Period Condition of Algebraic Minimal Surfaces and Nevanlinna Theory

Ryoichi Kobayashi

Graduate School of Mathematics, Nagoya University

(based on a joint work with R. Miyaoka)

(preprint : Nevanlinna-Galois Theory for pseudo-algebraic minimal surfaces and its application to the value distribution of the Gauss map)

Period Condition

Let *M* be an open Riemann surface and ϕ_i 's (i = 1, 2, 3) three holomorphic 1-forms on *M*. Consider the equation

$$\partial x = \frac{1}{2}(\phi_1, \phi_2, \phi_3) \ .$$

Suppose that the conditions

$$[C] \qquad \sum_{i=1}^{3} \phi_i^2 = 0 \text{ conformality}$$
$$[R] \qquad \sum_{i=1}^{3} |\phi_i|^2 > 0 \text{ regularity}$$
$$[P] \quad \forall \gamma \in H_1(M, \mathbb{Z}) , \int_{\gamma} \phi_i \text{ is pure imaginary } (i = 1, 2, 3)$$

are satisfied. The condition [P] is called the **period condition**.

Enneper-Weieretrass Representation. Minimal Surface

Then the Enneper-Weierstrass representation

$$x = \Re \int_{z_0}^{z} (\phi_1, \phi_2, \phi_3)$$

- defines a regular minimal surface $x : M \to \mathbb{R}^3$ and all regular minimal surfaces in \mathbb{R}^3 are obtained this way. The Weieretrass data (hdz, g) is defined by $hdz = \phi_1 - i\phi_2$ and $g = \frac{\phi_3}{\phi_1 - i\phi_2}$.
- Conversely $\phi_1 = \frac{h}{2}(1-g^2)dz$, $\phi_2 = \frac{ih}{2}(1+g^2)dz$ and $\phi_3 = hgdz$ hold.
- The meromorphic function $g: M \to \mathbb{P}^1$ coincides with the Gauss map of the minimal surface $x: M \to \mathbb{R}^3$.

Algebraic Minimal Surface

Definition 1. The total curvature of a minimal surface $x : M \to \mathbb{R}^3$ is defined by $\tau(M) = \int_M K dA \in \mathbb{R}_{\leq 0} \cup \{-\infty\}$ where K is the Gaussian curvature.

Definition 2. An algebraic minimal surface means a complete minimal surface in \mathbb{R}^3 with finite total curvature.

Theorem 3 (Huber/Osserman). Let $x : M \to \mathbb{R}^3$ be an algebraic minimal surface. Then :

(1) M is conformally equivalent to a compact Riemann surface finitely many points removed, i.e., $\overline{M} \setminus \{p_1, \ldots, p_k\}$ where \overline{M} is a compact Riemann surface and $\{p_i\}_{i=1}^k$ are finitely many points on \overline{M} .

(2) the Weierstrass data (hdz, g) extends meromorphically to \overline{M} .

Basic Setup in Nevanlinna Theory

Let $f : \mathbb{C} \to \mathbb{P}^1$ be a holomorphic function. Problem : What can we know by studying how f approximates a divisor $D = \{p_1, \dots, p_n\}$ on \mathbb{P}^1 ?

The approximation of f to D is measure by the asymptotic

behavior of the proximity function $m_{f,D}(r) = \int_0^{2\pi} \log \frac{1}{|\sigma(f(re^{i\theta}))|} \frac{d\theta}{2\pi}$, where σ is the canonical section, i.e., $(\sigma)_0 = D$ and $|\cdot|$ is a smooth Hermitian norm on the line bundle $\mathcal{O}_X(D)$.

How often *f* intersects *D* is counted by the counting function $N_{f,D}(r) = \int_0^r \frac{dt}{t} \{n_{f,D}(t) - n_{f,D}(0)\} + n_{f,D}(0) \log r$ where

 $n_{f,D}(t) = \sum_{|z| < t} \nu_z(f^*D)$ and $n_{f,D}(0) = \nu_0(f^*D)$.

