕ ∈ H0(L) = ker D  g =

∫
M

(ϕ,ϕ) : M̃ → R3

gives conformal immersion with translational periods;
ψ ∈ H0(L) reconstructs f .

I Potential H = 0  classical Weierstraß representation of
minimal surfaces.
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In contrast to a connection, D has many abelian monodromies. A
representation h : π1(M)→ H∗ is contained in the spectral variety
Σ of D iff

I h is abelian  h : H1(M,Z)→ C∗;
I there exists a non-trivial kernel of D on M̃ with monodromy

h, i.e., ϕ ∈ Γ(M̃, L) with Dϕ = 0 and γ∗ϕ = ϕhγ .

The conformal immersions
∫
M(ϕ,ϕ) for various h ∈ Σ all have

rotational periods around same axis and translational periods
(analog of associated family in CMC case). Original surface f
recovered at the trivial representation h = 1.



In contrast to a connection, D has many abelian monodromies. A
representation h : π1(M)→ H∗ is contained in the spectral variety
Σ of D iff

I h is abelian  h : H1(M,Z)→ C∗;

I there exists a non-trivial kernel of D on M̃ with monodromy
h, i.e., ϕ ∈ Γ(M̃, L) with Dϕ = 0 and γ∗ϕ = ϕhγ .

The conformal immersions
∫
M(ϕ,ϕ) for various h ∈ Σ all have

rotational periods around same axis and translational periods
(analog of associated family in CMC case). Original surface f
recovered at the trivial representation h = 1.



In contrast to a connection, D has many abelian monodromies. A
representation h : π1(M)→ H∗ is contained in the spectral variety
Σ of D iff

I h is abelian  h : H1(M,Z)→ C∗;
I there exists a non-trivial kernel of D on M̃ with monodromy

h, i.e., ϕ ∈ Γ(M̃, L) with Dϕ = 0 and γ∗ϕ = ϕhγ .

The conformal immersions
∫
M(ϕ,ϕ) for various h ∈ Σ all have

rotational periods around same axis and translational periods
(analog of associated family in CMC case). Original surface f
recovered at the trivial representation h = 1.



In contrast to a connection, D has many abelian monodromies. A
representation h : π1(M)→ H∗ is contained in the spectral variety
Σ of D iff

I h is abelian  h : H1(M,Z)→ C∗;
I there exists a non-trivial kernel of D on M̃ with monodromy

h, i.e., ϕ ∈ Γ(M̃, L) with Dϕ = 0 and γ∗ϕ = ϕhγ .

The conformal immersions
∫
M(ϕ,ϕ) for various h ∈ Σ all have

rotational periods around same axis and translational periods
(analog of associated family in CMC case). Original surface f
recovered at the trivial representation h = 1.



Theorem (Heller, Shen 2009): The spectral variety Σ of a
conformal immersion f : M → R3 of a compact surface M of genus
g ≥ 1 is an analytic hypersurface

Σ2g−1 ⊂ Hom(H1(M,Z),C∗) ∼= C2g/Z2g

which is asymptotic, for ln |h| → ±∞, to the vacuum spectrum Σ0

corresponding to the operator D with zero potential H = 0.



Basic idea:

I Rewrite existence of sections with monodromy for D as the
non-invertibility in a holomorphic family of Dirac type
operators

Dω =

(
∂̄+ω′′ H
−H ∂+ω′

)
where h = e

R
ω and ω ∈ Harm1(M,C).

I L spin  index Dω = 0  det Dω holomorphic and Σ is the
quotient under Harm1(M, 2πZ) of the analytic variety

{det Dω = 0} ⊂ Harm1(M,C) .

I Σ0 = Θ× H0(K ) ∪ H0(K )×Θ + Harm1(M, 2πZ).
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What makes this integrable in the sense of a linear flow?

I ω ∈ Σ  dimC ker Dω = 1 generically  holomorphic line
bundle

Ep → Σ

where ϕω ∈ ker Dω ⊂ Γ(L) , Ep
ω = ϕω(p)C ⊂ Lp

∼= C2.

I Is it true that M → Pic(Σ) : p 7→ Ep factorizes via

Pic(M)
linear−−−−→ Pic(Σ)xAbel

M

I f : M → R3 CMC (Willmore), both elliptic problems, Σ can
be compactified?  algebro-geometric data.
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I f : M → R3 CMC (Willmore), both elliptic problems, Σ can
be compactified?  algebro-geometric data.



Main evidence from g = 1 case, where all of above has been
proven (Bohle, P., Pinkall):

Σ ⊂ C2/Z2 analytic curve, vacuum Σ0 = {0} × C ∪ C× {0}+ Z2

and f factorizes via

Pic(T 2)
linear−−−−→ Pic(Σ)∥∥∥ yΘ

T 2 f−−−−→ R3

For CMC (and Willmore) the holonomy and monodromy
constructions coincide in this case (Bohle; Carberry, Leschke, P.)



How does one detect CMC (or Willmore) in the spectral variety Σ?
Can one obtain Lawson’s genus 2 minimal surface this way
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