The Asymmetric Simple Exclusion Process: Integrable Structure \& Limit Theorems

Craig A. Tracy
Joint work with Harold Widom

The asymmetric simple exclusion process (ASEP): Introduced in 1970 by Frank Spitzer in Interaction of Markov Processes

Called the "default stochastic model for transport phenomena" (H.-T. Yau)

ASEP is a model for interacting particles on a lattice

Frank Spitzer

Definition of Model

The ASEP is a model for interacting particles on a lattice S, say $S=\mathbb{Z}^{d}$.

1. A state η of the system is a map $\eta: S \rightarrow\{0,1\}$ such that

$$
\eta(x)= \begin{cases}1 & \text { if site } x \in S \text { is occupied by a particle } \\ 0 & \text { if site } x \in S \text { is vacant }\end{cases}
$$

States $\Omega=\{0,1\}^{S}$.
2. Introduce dynamics: $t \rightarrow \eta_{t} \in \Omega$:
(a) Each particle $x \in S$ waits exponential time with parameter 1, independently of all other particles;
(b) at the end of that time, it chooses a $y \in S$ with probability $p(x, y)$; and
(c) if y is vacant, it goes to y, while if y is occupied, it stays at x and the clock starts over.

ASEP on integer lattice \mathbb{Z}

- Asymmetric condition $q>p$, drift to the left
- Continuous time: Zero probability of two clocks going off at same time
- Must specify initial configuration

Clock for particle at x^{\prime} rings
Clock for particle at x rings

Current Fluctuations

$J(x, t)=$ net number of particles through $[x, x+1]$ in time t

$$
\{J(x, t) \geq m\}=\left\{x_{m}(t) \leq x\right\}
$$

Thus current fluctuations are related to fluctuations in the position of the $\mathrm{m}^{\text {th }}$ particle

Growth Processes \& ASEP

Height function: $h_{t}(x)$
The rule to construct h_{t} is: if $\eta_{t}(x)=1$ then $h_{t}(x)$ in the interval $[x, x+1]$ increases with slope +1 whereas if $\eta_{t}(x)=0$ then $h_{t}(x)$ decreases in that interval with slope -1 .

Step initial
condition

$h_{t}(x+1)-h_{t}(x)=2 \eta_{t}(x)-1$

KPZ Equation \& Growth Processes

 \longrightarrow Kardar, Parisi \& Zhang$$
\begin{gathered}
\frac{\partial h}{\partial t}=\nu \frac{\partial^{2} h}{\partial x^{2}}+\lambda\left(\frac{\partial h}{\partial x}\right)^{2}+w \\
\uparrow \underset{\text { diffusion }}{\uparrow} \underset{\text { growth }}{\substack{\text { noise }}} \\
u(x, t)=\frac{\partial h}{\partial x} \longrightarrow \quad \text { Noisy Burgers eqn }
\end{gathered}
$$

- Physicists expect KPZ eqn to describe a large class of stochastically growing interfaces: $1+1 \mathrm{KPZ}$ universality class.
- KPZ difficult to handle mathematically
- Natural to make space discrete
- ASEP is expected to be in the KPZ universality class in the long time and large space asymptotic limits.
- Thus asymptotic results for ASEP are expected to have a "universal character"

T(totally)ASEP

TASEP is the case when particles can jump only to the right $(p=1)$ or only to the left ($q=1$).

The first limit law is due to Kurt Johansson (2000) in the case of step initial condition:

$$
Y=\{1,2,3, \ldots,\}=\text { initial location of particles, } q=1
$$

Let $x_{m}(t)$ denote the position of the m th particle from the left, set $0<\sigma=$ $m / t<1$ then there exist explicit constants c_{1} and c_{2} (depending upon σ) such that as $m, t \rightarrow \infty$

$$
\frac{x_{m}(t)-c_{1} t}{c_{2} t^{1 / 3}} \longrightarrow F_{2}
$$

where convergence is in distribution and F_{2} is the GUE largest eigenvalue distribution function.

- Note the $\frac{1}{3}$ in the scaling: KPZ Universality Class
- TASEP is a determinantal process. Can adapt methods of random matrix theory to prove limit theorem
- Methods do not work for ASEP but do we get the same limit law?