The total complexity of f is measured by the height function $T_{f,D}(r) = \int_0^r \frac{dt}{t} \int_{|z| < t} f^* c_1(\mathcal{O}_X(D), |\cdot|).$ Then we have the **First Main Theorem**

 $T_{f,D}(r) = m_{f,D}(r) + N_{f,D}(r) + O(1).$

Lemma on Logarithmic Derivative (Analytic Version)

Let $x: M \to \mathbb{R}^3$ be an algebraic minimal surface and $M = \mathbb{D}$. Let $g: \mathbb{D} \to \mathbb{P}^1$ be the lifted Gauss map. Define

$$\kappa := \inf \left\{ \overline{\kappa} \mid \int_0^1 \exp(\overline{\kappa} T_g(t)) dt = \infty \right\}$$

Then we have **Theorem 4 (Nevanlinna's LLD).** [Analytic Version] $m_{\frac{g'}{g},\infty}(r) \leq (\kappa + \delta)T_g(r)||_{\delta}.$

A strategy to get geometric conclusion from analytic LLD : We decompose LHS into geometric terms. To do so, we consider appropriate logarithmic differential on \mathbb{P}^1 which we regard as a meromorphic function on $\overline{T\mathbb{P}^1}$ and extract geometric information from the resolution of its indeterminancy.

Lemma on Logarithmic Derivative (Geometric Version)

(1) the case $D = \{0, \infty\}$. Consider $\frac{dt}{t}$ a meromorphic function on $\overline{T\mathbb{P}^1}$. The indeterminancy disappears after blowing up the jet space of $\{0, \infty\}$ in $T\mathbb{P}^1$. We get $m_{\frac{g'}{g},\infty}(r) = (m_{g,D}(r) - m_{g^{(1)},D^{(1)}}(r)) + m_{g^{(1)},S_{\infty}}(r).$ (2) the case $D = \{a_1, \ldots, a_n\}$. Consider a rational function $\phi_b(t) := \frac{\prod_{i=1}^n (t-a_i)}{(t-b)^n}$ and consider $g_b := g \circ \phi_b : \mathbb{C} \to \mathbb{P}^1$. Then we have a decomposition $m_{\underline{g}'_b}(r) = \sum_{i=1}^n (m_{g,\{a_i\}}(r) - m_{g^{(1)},\{a_i\}^{(1)}}(r)) + \dots$ $(m_{g,\{b\}}(r) - m_{g^{(1)},\{b\}^{(1)}}(r)) + m_{g^{(1)},S_{\infty}}(r)$ and apply LLD analytic version to LHS. Moving b in \mathbb{P}^1 and taking average we get **Theorem 5 (LLD).** [Geometric Version] $0 \le \exists \alpha(r) \le 1$ s.t. $m_{g,D}(r) \le m_{q^{(1)},D^{(1)}}(r) + \alpha(r)(\kappa + \delta)T_g(r)||_{\delta},$ $m_{q^{(1)}.S_{\infty}}(r) \le (1 - \alpha(r))(\kappa + \delta)T_g(r)||_{\delta}.$

Let $g: \mathbb{D} \to \mathbb{P}^1$ be the lifted Gauss map of a given algebraic minimal surface and D a divisor (which we will take as the exceptional set of the Gauss map). The approximation to D is measured by $m_{g,D}(r) + N_{g,\text{Ram}}(r)$. Here

 $N_{g,\text{Ram}}(r) = \int_0^r \frac{dt}{t} \{n_{g,\text{Ram}}(t) - n_{g,\text{Ram}}(0)\} + n_{g,\text{Ram}}(0) \log r$ is the ramification counting function. This quantity measures the approximation of g to D where $m_{g,D}(r)$ does in the metric sense and $N_{g,\text{Ram}}(r)$ in the intersection sense. We start the estimate by noting that $m_{g,D}(r) \leq m_{g^{(1)},D^{(1)}}(r) + \alpha(r)(\kappa + \delta)T_g(r)$ and

 $N_{g,\text{Ram}}(r) = N_{g^{(1)},S_0}(r)$. Next we set $g^{(1)} = \frac{g^{(1)}}{h}h$ where (g,hdz) is the Weierstrass data lifted on \mathbb{D} . $g^{(1)} = (g,g')$ and h = (g,h) are maps to $\overline{T\mathbb{P}^1}$. Therefore we consider two compactified vector bundles $\overline{T\mathbb{P}^1}$ where $g^{(1)}$ and h lives and $\overline{\mathbb{P}^1 \times \mathbb{C}}$ where $\frac{g^{(1)}}{h}$ lives.

