Surfaces with singularities and
Osserman-type inequalities.
Masaaki Umehara (Osaka University)

Motivation.

This a development of my talk on minimal surfaces
in R? at 26th ENCOUNTER with MATHEMATICS
2003, March 14 (Chyuo Univ.).

C: a class of immersed surfaces in a space form

Joo Non-trivial examples = OK

3 Only a few examples
0 0 = Consider a new class C O C.

JOsserma-type ineqgality = C is OK.



More precisely, there are several classes of surfaces
which do not admit only a few complete immersed
surfaces:

e Flat surfaces in H>,

e Space-like maximal surfaces in RZ{),

e space-like CMC-1 surfaces in S%,

e Flat surfaces in R”.

What is the best restrictions of singularities for global
study of these such objects?

(Philosophy) A good classes of surfaces (which may
have singularities) should satisfy certain kind of
Osserman-type inequalities.



(Cohn-Vossen inequality)
(¥2,ds?) : a complete Riemannian 2-manifold with

finite total curvature

1
— | KdA < x(Z%).
27 32

Example (A cylinder) y(3?) =0 and K = 0.

0

(A refinement by R. Finn 65 and K. Shiohama 85)

1
— [ KdA = x(¥%) —i(2?),
27‘(‘ 22
where A 5
J(52) = i 2realBelr)

r—oo oyl



Osserman inequality
Let f: %2 — R? be an immersed minimal surfaces

with finite total curvature.

e (Huber 57) 3 a closed Riemann surface $° such
that
2 ~ 22\ {p1, ..., pn} (bi-holomorphic)O
1
o (Osserman 64) o /2(—K)dA > —x(2%) +n
TJy
o (Jorge-Meeks 83) The equality holds iff each end is
properly embedded[]
[f a minimal surface admits branch points, Osserman
inequality does not hold in general.

_ |
(The degree of G : %2 — %)= —— [ KdA
A y2




Applications of inequality

(Fact 1.)(Osserman 64)

[f the Gauss map of a complete minimal (immersed)
surface of finite total curvature omits more than three
directions, it is a plane.

(Fact 2.)(Fujimoto 88)
[f the Gauss map of a complete minimal (immersed)
surface omits more than four directions, it is a plane.

(Fact 3.)(Kawakami-R.Kobayashi-Miyaoka)
The Gauss map of a complete minimal (immersed)
surface of finite total curvature satisfies

2
DGgVG§2+E<4,

where D¢ is the number of exceptional values, and

1
VG = DG + Z <1 o 1 _|_ max Ol”dp(de)7
a€lm(G) peG1(a)
1~ genus — 1 + #(ends)/2
R deg(G) |

which are geometric invariants based on Nevanlinna
theory:.



The Chern-Osserman inequality
Let f: %2 — RY be an orientable complete minimal
immersion with finite total curvature. Then it holds

that

L[ (CK)A > —x(52) + #(ends).
27T 22

(Kokubu-Yamada-U. 2002) The equality holds iff each

end is properly embedded and asymptotic to a plane
or a catenoid.

Here, amap f: {0 < |2| <1} — R" is asymptotic
to another map fy: {0 < |z| <1} — R? c RV if
o fE) = fol)

z—0 Z

Example f(z) = (z, %) - C\ {0} — C? = R has

embedded ends but total curvature —6m, which does
not attain the equality.

= 0.




CMC-1 surfaces in H3(—1)

t+2 z+wy

4
Ri>(t,z,y,2) & (J:—iy A

) € Herm(2),

H:={(t,z,y,2) e R{; 2>+ + 2> —t? = -1}
= { X € Herm(2) ; trace(X) > 0, det(X) =1}

3o complete CMC-1 surfaces in H?.

3 A Weierstrass-type formula (by Bryant 87).

Minimal surfaces in R®>  |CMC-1 surfaces in H?
(1+]G[7)|w]| > 0 (1+|G[7)|w]| > 0
F:¥? —C3 F:¥°— SL(2,C)

| (G =G*
dF = ((1—=G2),i(1+ G, 2Gw/2 |dFF~+ = (1 —a ) W
f=F+F:Y >R’ |f:=FF:%%— H

(hyperbolic Gauss map)

——— -




Osserman-type inequality for CMC-1 surfaces

(Fact 1.) (Yamada-U. 93)
The equality never holds on Cohn-Vossen ineqality for

complete CMC-1 immersions of finite total curvature.

1
— | KdA<y(Z?).
27‘( 22 <X( )

The total curvature tends to 0 for a catenoid cousin.

