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Period Condition

Let M be an open Riemann surface and φi’s (i = 1, 2, 3) three
holomorphic 1-forms on M . Consider the equation

∂x =
1

2
(φ1, φ2, φ3) .

Suppose that the conditions

[C]
∑3

i=1 φ2
i = 0 conformality

[R]
∑3

i=1 |φi|2 > 0 regularity

[P ] ∀γ ∈ H1(M, Z) ,
∫
γ φi is pure imaginary (i = 1, 2, 3)

are satisfied. The condition [P] is called the period condition.
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Enneper-Weieretrass Representation. Minimal Surface

Then the Enneper-Weierstrass representation

x = <
∫ z

z0

(φ1, φ2, φ3)

defines a regular minimal surface x : M → R
3 and all regular

minimal surfaces in R
3 are obtained this way.

The Weieretrass data (hdz, g) is defined by hdz = φ1 − iφ2 and
g = φ3

φ1−iφ2
.

Conversely φ1 = h
2 (1 − g2)dz, φ2 = ih

2 (1 + g2)dz and φ3 = hgdz

hold.
The meromorphic function g : M → P

1 coincides with the Gauss
map of the minimal surface x : M → R

3.
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Algebraic Minimal Surface

Definition 1. The total curvature of a minimal surface x : M → R
3 is

defined by τ(M) =
∫
M

KdA ∈ R≤0 ∪ {−∞} where K is the Gaussian
curvature.
Definition 2. An algebraic minimal surface means a complete
minimal surface in R

3 with finite total curvature.
Theorem 3 (Huber/Osserman). Let x : M → R

3 be an algebraic
minimal surface. Then :
(1) M is conformally equivalent to a compact Riemann surface finitely
many points removed, i.e., M\{p1, . . . , pk} where M is a compact
Riemann surface and {pi}k

i=1 are finitely many points on M .
(2) the Weierstrass data (hdz, g) extends meromorphically to M .
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Basic Setup in Nevanlinna Theory

Let f : C → P
1 be a holomorphic function. Problem : What can

we know by studying how f approximates a divisor
D = {p1, . . . , pn} on P

1 ?
The approximation of f to D is measure by the asymptotic
behavior of the proximity function mf,D(r) =

∫ 2π

0 log 1
|σ(f(reiθ))|

dθ
2π

,

where σ is the canonical section, i.e., (σ)0 = D and | · | is a
smooth Hermitian norm on the line bundle OX(D).
How often f intersects D is counted by the counting function
Nf,D(r) =

∫ r

0
dt
t {nf,D(t) − nf,D(0)} + nf,D(0) log r where

nf,D(t) =
∑

|z|<t νz(f
∗D) and nf,D(0) = ν0(f

∗D).
The total complexity of f is measured by the height function
Tf,D(r) =

∫ r

0
dt
t

∫
|z|<t f∗c1(OX(D), | · |).

Then we have the First Main Theorem
Tf,D(r) = mf,D(r) + Nf,D(r) + O(1).
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Lemma on Logarithmic Derivative (Analytic Version)

Let x : M → R
3 be an algebraic minimal surface and M̃ = D. Let

g : D → P
1 be the lifted Gauss map. Define

κ := inf

{
κ |

∫ 1

0
exp(κTg(t))dt = ∞

}
.

Then we have
Theorem 4 (Nevanlinna’s LLD). [Analytic Version]
m g′

g
,∞

(r) ≤ (κ + δ)Tg(r)||δ.

A strategy to get geometric conclusion from analytic LLD : We
decompose LHS into geometric terms. To do so, we consider
appropriate logarithmic differential on P

1 which we regard as a
meromorphic function on TP1 and extract geometric information
from the resolution of its indeterminancy.
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Lemma on Logarithmic Derivative (Geometric Version)

(1) the case D = {0,∞}. Consider dt
t a meromorphic function on

TP1. The indeterminancy disappears after blowing up the jet
space of {0,∞} in TP1. We get
m g′

g
,∞

(r) = (mg,D(r) − mg(1),D(1)(r)) + mg(1),S∞
(r).