Local Parameter vs Linear Coordinate

Let ξ be a local parameter of \overline{M} around the puncture and z the linear coordinate of \mathbb{C} . The coordinate change between ζ and z is of the form $\zeta = \exp(\frac{1}{m}\frac{z+1}{z-1})$ where $m \in \mathbb{Z}|_{>0}$ is a parameter. Then

$$h(z) = \omega(\frac{\partial}{\partial z}) = \omega(\frac{\partial}{\partial \zeta})\left[-2\frac{\zeta}{m}\frac{1}{(z-1)^2}\right] = h(\zeta)\left[-2\frac{\zeta}{m}\frac{1}{(z-1)^2}\right]$$

If we replace $m_{h,S_{\infty}}^{\zeta}(r)$ by $m_{h,S_{\infty}}(r)$, we have an extra approximation of magnitude

$$[J] := \overline{m}_{h,S_{\infty}}^{\zeta}(r) - \log \frac{1}{1-r}$$

Here \overline{m} means to ignore the multiplicity of poles of $h(\zeta)$ and m^{ζ} means that the coordinate used is the local parameter ζ .

Quantity $m_{h,S_0}(r) + N_{h,S_0}(r) - m_{h,S_{\infty}}(r)$

Apply (1) geometric LLD, (2) T is linear w.r.to linear equivalence class of divisors, (3) the linear equivalence between S_0 , S_∞ and $K_{\mathbb{P}^1}$ on $\overline{T\mathbb{P}^1}$ and $\overline{\mathbb{P}^1 \times \mathbb{C}}$, (4) the difference of the effect of coordinate change on $g^{(1)}/h$ and hin the estimate of $m_{g,D}(r) + N_{g,\text{Ram}}(r)$. The result is

$$m_{g,D}(r) + N_{g,\text{Ram}}(r) \le (\kappa + \delta)T_g(r) + (m_{h,S_0}(r) + N_{h,S_0}(r) - m_{h,S_\infty}(r)) - [J]||_{\delta} .$$

FMT and the linear equivalence $[S_0] - [S_\infty] = -[K_{\mathbb{P}^1}]$ on $T\mathbb{P}^1 \Rightarrow 2T_g(r) = m_{h,S_0}(r) + N_{h,S_0}(r) - m_{h,S_\infty}(r)$. Theorem 6.

$$T_g(r) \le \frac{1}{2}[J] \; .$$

Proof of Theorem 6 and Geometric LLD

Set $H := \int ((1 - g^2), i(1 + g^2), 2g) \omega$. We consider $(1 - g^2)h$ and $i(1+q^2)h$ at the same time. The period condition is expressed as $H(\gamma z) - H(z) \in \sqrt{-1\mathbb{R}}, \forall \gamma \in \pi_1(M).$ Let $A_r := \{a_1, \ldots, a_k\}$ be the values of e^H at the poles of g "near" |z| = r. The period condition implies that the set A_r has only finitely many variations for $|a_i|$ even if $k \to \infty$. Introduce a logarithmic 1-form $\sum_{i=1}^{k} \frac{dt}{t-a_i}$ and regard this as a meromorphic function on $\overline{T\mathbb{P}^1}$. Arguing as in the proof of geometric LLD, we have

$$\sum_{i=1}^{k} m_{\frac{(e^{H})'}{e^{H}-a_{i}},\infty}^{\zeta}(r) = \log k + \sum_{i=1}^{k} (m_{e^{H},\{a_{i}\}}^{\zeta}(r) - m_{(e^{H})^{(1)},\{a_{i}\}^{(1)}}^{\zeta}(r)) + \sum_{i=1}^{k} (m_{e^{H},\infty}^{\zeta}(r) - m_{(e^{H})^{(1)},\{\infty\}^{(1)}}^{\zeta}(r)) + m_{(e^{H})',S_{\infty}}^{\zeta}(r)$$

Computing in Two Ways, RHS

$$(RHS) = \log k + m_{h,S_{\infty}}^{\zeta}(r) + \frac{3}{2}m_{H',S_{0}}^{\zeta}(r) + [OTH]_{RHS}$$

holds, where $m_{h,S_{\infty}}^{\zeta}(r)$ is the contribution from the cusps, $\frac{3}{2}m_{H',S_0}^{\zeta}(r)$ is the contribution from the poles of g and $[OTH]_{RHS}$ is the contribution from the solutions of $e^H = a_i$ other than poles of g.