(a) horosphere (b) catenoid cousin 1 (c¢) catenoid cousin 2

(Fact 2.) (Yamada-U. 97) The following inequality
holds for complete CMC-1 immersions of finite total
curvature in H3.

2deg(G) > —x(2?) + #(ends).
‘=" holds iff each end is properly embeddedl]



Space-like maximal surfaces in (R}, + + —)
H = 0 <= Maximal surfaces

(Fact 1.) complete immersed space-like maximal
surfaces in Rzl)) is a plane.

(Fact 2.) (Osamu Kobayashi 83)
3 Weierstrass-type representation formula

Minimal surfaces in R® | Maximal surfaces in Rif
(1+|G[)|w] >0 (1—|G]7)w] >0

F: ¥ —C° F:¥°—C°

dF = (1= G%),i(1 + G*),2G)w/2 |dF = ((1 - G?),i(1+ G?),2iG)w/2
f=F+F:¥ >R’ f::F+F:22—>R:f

F1GURE 1. Representation formula for maximal surfaces

Lorentzian catenoid and Lorentzian Enneper surfaces



A conformal maximal immersion f : %2 — C3
induces a holomorphic immersion

F = (F', F? F3):%? — C3 such that
f=F+F, FL.F4+F.F2P_F).F)=o

Such a map F'is called a Lorentzian null immersion.

Maxface = the projection of a Lorentzian null immersion

(Completeness) A maxface f : 22 — Ry is called
complete if T (a symmetric tensor) such that

e supp(7’) is compact,

T +ds?is a complete Riemannian metric on »2

Kim-Yang maximal torus (by Fujimori)
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Osserman-type inequality for maxfaces

Fact 3.0 Yamada-Umehara 030 Let f : 22 — R:f
be a complete maxtace, then

o Y2 ~ 22\ {p1,...,pn} (bi-holomorphic)O
e The Gauss map
G:¥? - H2UH? =5°=CU{o0}
is a meromorphic function on %20
e An Osserman-type inequality holds:

2deg(G) > —x(2?) + #(ends).
=" holds iff all ends are properly embedded.

Ficure 2. 1 he streo-graphic projection
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The duality between swallowtails and cuspidal cross caps

swallowtail and cuspidal cross-cap
Fact 4.(Fujimori-Saji-Yamada-U. 07)
Let f = Re(F) : %% — R} be a maxface,
and = := Im(F) its conjugate surface. Then

a swallowtail of f <= a cuspidal cross-cap of .

Fact 5.(Fujimori-Lopez 08)
4 non-orientable complete maxfaces with one end of
genus zero or genus one.

non-orientable maxface (by Fujimori)
12



Spacelike CMC-1 surfaces in S%
S% = SL(2,C)/SU(1,1): de Sitter space-time

4 t+2z x1+wy
Ri>(tz,y,2) & (az—iy P

) € Herm(2),

St ={(t,z,y,2) e Ry; —t* + a7 +y7 + 2" =1},
_ {aegta € Herm(2 ), a € SL(2,C)},

where eg = (é _01>

(Fact 1.) A complete space-like CMC-1 immersion
n S% is totally umbilical.

(Fact 2.) (Aiyama-Akutagawa 98)
4 Weierstrass-type representation formula

CMC-1 surfaces in S% CMC-1 surfaces in H?
(1+]G]9)|w| >0 (1+]G]9)|w| >0
F:¥*— SL(2,C) F:¥%*— SL(2,C)

2 )
dFF—1 = (G -G ) w dFF~1 = (G -G ) W

1 -G 1 -G
f=FeF:Y2— S | f=FF:%% — H

F1GURE 3. Representation formulas
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space-like CMC-1 surface with singularities.
A conformal CMC-1 immersion f : ©2 — Si)’ induces

a holomorphic immersion F' : %2 — SL(2, C) such
that
det(F%) = 0.
F' is called the null holomorphic immersion.
CMC-1 faces <= Projection of null immersions

We can define the completeness like as the
case of maxfaces.

3 three type of complete ends according to the
monodromy matrix of the lift F' of f.

e elliptic ends (accumulate to one of 815%)
e parabolic ends (accumulate to one of (9@9%)
e hyperbolic ends (accumulate both of 815%)

Singular sets of an incomplete elliptic end and of hyperbolic ends
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Osserman-type inequality for CMC-1 faces
Fact 30 Fujimori-Rossman-Yamada-S.D.Yang-U.[Let
.2 S% be a complete CMC-1 face, then

o X2 ~ 32\ {p1,...,pn} (bi-holomorphic),
e All ends are elliptic or parabolic

An end p; is called regularif it is at most pole of the
Gauss map

G:Y? - CU {0}

Fact 4.0 Fujimori-Rossman-Yamada-5S.D.Yang-U.[]
Let f:3?% — S% be a complete CMC-1 face, then the

following Osserman-type inequality holds

2deg(G) > —x(X?) + #(ends).
=" holds if and only if all ends are regular and properly
embedded.