(2) the case D = {a1, . . . , an}. Consider a rational function

φb(t) :=
Qn

i=1(t−ai)
(t−b)n and consider gb := g ◦ φb : C → P

1. Then we

have a decomposition m g′
b

gb

(r) =
∑n

i=1(mg,{ai}(r)−mg(1),{ai}(1)(r))+

(mg,{b}(r) − mg(1),{b}(1)(r)) + mg(1),S∞
(r) and apply LLD analytic

version to LHS. Moving b in P
1 and taking average we get

Theorem 5 (LLD). [Geometric Version] 0 ≤ ∃α(r) ≤ 1 s.t.
mg,D(r) ≤ mg(1),D(1)(r) + α(r)(κ + δ)Tg(r)||δ,
mg(1),S∞

(r) ≤ (1 − α(r))(κ + δ)Tg(r)||δ.
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Approximation and Geometric LLD

Let g : D → P
1 be the lifted Gauss map of a given algebraic

minimal surface and D a divisor (which we will take as the
exceptional set of the Gauss map). The approximation to D is
measured by mg,D(r) + Ng,Ram(r). Here
Ng,Ram(r) =

∫ r

0
dt
t {ng,Ram(t) − ng,Ram(0)} + ng,Ram(0) log r is the

ramification counting function. This quantity measures the
approximation of g to D where mg,D(r) does in the metric sense
and Ng,Ram(r) in the intersection sense. We start the estimate by
noting that mg,D(r) ≤ mg(1),D(1)(r) + α(r)(κ + δ)Tg(r) and

Ng,Ram(r) = Ng(1),S0
(r). Next we set g(1) = g(1)

h h where (g, hdz) is

the Weierstrass data lifted on D. g(1) = (g, g′) and h = (g, h) are
maps to TP1. Therefore we consider two compactified vector

bundles TP1 where g(1) and h lives and P1 × C where g(1)

h lives.
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Local Parameter vs Linear Coordinate

Let ξ be a local parameter of M around the puncture and z the
linear coordinate of C. The coordinate change between ζ and z is
of the form ζ = exp( 1

m
z+1
z−1) where m ∈ Z|>0 is a parameter. Then

h(z) = ω(
∂

∂z
) = ω(

∂

∂ζ
)[−2

ζ

m

1

(z − 1)2
] = h(ζ)[−2

ζ

m

1

(z − 1)2
] .

If we replace mζ
h,S∞

(r) by mh,S∞
(r), we have an extra

approximation of magnitude

[J ] := mζ
h,S∞

(r) − log
1

1 − r
.

Here m means to ignore the multiplicity of poles of h(ζ) and mζ

means that the coordinate used is the local parameter ζ.
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Quantity mh,S0(r) + Nh,S0(r) − mh,S∞(r)

Apply (1) geometric LLD, (2) T is linear w.r.to linear equivalence
class of divisors, (3) the linear equivalence between S0, S∞ and
KP1 on TP1 and P1 × C, (4) the difference of the effect of
coordinate change on g(1)/h and h
in the estimate of mg,D(r) + Ng,Ram(r). The result is

mg,D(r) + Ng,Ram(r) ≤ (κ + δ)Tg(r)

+(mh,S0
(r) + Nh,S0

(r) − mh,S∞
(r)) − [J ]||δ .

FMT and the linear equivalence [S0] − [S∞] = −[KP1 ] on TP1 ⇒
2Tg(r) = mh,S0

(r) + Nh,S0
(r) − mh,S∞

(r).
Theorem 6.

Tg(r) ≤
1

2
[J ] .
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Proof of Theorem 6 and Geometric LLD

Set H :=
∫

((1 − g2), i(1 + g2), 2g)ω. We consider (1 − g2)h and
i(1 + g2)h at the same time. The period condition is expressed as
H(γz) − H(z) ∈

√
−1R, ∀γ ∈ π1(M).

Let Ar := {a1, . . . , ak} be the values of eH at the poles of g “near”
|z| = r. The period condition implies that the set Ar has only
finitely many variations for |ai| even if k → ∞. Introduce a
logarithmic 1-form

∑k
i=1

dt
t−ai

and regard this as a meromorphic

function on TP1. Arguing as in the proof of geometric LLD, we
have

∑k
i=1 mζ

(eH )′

eH
−ai

,∞
(r) = log k +

∑k
i=1(m

ζ
eH ,{ai}

(r) − mζ

(eH)(1),{ai}(1)(r))

+
∑k

i=1(m
ζ
eH ,∞(r) − mζ

(eH)(1),{∞}(1)(r)) + mζ

(eH)′,S∞

(r)
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Computing in Two Ways, RHS

