Period Condition of Algebraic Minimal Surfaces and Nevanlinna Theory

Ryoichi Kobayashi
Graduate School of Mathematics, Nagoya University

(based on a joint work with R. Miyaoka)
(preprint : Nevanlinna-Galois Theory for pseudo-algebraic minimal surfaces and its application to the value distribution of the Gauss map)

Period Condition

Let M be an open Riemann surface and ϕ_{i} 's $(i=1,2,3)$ three holomorphic 1 -forms on M. Consider the equation

$$
\partial x=\frac{1}{2}\left(\phi_{1}, \phi_{2}, \phi_{3}\right) .
$$

Suppose that the conditions

$$
\begin{gathered}
{[C] \quad \sum_{i=1}^{3} \phi_{i}^{2}=0 \text { conformality }} \\
{[R] \quad \sum_{i=1}^{3}\left|\phi_{i}\right|^{2}>0 \text { regularity }} \\
{[P] \quad \forall \gamma \in H_{1}(M, \mathbb{Z}), \int_{\gamma} \phi_{i} \text { is pure imaginary }(i=1,2,3)}
\end{gathered}
$$

are satisfied. The condition $[\mathrm{P}]$ is called the period condition.

Enneper-Weieretrass Representation. Minimal Surface

Then the Enneper-Weierstrass representation

$$
x=\Re \int_{z_{0}}^{z}\left(\phi_{1}, \phi_{2}, \phi_{3}\right)
$$

defines a regular minimal surface $x: M \rightarrow \mathbb{R}^{3}$ and all regular minimal surfaces in \mathbb{R}^{3} are obtained this way.
The Weieretrass data $(h d z, g)$ is defined by $h d z=\phi_{1}-i \phi_{2}$ and
$g=\frac{\phi_{3}}{\phi_{1}-i \phi_{2}}$.
Conversely $\phi_{1}=\frac{h}{2}\left(1-g^{2}\right) d z, \phi_{2}=\frac{i h}{2}\left(1+g^{2}\right) d z$ and $\phi_{3}=h g d z$
hold.
The meromorphic function $g: M \rightarrow \mathbb{P}^{1}$ coincides with the Gauss map of the minimal surface $x: M \rightarrow \mathbb{R}^{3}$.

Algebraic Minimal Surface

Definition 1. The total curvature of a minimal surface $x: M \rightarrow \mathbb{R}^{3}$ is defined by $\tau(M)=\int_{M} K d A \in \mathbb{R}_{\leq 0} \cup\{-\infty\}$ where K is the Gaussian curvature.
Definition 2. An algebraic minimal surface means a complete minimal surface in \mathbb{R}^{3} with finite total curvature.
Theorem 3 (Huber/Osserman). Let $x: M \rightarrow \mathbb{R}^{3}$ be an algebraic minimal surface. Then :
(1) M is conformally equivalent to a compact Riemann surface finitely many points removed, i.e., $\bar{M} \backslash\left\{p_{1}, \ldots, p_{k}\right\}$ where \bar{M} is a compact Riemann surface and $\left\{p_{i}\right\}_{i=1}^{k}$ are finitely many points on \bar{M}.
(2) the Weierstrass data $(h d z, g)$ extends meromorphically to \bar{M}.

Basic Setup in Nevanlinna Theory

Let $f: \mathbb{C} \rightarrow \mathbb{P}^{1}$ be a holomorphic function. Problem : What can we know by studying how f approximates a divisor
$D=\left\{p_{1}, \ldots, p_{n}\right\}$ on \mathbb{P}^{1} ?
The approximation of f to D is measure by the asymptotic behavior of the proximity function $m_{f, D}(r)=\int_{0}^{2 \pi} \log \frac{1}{\left|\sigma\left(f\left(e^{i \theta}\right)\right)\right|} \frac{d \theta}{2 \pi}$, where σ is the canonical section, i.e., $(\sigma)_{0}=D$ and $|\cdot|$ is a smooth Hermitian norm on the line bundle $\mathcal{O}_{X}(D)$.
How often f intersects D is counted by the counting function
$N_{f, D}(r)=\int_{0}^{r} \frac{d t}{t}\left\{n_{f, D}(t)-n_{f, D}(0)\right\}+n_{f, D}(0) \log r$ where
$n_{f, D}(t)=\sum_{|z|<t} \nu_{z}\left(f^{*} D\right)$ and $n_{f, D}(0)=\nu_{0}\left(f^{*} D\right)$.
The total complexity of f is measured by the height function $T_{f, D}(r)=\int_{0}^{r} \frac{d t}{t} \int_{|z|<t} f^{*} c_{1}\left(\mathcal{O}_{X}(D),|\cdot|\right)$.
Then we have the First Main Theorem
$T_{f, D}(r)=m_{f, D}(r)+N_{f, D}(r)+O(1)$.