Integrable Structure of ASEP

We solve the Kolmogorov forward equation ("master equation") for the transition probability $\mathrm{Y} \rightarrow \mathrm{X}$:

$$
P_{Y}(X ; t)
$$

Main idea comes from the Bethe Ansatz (I93I)

Hans Bethe in 1967

$N=1$ ASEP

$$
u(x, t)=\mathbb{P}\left(\eta_{t}(x)=1, \eta_{t}(y)=0, y \neq x\right)
$$

Master equation:

$$
\begin{gathered}
\frac{d u(x ; t)}{d t}=p u(x-1 ; t)+q u(x+1 ; t)-u(x ; t) \\
u(x ; t)=\frac{1}{2 \pi i} \int_{C} \xi^{x-y-1} e^{t \varepsilon(\xi)} d \xi \\
\varepsilon(\xi)=\frac{p}{\xi}+q \xi-1
\end{gathered}
$$

$N=2$ ASEP

Master equation takes simple form for this configuration

Master equation reflects exclusion for this configuration

Differential Equations for $\mathbb{P}_{Y}(X ; t)$

Configuration $X=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$.
$\mathbf{N}=\mathbf{2}$ particles and $x_{1}+1<x_{2}$:

$$
\begin{aligned}
\frac{d}{d t} u\left(x_{1}, x_{2}\right)= & p u\left(x_{1}-1, x_{2}\right)+q u\left(x_{1}+1, x_{2}\right) \\
& +p u\left(x_{1}, x_{2}-1\right)+q u\left(x_{1}, x_{2}+1\right)-2 u\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

For $x_{1}+1=x_{2}$:

$$
\frac{d}{d t} u\left(x_{1}, x_{2}\right)=p u\left(x_{1}-1, x_{2}\right)+q u\left(x_{1}, x_{2}+1\right)-u\left(x_{1}, x_{2}\right) .
$$

Formally subtract when $x_{2}=x_{1}+1$ to obtain.

$$
0=p u\left(x_{1}, x_{1}\right)+q u\left(x_{1}+1, x_{1}+1\right)-u\left(x_{1}, x_{1}+1\right) .
$$

Treat this as a boundary condition. Consider $\left(x_{1}, x_{2}\right) \in \mathbb{Z}^{2}$, then
First Equation + Boundary Condition \Rightarrow Second Equation.
Find a solution in \mathbb{Z}^{2} satisfying first DE, BC and the initial condition in region $x_{1}<x_{2} \Longrightarrow$ found the probability $\mathbb{P}_{Y}(X ; t)$.

Important Point:

Additional boundary conditions arise when, say,
3 particles are adjacent
4 particles are adjacent
etc.

For example, for $N=3$ we have four cases

These new conditions are automatically satisfied by the boundary conditions arising when 2 particles are adjacent. The underlying algebraic reason is that the " S-matrix" satisifes the

Yang-Baxter equations

Bethe Ansatz Solution

$$
\varepsilon(\xi):=\frac{p}{\xi}+q \xi-1
$$

For any $\xi_{1}, \ldots, \xi_{N} \in \mathbb{C} \backslash\{0\}$ a solution of the DE is

$$
\prod_{j}\left(\xi_{j}^{x_{j}} e^{\varepsilon\left(\xi_{j}\right) t}\right)
$$

For any $\sigma \in \mathcal{S}_{N}$, another solution is

$$
\prod_{j} \xi_{\sigma(j)}^{x_{i}} \prod_{j} e^{\varepsilon\left(\xi_{j}\right) t}
$$

or any linear combination of these, or any integral of a linear combination.

Bethe Ansatz:

$$
u(X ; t)=\int \sum_{\sigma \in \mathcal{S}_{N}} F_{\sigma}(\xi) \prod_{j} \xi_{\sigma(j)}^{x_{j}} \prod_{j} e^{\varepsilon\left(\xi_{j}\right) t} d^{N} \xi
$$

Want the boundary conditions to be satisfied.

