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The asymmetric simple exclusion 
process (ASEP): Introduced in 

1970 by Frank Spitzer in 
Interaction of Markov Processes

Called the “default stochastic 
model for transport 

phenomena” (H.-T.  Yau)

ASEP is a model for interacting 
particles on a lattice

Frank Spitzer
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Definition of Model

The ASEP is a model for interacting particles on a lattice S, say S = Zd.

1. A state η of the system is a map η : S → {0, 1} such that

η(x) =
{

1 if site x ∈ S is occupied by a particle,
0 if site x ∈ S is vacant.

States Ω = {0, 1}S .

2. Introduce dynamics: t→ ηt ∈ Ω:

(a) Each particle x ∈ S waits exponential time with parameter 1, inde-
pendently of all other particles;

(b) at the end of that time, it chooses a y ∈ S with probability p(x, y);
and

(c) if y is vacant, it goes to y, while if y is occupied, it stays at x and
the clock starts over.

1
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ASEP on integer lattice Z

• Asymmetric condition q > p, drift to the left

• Continuous time: Zero probability of two clocks going off at same time

• Must specify initial configuration

q p

x

Clock for particle at x rings

x+1x−1x
′

Clock for particle at x
′ rings

Jump to left suppressed
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Current Fluctuations

J(x,t) = net number of particles through [x,x+1] in time t

{ J(x,t) ≥ m} = { xm(t) ≤ x }

Thus current fluctuations are related to 
fluctuations in the position of the mth particle

x x+1 

xm(t)To the left of  x drift is to the left
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Growth Processes &  ASEP

Height function: ht(x)
The rule to construct ht is: if ηt(x) = 1 then ht(x) in the interval [x, x + 1]
increases with slope +1 whereas if ηt(x) = 0 then ht(x) decreases in that interval
with slope −1.

h0

ht

Step initial 
condition

ht(x+1)-ht(x)=2ηt(x)-1
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KPZ Equation & Growth Processes

∂h

∂t
= ν

∂2h

∂x2
+ λ

(
∂h

∂x

)2

+ w

diffusion growth noise

u(x, t) =
∂h

∂x
Noisy Burgers eqn

↵Kardar, Parisi & Zhang
❘
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• Physicists expect KPZ eqn to describe a large class 
of stochastically growing interfaces: 1+1 KPZ 
universality class. 

• KPZ difficult to handle mathematically

• Natural to make space discrete 

• ASEP is expected to be in the KPZ universality 
class in the long time and large space asymptotic 
limits.

• Thus asymptotic results for ASEP are expected to 
have a “universal character”
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T(totally)ASEP
TASEP is the case when particles can jump only to the right (p = 1) or only
to the left (q = 1).

The first limit law is due to Kurt Johansson (2000) in the case of step initial
condition:

Y = {1, 2, 3, . . . , } = initial location of particles, q = 1

Let xm(t) denote the position of the mth particle from the left, set 0 < σ =
m/t < 1 then there exist explicit constants c1 and c2 (depending upon σ) such
that as m, t→∞

xm(t)− c1t

c2t1/3
−→ F2

where convergence is in distribution and F2 is the GUE largest eigenvalue dis-
tribution function.

• Note the 1
3 in the scaling: KPZ Universality Class

• TASEP is a determinantal process. Can adapt methods of random matrix
theory to prove limit theorem

• Methods do not work for ASEP but do we get the same limit law?
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We solve the Kolmogorov 
forward equation (“master 
equation”) for the transition 
probability Y→X:

Main idea comes from the
Bethe Ansatz (1931)

Integrable Structure of 
ASEP

Hans Bethe in 1967

PY (X; t)
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● ● ● ● ● ● ● ● ● ●

N=1 ASEP 
probability pprobability q

u(x, t) = P(ηt(x) = 1, ηt(y) = 0, y != x)

Master equation:

du(x; t)
dt

= p u(x− 1; t) + q u(x + 1; t)− u(x; t)

u(x; t) =
1

2πi

∫

C
ξx−y−1etε(ξ) dξ

ε(ξ) =
p

ξ
+ qξ − 1

11Thursday, December 18, 2008



N=2 ASEP

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Master equation takes simple form for this configuration

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Master equation reflects exclusion for this configuration

Impose boundary conditions for first equation so that if 
satisfied the second equation is automatically satisfied
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Differential Equations for PY (X; t)

Configuration X = {x1, x2, . . . , xN}.