Lemma on Logarithmic Derivative (Analytic Version)

Let $x: M \rightarrow \mathbb{R}^{3}$ be an algebraic minimal surface and $\widetilde{M}=\mathbb{D}$. Let $g: \mathbb{D} \rightarrow \mathbb{P}^{1}$ be the lifted Gauss map. Define

$$
\kappa:=\inf \left\{\bar{\kappa} \mid \int_{0}^{1} \exp \left(\bar{\kappa} T_{g}(t)\right) d t=\infty\right\} .
$$

Then we have
Theorem 4 (Nevanlinna's LLD). [Analytic Version]
$m_{\frac{g^{\prime}}{g}, \infty}(r) \leq(\kappa+\delta) T_{g}(r) \|_{\delta}$.
A strategy to get geometric conclusion from analytic LLD : We decompose LHS into geometric terms. To do so, we consider appropriate logarithmic differential on \mathbb{P}^{1} which we regard as a meromorphic function on $\overline{T \mathbb{P}^{1}}$ and extract geometric information from the resolution of its indeterminancy.

Lemma on Logarithmic Derivative (Geometric Version)

(1) the case $D=\{0, \infty\}$. Consider $\frac{d t}{t}$ a meromorphic function on $\overline{T \mathbb{P}^{1}}$. The indeterminancy disappears after blowing up the jet space of $\{0, \infty\}$ in $\overline{T \mathbb{P}^{1}}$. We get
$m_{{\frac{g^{\prime}}{g}}^{g}, \infty}(r)=\left(m_{g, D}(r)-m_{g^{(1)}, D^{(1)}}(r)\right)+m_{g^{(1)}, S_{\infty}}(r)$.
(2) the case $D=\left\{a_{1}, \ldots, a_{n}\right\}$. Consider a rational function $\phi_{b}(t):=\frac{\prod_{i=1}^{n}\left(t-a_{i}\right)}{(t-b)^{n}}$ and consider $g_{b}:=g \circ \phi_{b}: \mathbb{C} \rightarrow \mathbb{P}^{1}$. Then we have a decomposition $m_{\frac{g_{b}^{\prime}}{g_{b}}}(r)=\sum_{i=1}^{n}\left(m_{g,\left\{a_{i}\right\}}(r)-m_{g^{(1)},\left\{a_{i}\right\}^{(1)}}(r)\right)+$ $\left(m_{g,\{b\}}(r)-m_{g^{(1)},\{b\}^{(1)}}(r)\right)+m_{g^{(1)}, S_{\infty}}(r)$ and apply LLD analytic version to LHS. Moving b in \mathbb{P}^{1} and taking average we get Theorem 5 (LLD). [Geometric Version] $0 \leq \exists \alpha(r) \leq 1$ s.t. $m_{g, D}(r) \leq m_{g^{(1)}, D^{(1)}}(r)+\alpha(r)(\kappa+\delta) T_{g}(r) \|_{\delta}$, $m_{g^{(1)}, S_{\infty}}(r) \leq(1-\alpha(r))(\kappa+\delta) T_{g}(r) \|_{\delta}$.