¢
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Flat surfaces in H°
(Fact 1.) (Volkov& Vladimirova 71, S.Sasaki 73)

A complete flat (immersed) surface in H? is a
horosphere or a parallel surface of a geodesic.

(Fact 2.) Parallel surfaces of flat surfaces are also
flat.
(Fact 3.) 3 Weierstrass-type representation formula

(The complex structure is induced from the second fundamental form.)

|Galvez-Martinez-Milan 00)]

rotationally symmetric examples

16



Wave fronts
Let M3(c) be a space form. A C*-map
Fi?— M)
is called a frontal map if there exists a C°°-map
LY — TyM(e)
such that L is the unit normal vector field along f.
Moreover, if L is an immersion, f is called a wave

front (or a front).
(Examples of frontals)

e Maxfaces in R3,
e CMC-1 faces in S%.

A front f is called flat if the regular set R of f is
open dense and f|p has zero Gaussian curvature.

RN NN SRR

PN NN NN NN NN

WL TR T

TN

R,
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[l Global Results[]
(Fact 4.) (Kokubu-Rossman-Yamada-U. 07)

Flat fronts are all orientable.

Completeness: A flat front f : 3% — H3 is called
complete if 37" such that

e supp(7') is compact and,
ods’+T:a complete Riemannian metric on >,

(Fact 5.)0 Kokubu-Rossman-Yamada-U.070 A flat
front f: X% — H3 is complete iff
e The singlar set is comapct.
e The metric |df|> + |dv|? is complete and of finite
total curvature.

18



(Fact 6.) (Kokubu-Yamada-U. 04) Let f : ¥? — H?
be a complete flat front. Then
o X2 ~ Y2\ {py,...,pn} (bi-holomorphic),
e the hyperbolic Gauss maps (G4, G_) are
meromorphic functions on 32,

If G4, G- have at most pole at p;, an end p; is called

a reqular end.
(Fact 7.)0 Kokubu-Yamada-U.0400 For a complete

flat fronts in H?, it holds that
deg(G4) + deg(G-) > #(Ends).

The equality holds iff all ends are regular and properly
embedded.
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(Examples of flat fronts in H?)




Flat surfaces in R’

(Fact 1.)(Hartman-Nirenberg 59) A complete flat
immersed surface is a plane or a cylinder over a planar

curve.
A C®map f: 22 — R is called a wave front (or
front) if there exists a C'°°-map v : »2 — 52 such
that
(T2 L) (pexd),
and L = (f,v) : ¥2 — R’ x §? is an immersion.
The map v is called the Gauss map of f.

f is called a flat front < v is degenerate

21



(Completeness) A wave front f : ©? — R? is
called complete if 3T (a symmetric tensor) such that

e supp(7’) is compact,

o T + ds* is a complete Riemannian metric on %2,
(Fact 2.)(Murata-U.) A flat front f : %% — R? is
complete iff the singular set is compact and the metric

df|” + |dv|”
gives a complete Riemannian metric.

(Fact 3.)(Murata-U.) If a complete flat front admits
singular points, then it does not admit umbilics.
The converse is not true. d a circular cylinder.

22



A representation formula for complete flat fronts

sl.=R/(2rZ)

(Fact 4.)(Murata-U.)
Let € - S — 52 be aregular curve without inflections.
Let a be a 1-form on S such that o is exact, namely

2T
/ Ea = 0. Then
0

FSU xR (8 u) — () +ult) € R,

(ww - w)

oives a complete flat front with singularity. Conversely,
any complete flat fronts with singular points are given
in this manner.

(Cor.) Let f: %2 — R be a complete flat front.
Then X2 is diffeomorphic to ST x R.

23



[An Osserman-type inequality]

(Fact 5.)(Murata-U.) The image Im(v) of the Gauss
map of a complete flat front is a regular spherical closed
curve without inflection point. Moreover,

Im(v): convex curve <= f : embedded ends,
that is

#(the crossings of Im(v)) > 0
holds.

[An analogue of the four vetex theorem|
(Fact 6.)(Murata-U.) 3 at least four singular points

other than cupidal edges on a complete flat front with
embedded ends.
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