N = 2 particles and x1 + 1 < x2:

q p q p

x1 x2

d

dt
u(x1, x2) = p u(x1 − 1, x2) + q u(x1 + 1, x2)

+p u(x1, x2 − 1) + q u(x1, x2 + 1) − 2 u(x1, x2).

For x1 + 1 = x2:
q p

x1 x2

d

dt
u(x1, x2) = p u(x1 − 1, x2) + q u(x1, x2 + 1) − u(x1, x2).

Formally subtract when x2 = x1 + 1 to obtain.

0 = p u(x1, x1) + q u(x1 + 1, x1 + 1) − u(x1, x1 + 1).

Treat this as a boundary condition. Consider (x1, x2) ∈ Z2, then

First Equation + Boundary Condition ⇒ Second Equation.

Find a solution in Z2 satisfying first DE, BC and the initial condition in
region x1 < x2 =⇒ found the probability PY (X; t).
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Important Point:

Additional boundary conditions arise when, say,

3 particles are adjacent

4 particles are adjacent

etc.

For example, for N = 3 we have four cases

These new conditions are automatically satisfied by the
boundary conditions arising when 2 particles are adjacent.
The underlying algebraic reason is that the “S-matrix”
satisifes the

Yang-Baxter equations
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Bethe Ansatz Solution

ε(ξ) :=
p

ξ
+ q ξ − 1

For any ξ1, . . . , ξN ∈ C\{0} a solution of the DE is
∏

j

(
ξ

xj

j eε(ξj) t
)

.

For any σ ∈ SN , another solution is
∏

j

ξxi

σ(j)

∏

j

eε(ξj) t

or any linear combination of these, or any integral of a linear combination.

Bethe Ansatz:

u(X; t) =
∫ ∑

σ∈SN

Fσ(ξ)
∏

j

ξ
xj

σ(j)

∏

j

eε(ξj) t dNξ.

Want the boundary conditions to be satisfied.
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Look for Fσ such that the integrand satisfies the BCs pointwise : Find condition

FTiσ

Fσ
= −

p + qξσ(i)ξσ(i+1) − ξσ(i+1)

p + qξσ(i)ξσ(i+1) − ξσ(i)
, Ti = transposition operator at sites i, i+1

Recognize this as the Yang-Yang S-matrix in the XXZ spin Hamiltonian

Sαβ = −p + qξαξβ − ξα

p + qξαξβ − ξβ

Upshot: If we define

Aσ = sgnσ

∏
i<j(p + qξσ(i)ξσ(j) − ξσ(i))∏

i<j(p + qξiξj − ξi)

then

u(X; t) =
∑

σ

∫
Aσ(ξ)

∏

i

ξ
xi−yσ(i)−1

σ(i) dNξ

satisfies the master equation + boundary conditions.

The σ = id summand satisfies initial condition.

↓etε(ξi)
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Theorem (TW): If p != 0 and r is small enough then

PY (X; t) =
∑

σ∈SN

∫

CN
r

Aσ(ξ)
∏

i

ξxi

σ(i)

∏

i

(
ξ−yi−1
i eε(ξi) t) dNξ.

where

Aσ = sgnσ

∏
i<j(p + qξσ(i)ξσ(j) − ξσ(i))∏

i<j(p + qξiξj − ξi)

and satisfies
PY (X; 0) = δY (X).

Remarks:

• There is no Ansatz in our work!

• Usual Bethe Ansatz calculates the spectrum of the operator. This leads
to transcendental equations for the eigenvalues and issues of completeness
of the eigenfunctions.

• We compute the semigroup directly. No spectral theory.
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Marginal Distributions
P(xm(t)≤x)

Case m=1:

Fix x1=x, sum PY(X;t) over allowed x2, x3, x4,...

Can do this since contours are small: |ξi|< 1

Result is an expression involving N! terms.
Use first miraculous identity to reduce sum to one 
term! 