Approximation and Geometric LLD

Let $g: \mathbb{D} \rightarrow \mathbb{P}^{1}$ be the lifted Gauss map of a given algebraic minimal surface and D a divisor (which we will take as the exceptional set of the Gauss map). The approximation to D is measured by $m_{g, D}(r)+N_{g, \operatorname{Ram}}(r)$. Here
$N_{g, \operatorname{Ram}}(r)=\int_{0}^{r} \frac{d t}{t}\left\{n_{g, \operatorname{Ram}}(t)-n_{g, \operatorname{Ram}}(0)\right\}+n_{g, \operatorname{Ram}}(0) \log r$ is the ramification counting function. This quantity measures the approximation of g to D where $m_{g, D}(r)$ does in the metric sense and $N_{g, \operatorname{Ram}}(r)$ in the intersection sense. We start the estimate by noting that $m_{g, D}(r) \leq m_{g^{(1)}, D^{(1)}}(r)+\alpha(r)(\kappa+\delta) T_{g}(r)$ and $N_{g, \operatorname{Ram}}(r)=N_{g^{(1)}, S_{0}}(r)$. Next we set $g^{(1)}=\frac{g^{(1)}}{h} h$ where $(g, h d z)$ is the Weierstrass data lifted on \mathbb{D}. $g^{(1)}=\left(g, g^{\prime}\right)$ and $h=(g, h)$ are maps to $\overline{T \mathbb{P}^{1}}$. Therefore we consider two compactified vector bundles $\overline{T \mathbb{P}^{1}}$ where $g^{(1)}$ and h lives and $\overline{\mathbb{P}^{1} \times \mathbb{C}}$ where $\frac{g^{(1)}}{h}$ lives.

Local Parameter vs Linear Coordinate

Let ξ be a local parameter of \bar{M} around the puncture and z the linear coordinate of \mathbb{C}. The coordinate change between ζ and z is of the form $\zeta=\exp \left(\frac{1}{m} \frac{z+1}{z-1}\right)$ where $\left.m \in \mathbb{Z}\right|_{>0}$ is a parameter. Then

$$
h(z)=\omega\left(\frac{\partial}{\partial z}\right)=\omega\left(\frac{\partial}{\partial \zeta}\right)\left[-2 \frac{\zeta}{m} \frac{1}{(z-1)^{2}}\right]=h(\zeta)\left[-2 \frac{\zeta}{m} \frac{1}{(z-1)^{2}}\right] .
$$

If we replace $m_{h, S_{\infty}}^{\zeta}(r)$ by $m_{h, S_{\infty}}(r)$, we have an extra approximation of magnitude

$$
[J]:=\bar{m}_{h, S_{\infty}}^{\zeta}(r)-\log \frac{1}{1-r} .
$$

Here \bar{m} means to ignore the multiplicity of poles of $h(\zeta)$ and m^{ζ} means that the coordinate used is the local parameter ζ.

Quantity $m_{h, S_{0}}(r)+N_{h, S_{0}}(r)-m_{h, S_{\infty}}(r)$

Apply (1) geometric LLD, (2) T is linear w.r.to linear equivalence class of divisors, (3) the linear equivalence between S_{0}, S_{∞} and $K_{\mathbb{P}^{1}}$ on $\overline{T \mathbb{P}^{1}}$ and $\overline{\mathbb{P}^{1} \times \mathbb{C}}$, (4) the difference of the effect of coordinate change on $g^{(1)} / h$ and h in the estimate of $m_{g, D}(r)+N_{g, \operatorname{Ram}}(r)$. The result is

$$
\begin{gathered}
m_{g, D}(r)+N_{g, \operatorname{Ram}}(r) \leq(\kappa+\delta) T_{g}(r) \\
+\left(m_{h, S_{0}}(r)+N_{h, S_{0}}(r)-m_{h, S_{\infty}}(r)\right)-[J] \|_{\delta} .
\end{gathered}
$$

FMT and the linear equivalence $\left[S_{0}\right]-\left[S_{\infty}\right]=-\left[K_{\mathbb{P}^{1}}\right]$ on $\overline{T \mathbb{P}^{1}} \Rightarrow$ $2 T_{g}(r)=m_{h, S_{0}}(r)+N_{h, S_{0}}(r)-m_{h, S_{\infty}}(r)$.

