Riemann Surfaces, Harmonic Maps and Visualization

Date: December 15 (Mon)- December 20 (Sat), 2008 **Place**: Osaka City University Media Center, Main Hall

Fourier-Mukai transforms and spectral data of harmonic tori into compact symmetric spaces

(Tetsuya Taniguchi Kitasato university)
Contents.

- 1. An analogue of Fourier-Mukai transforms
- 2. Construction of spectral data of harmonic. tori into compact symmetric spaces.
- 3. Conerse constructions.

1. An analogue of Fourier-Mukai transforms

Let M be a smooth manifold and D a linear differential operator acting on a vector bundle E over M. Let \widehat{M} be the moduli space of flat \mathbb{C}^* -bundles over M. For $F \in \widehat{M}$, we denote by D_F and E_F the natural differential operator actiong on the vector bundle $E \otimes F$ and the sheaf of sections of the kernel of D_F , respectively.

$$Hom(\pi_1(M), \mathbb{C}^*) \cong \mathbb{C}^*.$$
 $D = \frac{\partial}{\partial x}.$ $D_F(e \otimes f) = D(e) \otimes f$, where e and f are local sections of E and F , respectively.

Ex. $M = T^1 = \mathbb{R}/\mathbb{Z}\Lambda$. $\widehat{M} = H^1(M, \mathbb{C}^*) = \mathbb{R}$

 ${\mathcal P}$: the modified Poincare bundle over $\widehat M imes M$.

In particular, if $F \in \widehat{M}$ corresponds to a flat \mathbb{C}^* -bundle, then $\mathcal{P}|_{\{F\}\times M}$ is isomorphic to F.

Similarly, if $m \in M$ corresponds to a point m of M, then $\mathcal{P}|_{\widehat{M} \times \{m\}}$ is isomorphic to Alb(m), $(Alb: M \to \widehat{M})$.

 $\overline{(S,\mathcal{L})}$ (which we call the Fourier-Mukai transorm of (E,D)). Here, S is a set in \widehat{M} defined by $S = \{ F \in \hat{M} \mid H^{0}(M, E_{F}) \neq 0 \}$. And \mathcal{L} is a sheaf on S which is the pull-back $\iota^*\mathcal{H}$ of \mathcal{H} by the inclusion map $\iota: S \hookrightarrow \widehat{M}$. Moreover we also get a map L_S from M to the category of sheaves on S, which is defined by $m \in M \mapsto L_S(m) = \iota^* \overline{Alb(m)}.$

For the pair of (E,D), we define a spectral pair

Ex.
$$M = T^1$$
. $E = \mathbb{C} \times M$. $D = \partial/\partial x$. $S = \{F \in \widehat{M} \cong \mathbb{C}^* \mid H^0(M, E \otimes F) \neq 0\}$ $= \{F = 1(\text{ the trivial bundle over } T^1) \}$. $\mathcal{L}_1 = \mathbb{C}$.

2. Construction of spectral data of harmonic tori into compact symmetric spaces

Let $T = \mathbb{C}/(\mathbb{Z} \oplus \mathbb{Z}\tau)$ be a 1-dimensional complex torus. We regard T as the 2-dimensional real torus with the conformal structure induced by au. Let ϕ be a harmonic map from T to a compact symmetric space G/K. Let $\Phi_{\lambda}: T \to \mathbb{R}$ $G^{\mathbb{C}}$ be an extended frame of ϕ ($\lambda \in \mathbb{P}^* = \mathbb{C} \setminus \{0\}$) where \widetilde{T} is the universal cover $\mathbb{C} \to T$. We denote the Maurer-Cartan form of Φ_{λ} by $\alpha_{\lambda} =$ $\Phi_{\lambda}^{-1}d\Phi_{\lambda}.$

$$\phi^{-1}d\phi = \alpha_{\mathfrak{p}}' + \alpha_{\mathfrak{k}} + \alpha_{\mathfrak{p}}''.$$

$$\alpha_{\lambda} = \Phi_{\lambda}^{-1}d\Phi_{\lambda} = \lambda^{-1}\alpha_{\mathfrak{p}}' + \alpha_{\mathfrak{k}} + \lambda\alpha_{\mathfrak{p}}''.$$

Let us consider the family \mathcal{E} of vector bundles $E(\lambda)$ on T associated to the representation of fundamental group of T induced by α_{λ} ($\lambda \in \mathbb{C}^*$).