Look for F_{σ} such that the integrand satisfies the BCs pointwise: Find condition

$$
\frac{F_{T_{i} \sigma}}{F_{\sigma}}=-\frac{p+q \xi_{\sigma(i)} \xi_{\sigma(i+1)}-\xi_{\sigma(i+1)}}{p+q \xi_{\sigma(i)} \xi_{\sigma(i+1)}-\xi_{\sigma(i)}}, T_{i}=\text { transposition operator at sites } i, i+1
$$

Recognize this as the Yang-Yang S-matrix in the $X X Z$ spin Hamiltonian

$$
S_{\alpha \beta}=-\frac{p+q \xi_{\alpha} \xi_{\beta}-\xi_{\alpha}}{p+q \xi_{\alpha} \xi_{\beta}-\xi_{\beta}}
$$

Upshot: If we define

$$
A_{\sigma}=\operatorname{sgn} \sigma \frac{\prod_{i<j}\left(p+q \xi_{\sigma(i)} \xi_{\sigma(j)}-\xi_{\sigma(i)}\right)}{\prod_{i<j}\left(p+q \xi_{i} \xi_{j}-\xi_{i}\right)}
$$

then

$$
u(X ; t)=\sum_{\sigma} \int A_{\sigma}(\xi) \prod_{i} \xi_{\sigma(i)}^{x_{i}-y_{\sigma(i)}-1} d^{N} \xi \mathbf{e}^{\mathrm{t} \varepsilon\left(\xi_{\mathbf{i}}\right)}
$$

satisfies the master equation + boundary conditions.
The $\sigma=i d$ summand satisfies initial condition.

Theorem (TW): If $p \neq 0$ and r is small enough then

$$
\mathbb{P}_{Y}(X ; t)=\sum_{\sigma \in \mathcal{S}_{N}} \int_{\mathcal{C}_{r}^{N}} A_{\sigma}(\xi) \prod_{i} \xi_{\sigma(i)}^{x_{i}} \prod_{i}\left(\xi_{i}^{-y_{i}-1} e^{\varepsilon\left(\xi_{i}\right) t}\right) d^{N} \xi
$$

where

$$
A_{\sigma}=\operatorname{sgn} \sigma \frac{\prod_{i<j}\left(p+q \xi_{\sigma(i)} \xi_{\sigma(j)}-\xi_{\sigma(i)}\right)}{\prod_{i<j}\left(p+q \xi_{i} \xi_{j}-\xi_{i}\right)}
$$

and satisfies

$$
\mathbb{P}_{Y}(X ; 0)=\delta_{Y}(X)
$$

Remarks:

- There is no Ansatz in our work!
- Usual Bethe Ansatz calculates the spectrum of the operator. This leads to transcendental equations for the eigenvalues and issues of completeness of the eigenfunctions.
- We compute the semigroup directly. No spectral theory.

Marginal Distributions

$$
P\left(x_{m}(t) \leq x\right)
$$

Case $\mathrm{m}=1$:

Fix $x_{1}=x$, sum $P_{Y}(X ; t)$ over allowed $x_{2}, x_{3}, x_{4}, \ldots$
Can do this since contours are small: $\left|\xi_{i}\right|<1$

Result is an expression involving N! terms. Use first miraculous identity to reduce sum to one term!

Here's the identity:

First Identity

$$
\begin{gathered}
\sum_{\sigma \in \mathcal{S}_{N}} \operatorname{sgn} \sigma\left(\prod_{i<j}\left(p+q \xi_{\sigma(i)} \xi_{\sigma(j)}-\xi_{\sigma(i)}\right)\right. \\
\left.\times \frac{\xi_{\sigma(2)} \xi_{\sigma(3)}^{2} \cdots \xi_{\sigma(N)}^{N-1}}{\left(1-\xi_{\sigma(2)} \xi_{\sigma(3)} \cdots \xi_{\sigma(N)}\right)\left(1-\xi_{\sigma(3)} \cdots \xi_{\sigma(N)}\right) \cdots\left(1-\xi_{\sigma(N)}\right)}\right) \\
=p^{N(N-1) / 2} \frac{\left(1-\xi_{1} \cdots \xi_{N}\right) \prod_{i<j}\left(\xi_{j}-\xi_{i}\right)}{\prod_{i}\left(1-\xi_{i}\right)}
\end{gathered}
$$