In the computation we use the Fubini-Study distance on $T\mathbb{P}^1$. We have $m_{e^H,\infty}^{\zeta}(r) - m_{(e^H)^{(1)},\{\infty\}^{(1)}}^{\zeta}(r) = \frac{1}{2}m_{h,S_{\infty}}^{\zeta}(r)$, $m_{(e^H)^{(1)},S_{\infty}}^{\zeta}(r) = \frac{1}{2}m_{h,S_{\infty}}^{\zeta}(r)$, $\sum_{i=1}^{k} m_{e^H,\{a_i\}}^{\zeta}(r) = \frac{3}{2}m_{H',S_0}^{\zeta}(r) + [\text{OTH}]_{\text{RHS}}$ and $\sum_{i=1}^{k} m_{(e^H)',\{a_i\}^{(1)}}^{\zeta}(r) = O(1)$.

Computing in Two Ways, LHS

$$(LHS) = \log k + m_{h,S_{\infty}}^{\zeta}(r) + \frac{1}{2}m_{H',S_{0}}^{\zeta}(r) + [OTH]_{LHS}$$

holds, where $m_{h,S_{\infty}}^{\zeta}(r)$ is the contribution from the cusps,

 $\frac{1}{2}m_{H',S_0}^{\zeta}(r)$ is the contribution from the poles of g and $[OTH]_{RHS}$ is the contribution from the solutions of the equation $e^H = a_i$ other than poles of g.

In the computation we use just the absolute value of functions.

Comparison of OTH's and Estimate of $[J]_0$

We have

$$(\text{OTH})_{\text{LHS}} - (\text{OTH})_{\text{RHS}} \le \frac{1}{2} m_{h,S_{\infty}}^{\zeta}(r) = \frac{1}{2} m_{h,S_{\infty}}(r) + \frac{1}{2} [J] .$$

and

$$[J]_0 = N_{h,S_0}(r)$$
.

We have also

$$m_{H',S_0}(r) = \frac{1}{2}m_{h,S_0}(r)$$
.

Replacing m^{ζ} with m

Replacing m^{ζ} with m we have

$$(\mathbf{RHS}) = \log k + m_{h,S_{\infty}}(r) + \frac{3}{2}m_{H',S_0}(r) + [\mathbf{OTH}]_{\mathbf{RHS}} + [J]$$

and

$$(LHS) = \log k + m_{h,S_{\infty}}(r) + \frac{1}{2}m_{H',S_0}(r) + [OTH]_{LHS} + [J] - \frac{1}{2}[J]_0$$

holds, where $[J]_0$ is the part of the contribution from the Jacobian of the coordinate change stemming from zeros of ω .

$$\log k + m_{h,S_{\infty}}(r) + \frac{1}{2}m_{H',S_0}(r) + [\text{OTH}]_{\text{LHS}} + [J] - \frac{1}{2}[J]_0$$

= log k + m_{h,S_{\infty}}(r) + \frac{3}{2}m_{H',S_0}(r) + [\text{OTH}]_{\text{RHS}} + [J]

Therefore we have

$$\begin{split} [J] &= \frac{1}{2} m_{h,S_0}(r) + \frac{1}{2} N_{h,S_0}(r) - \frac{1}{2} m_{h,S_\infty}(r) \\ &+ [\text{OTH}]_{\text{RHS}} - [\text{OTH}]_{\text{LHS}} + \frac{1}{2} m_{h,S_\infty}(r) + \frac{1}{2} [J] \\ &+ \frac{1}{2} [J] \\ &\geq \frac{1}{2} m_{h,S_0}(r) + \frac{1}{2} N_{h,S_0}(r) - \frac{1}{2} m_{h,S_\infty}(r) + \frac{1}{2} [J] \end{split}$$

and finally we have

$$T_g(r) \le \frac{1}{2}[J] \; .$$

Conclusion and Remark

(1) We have

$$\frac{1}{\kappa} \log \frac{1}{1-r} \le T_g(r) \le \frac{1}{2} [J] \; .$$

We note that the upper bound depends only on the conformal structure of M and not on the individual Weierstrass data. (2) We have

$$m_{g,D}(r) + N_{g,\text{Ram}}(r) \le (\kappa + \delta)T_g(r)||_{\delta}$$

holds. This is the Second Main Theorem for the Gauss map of algebraic minimal surfaces. In Particular the Gauss map of any algebraic minimal surface omits at most $[\kappa]$ values.

(3) $\kappa \leq e + \text{small number.}$

(4) \sharp {exceptional values} \leq TRVN \leq *e* + small number. Here TRVN means totally ramified value number of the Gauss map.