For each $\lambda \in \mathbb{P}^*$, by setting M = T and applying the above analouge of Fourier-Mukai transform, we shall construct a spectral pair $(X_{\lambda}, \mathcal{L}_{\lambda})$ which correponds to the pair of $(E(\lambda), D = d + \alpha_{\lambda})$.

Let us define the spectral data (X, π, \mathcal{L}) as followss. We define X and \mathcal{L} as the collections of $\{X_{\lambda}\}$ and $\{\mathcal{L}_{\lambda}\}$, respectively. More precisely, X is given by $X = \{(\lambda, F) \mid \lambda \in \mathbb{P}^*, F \in X_{\lambda}\}$ which is a complex curve in the product $\mathbb{P}^* \times \widehat{T}$.

And π is a map from X to \mathbb{P}^* induced by the first projection $pr_1 \colon \mathbb{P}^* \times \widehat{T} \to \mathbb{P}^*$. And \mathcal{L} is a sheaf on X, where its fiber \mathcal{L}_p at $p = (\lambda, F) \in X$ is given by $\mathcal{L}_p = H^0(T, E(\lambda)_F)$.

Moreover, we also get a map L_X from M=Tto the category of sheaves on X defined by $t \in M \mapsto L_X(t)$, where $L_X(t)$ is the pull-back $\psi^*Alb(t)$ of $Alb(t) \in \widehat{M} = H^1(\widehat{M}, \mathbb{C}^*)$ by the composition $\psi = pr_2 \circ \iota_X : X \to \widehat{T}$, where ι_X is the inclusion map $\iota_X:X\hookrightarrow \mathbb{P}^*\times \widehat{M}$ and pr_2 is the second projection $pr_2: \mathbb{P}^* \times \widehat{M} \to \widehat{M}$. \hat{M}

In other words, L_X is considered as a double periodic flow on Pic(X), by using the natural map $i: H^1(\widehat{T}, \mathbb{C}^*) \to Pic^0(\widehat{T}) (\subset Pic(\widehat{T}) = H^1(\widehat{T}, \mathcal{O}_{\widehat{T}}^*))$ which sends a flat bundle to the bundle with the same algebraic transition matrices.

3. Converse constructions

Ex.

X: a Riemann surface

$$\pi: X \to CP^1$$
: a holomorphic map $n+1:1$

 \mathcal{L} : a line bundle of degree genus+n

$$(X,\pi,\mathcal{L})$$
 $\psi\colon \mathbb{R}^2 o \mathbb{C}P^n$: a harmonic map

$$X = \mathbb{C}P^1$$
,
 $\pi \colon X \to \mathbb{C}P^1 \subset L \to A = C^4$

 $\pi:X \to \mathbb{C}P^1$ $\zeta \mapsto \lambda = \zeta^4$, $\psi = [\psi_1:\psi_2:\psi_3:\psi_4]$ $\mathcal{L}:$ a line bundle of degree 3

$$\psi = [\psi_1:\psi_2:\psi_3:\psi_2]$$

 $\psi_i = \exp(\eta_i^{-1} z/2 - \eta_i \bar{z}/2)/\sqrt{2}$ $\overline{\eta_1} = 1, \eta_2 = i, \eta_3 = -1, \eta_4 = -i.$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & \frac{-1}{\sqrt{2}i} & 0 & \frac{1}{\sqrt{2}i} \\ \frac{1}{\sqrt{2}i} & 0 & \frac{1}{\sqrt{2}i} & 0 \\ \frac{1}{\sqrt{2}i} & 0 & \frac{-1}{\sqrt{2}i} & 0 \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix}$$

The Clifford torus in S^3

$$x_1 = \frac{\cos x}{\sqrt{2}}, x_2 = \frac{\sin x}{\sqrt{2}}, x_3 = \frac{\cos y}{\sqrt{2}}, x_4 = \frac{\sin y}{\sqrt{2}},$$

where $0 \le x, y \le 2\pi$.

Setting $M=T^2$ and D= a Dirac operator with a potential, Iskander A. Taimanov compute the spectral curve of the Clifford torus. $X=CP^1$. $\infty_+=(\zeta=\infty),\ \infty_-=(\zeta=0)$ with double points obtained by stacking together the points from the following pairs:

$$\left(\frac{1+i}{4}, \frac{-1+i}{4}\right), \left(-\frac{1+i}{4}, \frac{1-i}{4}\right).$$

See "Finite-Gap Theory of the Clliford Torus" International Mathematics Reserch Notices 2005, No.2.

Ref. Fourier-Mukai Transforms in Algebraic Geometry (Oxford Mathematical Monographs)

D. Huybrechts

Thank you very much for kind attention.