- Using this identity we get for $m=1$ an expression for $\mathrm{P}\left(\mathrm{x}_{1}(\mathrm{t}) \leq \mathrm{x}\right)$ as a single m dimensional integral with a product integrand. This expression is for finite N ASEP

$$
\begin{aligned}
I(x, Y, \xi)= & \prod_{i<j} \frac{\xi_{j}-\xi_{i}}{p+q \xi_{i} \xi_{j}-\xi_{i}} \frac{1-\xi_{1} \cdots \xi_{N}}{\left(1-\xi_{1}\right) \cdots\left(1-\xi_{N}\right)} \\
& \prod_{i}\left(\xi_{i}^{x-y_{i}-1} e^{\varepsilon\left(\xi_{i}\right) t}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{P}\left(x_{1}(t)=x\right)= & p^{N(N-1) / 2} \int_{\mathcal{C}_{r}} \cdots \int_{\mathcal{C}_{r}} I(x, Y, \xi) d \xi_{1} \cdots d \xi_{N} \\
& (p \neq 0)
\end{aligned}
$$

- Sum of N ! integrals has been reduced to one integral
- However form is not so useful to take $\mathrm{N} \rightarrow \infty$
- We now expand contour outwards -- only residues that contribute come from $\xi=1$.
- Can take $\mathrm{N} \rightarrow \infty$ in resulting expression to obtain

$$
\begin{aligned}
\sigma(S):= & \sum_{i \in S} i \\
\mathbb{P}\left(x_{1}(t)=x\right)= & \sum_{S} \frac{p^{\sigma(S)-|S|}}{q^{\sigma(S)-|S|(|S|+1) / 2}} \times \\
& \int_{\mathcal{C}_{R}} \cdots \int_{\mathcal{C}_{R}} I\left(x, Y_{S}, \xi\right) d^{|S|_{\xi}}
\end{aligned}
$$

The sum is over all nonempty subsets of \mathbb{Z}
When $p=0$ only one term is nonzero, $S=\{1\}$.

- To go beyond the left most particle, $\mathrm{m}=1$, there are new complications
- These come from the fact that we must sum over all $x_{j}>x_{m}$ and all $x_{i}<x_{m}$. Some contours must be small (former) and some must be large (latter) to obtain convergence of geometric series
- This involves finding a new identity

Second Identity

S ranges over subsets of $\{1,2, \ldots, N\}$

$$
\begin{gathered}
\sum_{|S|=m} \prod_{i \in S, j \in S^{c}} \frac{p+q \xi_{i} \xi_{j}-\xi_{i}}{\xi_{j}-\xi_{i}} \cdot\left(1-\prod_{j \in S^{c}} \xi_{j}\right) \\
=q^{m}\left[\begin{array}{l}
N \\
m
\end{array}\right]\left(1-\prod_{j=1}^{N} \xi_{j}\right) . \\
{[N]=\frac{p^{N}-q^{N}}{p-q}, \quad[N]!=[N][N-1] \cdots[1],} \\
{\left[\begin{array}{l}
N \\
m
\end{array}\right]=\frac{[N]!}{[m]![N-m]!}, \quad(q-\text { binomial coefficient }),}
\end{gathered}
$$

Final series result for case $Y=\mathbb{Z}^{+}$

$$
\begin{aligned}
\mathbb{P}\left(x_{m}(t) \leq x\right)= & (-1)^{m} \sum_{k \geq m} \frac{1}{k!}\left[\begin{array}{c}
k-1 \\
k-m
\end{array}\right]_{\tau} p^{(k-m)(k-m+1) / 2} q^{k m+(k-m)(k+m-1) / 2} \\
& \times \int_{\mathcal{C}_{R}} \cdots \int_{\mathcal{C}_{R}} \prod_{i \neq j} \frac{\xi_{j}-\xi_{i}}{p+q \xi_{i} \xi_{j}-\xi_{i}} \prod_{i} \frac{1}{\left(1-\xi_{i}\right)\left(q \xi_{i}-p\right)} \\
& \times \prod_{i}\left(\xi_{i}^{x} e^{\varepsilon\left(\xi_{i}\right) t}\right) d \xi_{1} \cdots d \xi_{k}
\end{aligned}
$$

- For $p=0$ only $k=m$ term is nonzero
- Recognize double product as a determinant whose entries are a kernel, i.e. $K\left(\xi_{j}, \xi_{j}\right)$
- Result can then be expressed as a contour integral whose integrand is a Fredholm determinant