(RHS) = log k + mζ
h,S∞

(r) +
3

2
mζ

H ′,S0
(r) + [OTH]RHS

holds, where mζ
h,S∞

(r) is the contribution from the cusps,
3
2mζ

H ′,S0
(r) is the contribution from the poles of g and [OTH]RHS is

the contribution from the solutions of eH = ai other than poles of
g.
In the computation we use the Fubini-Study distance on TP1. We
have mζ

eH ,∞(r) − mζ

(eH)(1),{∞}(1)(r) = 1
2mζ

h,S∞

(r),

mζ

(eH)(1),S∞

(r) = 1
2mζ

h,S∞

(r),
∑k

i=1 mζ
eH ,{ai}

(r) = 3
2mζ

H ′,S0
(r) + [OTH]RHS and

∑k
i=1 mζ

(eH)′,{ai}(1)(r) = O(1).
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Computing in Two Ways, LHS

(LHS) = log k + mζ
h,S∞

(r) +
1

2
mζ

H ′,S0
(r) + [OTH]LHS

holds, where mζ
h,S∞

(r) is the contribution from the cusps,
1
2mζ

H ′,S0
(r) is the contribution from the poles of g and [OTH]RHS is

the contribution from the solutions of the equation eH = ai other
than poles of g.
In the computation we use just the absolute value of functions.
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Comparison of OTH’s and Estimate of [J ]0

We have

(OTH)LHS − (OTH)RHS ≤ 1

2
mζ

h,S∞

(r) =
1

2
mh,S∞

(r) +
1

2
[J ] .

and
[J ]0 = Nh,S0

(r) .

We have also

mH ′,S0
(r) =

1

2
mh,S0

(r) .
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Replacing mζ with m

Replacing mζ with m we have

(RHS) = log k + mh,S∞
(r) +

3

2
mH ′,S0

(r) + [OTH]RHS + [J ]

and

(LHS) = log k + mh,S∞
(r) + 1

2mH ′,S0
(r) + [OTH]LHS

+[J ] − 1
2 [J ]0

holds, where [J ]0 is the part of the contribution from the Jacobian
of the coordinate change stemming from zeros of ω.
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Comparison of LHS and RHS

log k + mh,S∞
(r) + 1

2mH ′,S0(r) + [OTH]LHS + [J ] − 1
2 [J ]0

= log k + mh,S∞
(r) + 3

2mH ′,S0
(r) + [OTH]RHS + [J ]

Therefore we have

[J ] = 1
2mh,S0

(r) + 1
2Nh,S0

(r) − 1
2mh,S∞

(r)

+[OTH]RHS − [OTH]LHS + 1
2mh,S∞

(r) + 1
2 [J ]

+1
2 [J ]

≥ 1
2mh,S0

(r) + 1
2Nh,S0

(r) − 1
2mh,S∞

(r) + 1
2 [J ]

and finally we have

Tg(r) ≤
1

2
[J ] .
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Conclusion and Remark

(1) We have
1

κ
log

1

1 − r
≤ Tg(r) ≤

1

2
[J ] .

We note that the upper bound depends only on the conformal
structure of M and not on the individual Weierstrass data.
(2) We have

mg,D(r) + Ng,Ram(r) ≤ (κ + δ)Tg(r)||δ

holds. This is the Second Main Theorem for the Gauss map of
algebraic minimal surfaces. In Particular the Gauss map of any
algebraic minimal surface omits at most [κ] values.
(3) κ ≤ e + small number.
(4) ]{exceptional values} ≤ TRVN ≤ e + small number. Here TRVN
means totally ramified value number of the Gauss map.

18 December, 2008 – p. 17/17


	Period Condition
	Enneper-Weieretrass Representation. Minimal Surface
	Algebraic Minimal Surface
	Basic Setup in Nevanlinna Theory
	Lemma on Logarithmic Derivative (Analytic Version)
	Lemma on Logarithmic Derivative (Geometric Version)
	Approximation and Geometric LLD
	Local Parameter vs Linear Coordinate
	Quantity $m_{h,S_0}(r)+N_{h,S_0}(r)-m_{h,S_{infty
}}(r)$
	Proof of Theorem 6 and Geometric LLD
	Computing in Two Ways, RHS
	Computing in Two Ways, LHS
	Comparison of OTH's and Estimate of $[J]_0$
	Replacing $m^{zeta }$ with $m$
	Comparison of LHS and RHS
	Conclusion and Remark