Theorem 6.

$$
T_{g}(r) \leq \frac{1}{2}[J] .
$$

Proof of Theorem 6 and Geometric LLD

Set $H:=\int\left(\left(1-g^{2}\right), i\left(1+g^{2}\right), 2 g\right) \omega$. We consider $\left(1-g^{2}\right) h$ and $i\left(1+g^{2}\right) h$ at the same time. The period condition is expressed as $H(\gamma z)-H(z) \in \sqrt{-1} \mathbb{R}, \forall \gamma \in \pi_{1}(M)$.
Let $A_{r}:=\left\{a_{1}, \ldots, a_{k}\right\}$ be the values of e^{H} at the poles of g "near" $|z|=r$. The period condition implies that the set A_{r} has only finitely many variations for $\left|a_{i}\right|$ even if $k \rightarrow \infty$. Introduce a logarithmic 1-form $\sum_{i=1}^{k} \frac{d t}{t-a_{i}}$ and regard this as a meromorphic function on $\overline{T \mathbb{P}^{1}}$. Arguing as in the proof of geometric LLD, we have

$$
\begin{gathered}
\sum_{i=1}^{k} m_{\frac{\left.e^{H}\right)^{\prime}}{e^{H}-a_{i}}, \infty}^{\zeta}(r)=\log k+\sum_{i=1}^{k}\left(m_{e^{H},\left\{a_{i}\right\}}^{\zeta}(r)-m_{\left(e^{H}\right)^{(1)},\left\{a_{i}\right\}^{(1)}}^{\zeta}(r)\right) \\
\quad+\sum_{i=1}^{k}\left(m_{e^{H}, \infty}^{\zeta}(r)-m_{\left(e^{H}\right)^{(1)},\{\infty\}^{(1)}}^{\zeta}(r)\right)+m_{\left(e^{H}\right)^{\prime}, S_{\infty}}^{\zeta}(r)
\end{gathered}
$$

Computing in Two Ways, RHS

$$
(\mathrm{RHS})=\log k+m_{h, S_{\infty}}^{\zeta}(r)+\frac{3}{2} m_{H^{\prime}, S_{0}}^{\zeta}(r)+[\mathrm{OTH}]_{\mathrm{RHS}}
$$

holds, where $m_{h, S_{\infty}}^{\zeta}(r)$ is the contribution from the cusps, $\frac{3}{2} m_{H^{\prime}, S_{0}}^{\zeta}(r)$ is the contribution from the poles of g and $[\mathrm{OTH}]_{\mathrm{RHS}}$ is the contribution from the solutions of $e^{H}=a_{i}$ other than poles of g.
In the computation we use the Fubini-Study distance on $\overline{T \mathbb{P}^{1}}$. We have $m_{e^{H}, \infty}^{\zeta}(r)-m_{\left(e^{H}\right)^{(1)},\{\infty\}^{(1)}}^{\zeta}(r)=\frac{1}{2} m_{h, S_{\infty}}^{\zeta}(r)$,
$m_{\left(e^{H}\right)^{(1)}, S_{\infty}}^{\zeta}(r)=\frac{1}{2} m_{h, S_{\infty}}^{\zeta}(r)$,
$\sum_{i=1}^{k} m_{e^{H},\left\{a_{i}\right\}}^{\zeta}(r)=\frac{3}{2} m_{H^{\prime}, S_{0}}^{\zeta}(r)+[\mathrm{OTH}]_{\mathrm{RHS}}$ and
$\sum_{i=1}^{k} m_{\left(e^{H}\right)^{\prime},\left\{a_{i}\right\}^{(1)}}^{\zeta}(r)=O(1)$.

Computing in Two Ways, LHS

$$
(\mathrm{LHS})=\log k+m_{h, S_{\infty}}^{\zeta}(r)+\frac{1}{2} m_{H^{\prime}, S_{0}}^{\zeta}(r)+[\mathrm{OTH}]_{\mathrm{LHS}}
$$

holds, where $m_{h, S_{\infty}}^{\zeta}(r)$ is the contribution from the cusps, $\frac{1}{2} m_{H^{\prime}, S_{0}}^{\zeta}(r)$ is the contribution from the poles of g and $[\mathrm{OTH}]_{\mathrm{RHS}}$ is the contribution from the solutions of the equation $e^{H}=a_{i}$ other than poles of g.
In the computation we use just the absolute value of functions.