Fredholm determinant

- Let $K(x, y)$ be a kernel function
- Fredholm expansion of $\operatorname{det}(I-\lambda K)$:

$$
\begin{gathered}
\frac{(-1)^{n}}{n!} \int \cdots \int \operatorname{det}\left(K\left(\xi_{i}, \xi_{j}\right)_{1 \leq i, j \leq n} d \xi_{1} \cdots d \xi_{n}=\right. \\
\int_{\mathcal{C}} \operatorname{det}(I-\lambda K) \frac{d \lambda}{\lambda^{n+1}}
\end{gathered}
$$

-Can then do sum over k (q-Binomial theorem):

Final expression for $\mathrm{m}^{\text {th }}$ particle distribution fn . Step initial condition

Set $\gamma=q-p>0, \tau=q / p$ and define an integral operator K on circle C_{R} :

$$
K\left(\xi, \xi^{\prime}\right)=q \frac{\xi^{\prime x} e^{t \varepsilon\left(\xi^{\prime}\right) / \gamma}}{p+q \xi \xi^{\prime}-\xi}
$$

Then
$\mathbb{P}\left(x_{m}(t / \gamma) \leq x\right)=\int \frac{\operatorname{det}(I-\lambda K)}{\prod_{k=0}^{m-1}\left(1-\lambda \tau^{k-1}\right)} \frac{d \lambda}{\lambda}$
The contour in the λ-plane encloses all of the singularities of the integrand.

Asymptotic analysis

We now transform the operator K so that we can perform a steepest descent analysis.

Recall that the generic behavior for the coalescence of two saddle points leads to the Airy function $\mathrm{Ai}(\mathrm{x})$

George Airy

$$
\begin{aligned}
& \xi \longrightarrow \frac{1-\tau \eta}{1-\eta}, \tau=\frac{p}{q}<1 \\
& K\left(\xi, \xi^{\prime}\right) \longrightarrow K_{2}\left(\eta, \eta^{\prime}\right)=\frac{\varphi\left(\eta^{\prime}\right)}{\eta^{\prime}-\tau \eta} \\
& \varphi(\eta)=\left(\frac{1-\tau \eta}{1-\eta}\right)^{x} e^{\left[\frac{1}{1-\eta}-\frac{1}{1-\tau \eta}\right] \mathrm{t}} \\
& \text { Introduce: } K_{1}\left(\eta, \eta^{\prime}\right)=\frac{\varphi(\tau \eta)}{\eta^{\prime}-\tau \eta}
\end{aligned}
$$

Proposition:

Let Γ be any closed curve going around $\eta=1$ once counterclockwise with $\eta=1 / \tau$ on the outside. Then the Fredholm determinant of $K(\xi, \xi ')$ acting on C_{R} has the same Fredholm determinant as $K_{1}(\eta, \eta \prime)-K_{2}(\eta, \eta \prime)$ acting on Γ.

Proposition:
Suppose the contour Γ is star-shaped with respect to $\eta=0$. Then the Fredholm determinant of K_{1} acting on Γ is equal to

$$
\prod_{k=0}^{\infty}\left(1-\lambda \tau^{k}\right)
$$

Denote by R the resolvent kernel of K_{1}

Factor determinant: $\operatorname{det}(I-\lambda K)=\operatorname{det}\left(I-\lambda K_{1}\right) \operatorname{det}\left(I+K_{2}(I+R)\right)$

Set $\lambda=T^{-m} \mu$ so formula for distr. fn becomes

$$
\int \prod_{k=0}^{\infty}\left(1-\mu \tau^{k}\right) \operatorname{det}\left(I+\tau^{-m} \mu K_{2}(I+R)\right) \frac{d \mu}{\mu}
$$

μ runs over a circle of radius $>\mathrm{T}$

By a perturbative expansion of R , followed by a deformation of operators, we show

$$
\operatorname{det}\left(I+\lambda K_{2}(I+R)\right)=\operatorname{det}(I+\mu J)
$$

$$
\begin{aligned}
J\left(\eta, \eta^{\prime}\right) & =\int \frac{\varphi_{\infty}(\zeta)}{\varphi_{\infty}\left(\eta^{\prime}\right)} \frac{\zeta^{m}}{\left(\eta^{\prime}\right)^{m+1}} \frac{f\left(\mu, \zeta / \eta^{\prime}\right)}{\zeta-\eta} d \zeta \\
\varphi_{\infty}(\eta) & =(1-\eta)^{-x} e^{\frac{\eta t}{1-\eta}} \\
f(\mu, z) & =\sum_{k=-\infty}^{\infty} \frac{\tau^{k}}{1-\tau^{k} \mu} z^{k}
\end{aligned}
$$

The kernel $J(\eta, \eta$ '), which acts on a circle centered at 0 with radius less than T , is analyzed by the steepest descent method.
Note: m now appears inside the kernel!