Here’s the identity: 
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First Identity

∑

σ∈SN

sgn σ




∏

i<j

(p + qξσ(i)ξσ(j) − ξσ(i))

×
ξσ(2)ξ

2
σ(3) · · · ξN−1

σ(N)

(1− ξσ(2)ξσ(3) · · · ξσ(N))(1− ξσ(3) · · · ξσ(N)) · · · (1− ξσ(N))

)

= pN(N−1)/2
(1− ξ1 · · · ξN )

∏
i<j(ξj − ξi)∏

i(1− ξi)
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• Using this identity we get for m=1 an 
expression for P(x1(t)≤x) as a single m-
dimensional integral with a product 
integrand.  This expression is for finite N 
ASEP

I(x, Y, ξ) =
∏

i<j

ξj − ξi

p + qξiξj − ξi

1− ξ1 · · · ξN

(1− ξ1) · · · (1− ξN )
∏

i

(
ξx−yi−1
i eε(ξi)t

)
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P(x1(t) = x) = pN(N−1)/2

∫

Cr

· · ·
∫

Cr

I(x, Y, ξ) dξ1 · · · dξN

(p != 0)

• Sum of N! integrals has been reduced to one integral

• However form is not so useful to take N→∞

• We now expand contour outwards -- only residues 
that contribute come from ξ=1.

• Can take N→∞ in resulting expression to obtain
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σ(S) : =
∑

i∈S

i

P(x1(t) = x) =
∑

S

pσ(S)−|S|

qσ(S)−|S|(|S|+1)/2
×

∫

CR

· · ·
∫

CR

I(x, YS , ξ) d|S|ξ

The sum is over all nonempty subsets of Z

When p=0 only one term is nonzero, S={1}.
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• To go beyond the left most particle, m=1, 
there are new complications

•  These come from the fact that we must 
sum over all xj > xm and all xi < xm.  Some 
contours must be small (former) and some 
must be large (latter) to obtain 
convergence of geometric series

• This involves finding a new identity
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Second Identity

S ranges over subsets of {1, 2, . . . , N}

∑

|S|=m

∏

i∈S, j∈Sc

p + qξiξj − ξi

ξj − ξi
· (1−

∏

j∈Sc

ξj)

= qm

[
N

m

]
(1−

N∏

j=1

ξj).

[N ] =
pN − qN

p− q
, [N ]! = [N ] [N − 1] · · · [1],

[
N

m

]
=

[N ]!
[m]! [N −m]!

, (q − binomial coefficient),

24Thursday, December 18, 2008



Final series result for case Y = Z+

P (xm(t) ≤ x) = (−1)m
∑

k≥m

1
k!

[
k − 1
k −m

]

τ

p(k−m)(k−m+1)/2qkm+(k−m)(k+m−1)/2

×
∫

CR

· · ·
∫

CR

∏

i #=j

ξj − ξi

p + qξiξj − ξi

∏

i

1
(1− ξi)(qξi − p)

×
∏

i

(
ξx
i eε(ξi)t

)
dξ1 · · · dξk

• Recognize double product as a determinant 
whose entries are a kernel, i.e. K(ξi,ξj)

• Result can then be expressed as a contour integral
whose integrand is a Fredholm determinant

● For p=0 only k=m term is nonzero
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• Let K(x,y) be a kernel function

• Fredholm expansion of det(I-λK):

Fredholm determinant 

(−1)n

n!

∫
· · ·

∫
det (K(ξi, ξj)1≤i,j≤n dξ1 · · · dξn =

∫

C
det (I − λK)

dλ

λn+1

•Can then do sum over k (q-Binomial theorem):
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Set γ = q − p > 0, τ = q/p and
define an integral operator K on
circle CR:

K(ξ, ξ′) = q
ξ′xetε(ξ′)/γ

p + qξξ′ − ξ

Then

P (xm(t/γ) ≤ x) =
∫

det(I − λK)
∏m−1

k=0 (1− λτk−1)
dλ

λ

The contour in the λ-plane en-
closes all of the singularities of
the integrand.

Final expression for mth particle distribution fn.
Step initial condition

↑ k-1→k
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Asymptotic analysis 

We now transform the operator 
K so that we can perform a 
steepest descent analysis.