Comparison of OTH's and Estimate of $[J]_{0}$

We have

$$
(\mathrm{OTH})_{\mathrm{LHS}}-(\mathrm{OTH})_{\mathrm{RHS}} \leq \frac{1}{2} m_{h, S_{\infty}}^{\zeta}(r)=\frac{1}{2} m_{h, S_{\infty}}(r)+\frac{1}{2}[J] .
$$

and

$$
[J]_{0}=N_{h, S_{0}}(r) .
$$

We have also

$$
m_{H^{\prime}, S_{0}}(r)=\frac{1}{2} m_{h, S_{0}}(r) .
$$

Replacing m^{ζ} with m

Replacing m^{ζ} with m we have

$$
(\mathrm{RHS})=\log k+m_{h, S_{\infty}}(r)+\frac{3}{2} m_{H^{\prime}, S_{0}}(r)+[\mathrm{OTH}]_{\mathrm{RHS}}+[J]
$$

and

$$
\begin{gathered}
(\mathrm{LHS})=\log k+m_{h, S_{\infty}}(r)+\frac{1}{2} m_{H^{\prime}, S_{0}}(r)+[\mathrm{OTH}]_{\mathrm{LHS}} \\
+[J]-\frac{1}{2}[J]_{0}
\end{gathered}
$$

holds, where $[J]_{0}$ is the part of the contribution from the Jacobian of the coordinate change stemming from zeros of ω.

Comparison of LHS and RHS

$$
\begin{gathered}
\log k+m_{h, S_{\infty}}(r)+\frac{1}{2} m_{H^{\prime}, S_{0}}(r)+[\mathrm{OTH}]_{\mathrm{LHS}}+[J]-\frac{1}{2}[J]_{0} \\
\quad=\log k+m_{h, S_{\infty}}(r)+\frac{3}{2} m_{H^{\prime}, S_{0}}(r)+[\mathrm{OTH}]_{\mathrm{RHS}}+[J]
\end{gathered}
$$

Therefore we have

$$
\begin{gathered}
{[J]=\frac{1}{2} m_{h, S_{0}}(r)+\frac{1}{2} N_{h, S_{0}}(r)-\frac{1}{2} m_{h, S_{\infty}}(r)} \\
+[\mathrm{OTH}]_{\mathrm{RHS}}-[\mathrm{OTH}]_{\mathrm{LHS}}+\frac{1}{2} m_{h, S_{\infty}}(r)+\frac{1}{2}[J] \\
\quad+\frac{1}{2}[J] \\
\geq \frac{1}{2} m_{h, S_{0}}(r)+\frac{1}{2} N_{h, S_{0}}(r)-\frac{1}{2} m_{h, S_{\infty}}(r)+\frac{1}{2}[J]
\end{gathered}
$$

and finally we have

$$
T_{g}(r) \leq \frac{1}{2}[J] .
$$

Conclusion and Remark

(1) We have

$$
\frac{1}{\kappa} \log \frac{1}{1-r} \leq T_{g}(r) \leq \frac{1}{2}[J] .
$$

We note that the upper bound depends only on the conformal structure of M and not on the individual Weierstrass data. (2) We have

$$
m_{g, D}(r)+N_{g, \operatorname{Ram}}(r) \leq(\kappa+\delta) T_{g}(r) \|_{\delta}
$$

holds. This is the Second Main Theorem for the Gauss map of algebraic minimal surfaces. In Particular the Gauss map of any algebraic minimal surface omits at most $[\kappa]$ values. (3) $\kappa \leq e+$ small number.
(4) $\sharp\{$ exceptional values $\} \leq \operatorname{TRVN} \leq e+$ small number. Here TRVN means totally ramified value number of the Gauss map.