Main Result

We set
$\sigma=\frac{m}{t}, c_{1}=-1+2 \sqrt{\sigma}, c_{2}=\sigma^{-1 / 6}(1-\sqrt{\sigma})^{2 / 3}, \gamma=q-p$
Theorem (TW). When $0 \leq p<q$ we have

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left(\frac{x_{m}(t / \gamma)-c_{1} t}{c_{2} t^{1 / 3}} \leq s\right)=F_{2}(s)
$$

This theorem establishes KPZ Universality for ASEP with step initial condition

Painlevé II Representation of F_{2}

$$
\begin{aligned}
F_{2}(s) & =\exp \left(-\int_{s}^{\infty}(x-s) q^{2}(x) d x\right) \\
\frac{d^{2} q}{d x^{2}} & =x q+2 q^{3}, \quad \text { Painlevé II } \\
q(x) & \sim \operatorname{Ai}(x), x \rightarrow \infty
\end{aligned}
$$

This q is called the Hastings-McLeod solution.

First Appearance of F_{2} in growth processes Baik, Deift \& Johansson
Patience Sorting (Aldous \& Diaconis)

$$
\sigma=\left\{\begin{array}{lllllllllll}
6 & 7 & 1 & 8 & 5 & 4 & 10 & 9 & 2 & 3
\end{array}\right\}
$$

First Appearance of F_{2} in growth processes Baik, Deift \& Johansson
Patience Sorting (Aldous \& Diaconis)
$\sigma=\{\quad\}$

\[

\]

Baik-Deift-Johansson Theorem

Theorem. Given a random permutation $\sigma \in \mathcal{S}_{n}$, let $\ell(\sigma)$ equal the number of piles resulting from the patience sorting algorithm. Then

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{\ell(\sigma)-2 \sqrt{n}}{n^{1 / 6}} \leq s\right)=F_{2}(s)
$$

- Johannsson showed F_{2} arises in a last passage percolation model (corner growth) which includes TASEP with step initial condition.
- TASEP with flat initial conditions leads to F_{1}, Sasamoto, Borodin, Ferrari, ...

Can also study limit for fixed $m, t \rightarrow \infty$

Theorem: Assume $0<p<q$. For fixed m the limit

$$
\mathbb{P}\left(\frac{x_{m}(t / \gamma)+t}{\sqrt{\gamma} \sqrt{t}} \leq s\right)
$$

equals

$$
\int \frac{\operatorname{det}(I-\lambda K)}{\prod_{k=0}^{m-1}\left(1-\lambda \tau^{k}\right)} \frac{d \lambda}{\lambda}
$$

where now K has kernel (acting on \mathbb{R})

$$
K\left(z, z^{\prime}\right)=\frac{q}{\sqrt{2 \pi}} \exp \left(-\left(p^{2}+q^{2}\right)\left(z^{2}+z^{\prime 2}\right) / 4+p q z z^{\prime}\right)
$$

- Would like a conceptual understanding of why identities \& cancellations appear in ASEP proofs.
- Extend ASEP results to other initial conditions, e.g. flat initial conditions. Do we see F_{1} as in TASEP?
- Can we apply Bethe Ansatz methods to other growth models?
- Ultimately we want universality theorems not to rely upon integrable stucture of ASEP. For $1 / 3$ exponent progress by Balázs, Seppäläinen, Quastel \&Valkó.

Thanks to Anne Schilling \& Doron Zeilberger for advice with the combinatorial identities

$\sum_{k}\binom{n}{k}^{2}\binom{3 n k}{2 n}=\left(3_{n}^{n}\right)^{2}$ WHO YOU GONNA CALL?

Harold Widom (left) and his brother Ben