Recall that the generic behavior 
for the coalescence of two 

saddle points leads to the Airy 
function Ai(x)

George Airy
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ξ −→ 1− τη

1− η
, τ =

p

q
< 1,

K(ξ, ξ′) −→ K2(η, η′) =
ϕ(η′)

η′ − τη

ϕ(η) =
(

1− τη

1− η

)x

e[
1

1−η−
1

1−τη ]

Introduce: K1(η, η′) =
ϕ(τη)
η′ − τη

t
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Proposition:
Let Γ be any closed curve going around η=1 
once counterclockwise with η=1/τ on the 
outside.  Then the Fredholm determinant of 
K(ξ,ξ’) acting on CR has the same Fredholm 
determinant as K1(η,η’)-K2(η,η’) acting on Γ.

Proposition:
Suppose the contour Γ is star-shaped 
with respect to η=0.  Then the Fredholm 
determinant of K1 acting on Γ is equal to

∞∏

k=0

(1− λτk)
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Denote by R the resolvent kernel of K1

Factor determinant:
det(I-λ K)=det(I-λ K1) det(I+K2(I+R))

Set λ=τ-m μ so formula for distr. fn becomes

∫ ∞∏

k=0

(1− µτk) det
(
I + τ−mµK2(I + R)

) dµ

µ

μ runs over a circle of radius > τ
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By a perturbative expansion of R, followed by 
a deformation of operators, we show

det (I + λK2(I + R)) = det (I + µJ)

J(η, η′) =
∫

ϕ∞(ζ)
ϕ∞(η′)

ζm

(η′)m+1

f(µ, ζ/η′)
ζ − η

dζ

ϕ∞(η) = (1− η)−x e
ηt

1−η

f(µ, z) =
∞∑

k=−∞

τk

1− τkµ
zk

The kernel J(η,η’), which acts on a circle 
centered at 0 with radius less than τ, is  

analyzed by the steepest descent method.
Note:  m now appears inside the kernel!
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Main Result

We set

σ =
m

t
, c1 = −1+2

√
σ, c2 = σ−1/6(1−

√
σ)2/3, γ = q−p

Theorem (TW). When 0 ≤ p < q we
have

lim
t→∞

P
(

xm(t/γ)− c1t

c2t1/3
≤ s

)
= F2(s)

This theorem establishes KPZ Universality for ASEP with 
step initial condition
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Painlevé II Representation of F2

F2(s) = exp
(
−

∫ ∞

s
(x− s)q2(x) dx

)

d2q

dx2
= xq + 2q3, Painlevé II

q(x) ∼ Ai(x), x→∞

This q is called the Hastings-McLeod solution.
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First Appearance of F2 in growth processes
Baik, Deift & Johansson

6 7 1 8 5 4 10 9 2 3σ = { }

Patience Sorting (Aldous & Diaconis)

35Thursday, December 18, 2008



First Appearance of F2 in growth processes
Baik, Deift & Johansson

6 7

1

8

5
4

10
9

2

3

!(σ) = Number of piles = 4

σ = { }

Patience Sorting (Aldous & Diaconis)
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Baik-Deift-Johansson Theorem

Theorem. Given a random permutation σ ∈ Sn,
let "(σ) equal the number of piles resulting from
the patience sorting algorithm. Then

lim
n→∞

P
(

"(σ)− 2
√

n

n1/6
≤ s

)
= F2(s).

● Johannsson showed F2 arises in a last passage 
percolation model (corner growth) which includes 
TASEP  with step initial condition.

● TASEP with flat initial conditions leads to F1, 
Sasamoto, Borodin, Ferrari, ...
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Can also study limit for fixed m,  t→∞

Theorem: Assume 0 < p < q. For fixed m the limit

P
(

xm(t/γ) + t
√

γ
√

t
≤ s

)

equals ∫
det(I − λK)

∏m−1
k=0 (1− λτk)

dλ

λ

where now K has kernel (acting on R)

K(z, z′) =
q√
2π

exp
(
−(p2 + q2)(z2 + z′2)/4 + pqzz′

)
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● Would like a conceptual understanding of why identities & 
cancellations appear in ASEP proofs.

● Extend ASEP results to other initial conditions, e.g. flat initial 
conditions.  Do we see F1 as in TASEP?

●  Can we apply Bethe Ansatz methods to other 
growth models? 

● Ultimately we want universality theorems not to rely 
upon integrable stucture of ASEP.  For ⅓ exponent 
progress by Balázs, Seppäläinen, Quastel & Valkó.
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Thanks to Anne Schilling & Doron Zeilberger for 
advice with the combinatorial identities
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Harold  Widom (left) and his brother Ben
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