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Motivation.
This a development of my talk on minimal surfaces

in R3 at 26th ENCOUNTER with MATHEMATICS
2003, March 14 (Chyuo Univ.).

C: a class of immersed surfaces in a space form

∃∞ Non-trivial examples =⇒ OK

∃ Only a few examples

　　 =⇒ Consider a new class C̃ ⊃ C.

∃Osserma-type ineqality =⇒ C̃ is OK.
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More precisely, there are several classes of surfaces
which do not admit only a few complete immersed
surfaces:

•Flat surfaces in H3,
• Space-like maximal surfaces in R3

1,

• space-like CMC-1 surfaces in S3
1,

•Flat surfaces in R3.

What is the best restrictions of singularities for global
study of these such objects?
(Philosophy) A good classes of surfaces (which may

have singularities) should satisfy certain kind of
Osserman-type inequalities.
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(Cohn-Vossen inequality)
(Σ2, ds2) : a complete Riemannian 2-manifold with
finite total curvature

1

2π

∫
Σ2

KdA ≤ χ(Σ2).

Example (A cylinder) χ(Σ2) = 0 and K ≡ 0.

(A refinement by R. Finn 65 and K. Shiohama 85)

1

2π

∫
Σ2

KdA = χ(Σ2) − i(Σ2),

where

i(Σ2) := lim
r→∞

Area(Bp(r))

πr2
.
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Osserman inequality
Let f : Σ2 → R3 be an immersed minimal surfaces

with finite total curvature.

• (Huber 57) ∃ a closed Riemann surface Σ̄2 such
that
Σ2 ≈ Σ̄2 \ {p1, ..., pn} (bi-holomorphic)．

• (Osserman 64)
1

2π

∫
Σ2

(−K)dA ≥ −χ(Σ2) + n

• (Jorge-Meeks 83) The equality holds iff each end is
properly embedded．

If a minimal surface admits branch points, Osserman
inequality does not hold in general.

(The degree of G : Σ̄2 → S2) = − 1

4π

∫
Σ2

KdA
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Applications of inequality

(Fact 1.)(Osserman 64)
If the Gauss map of a complete minimal (immersed)
surface of finite total curvature omits more than three
directions, it is a plane.

(Fact 2.)(Fujimoto 88)
If the Gauss map of a complete minimal (immersed)
surface omits more than four directions, it is a plane.

(Fact 3.)(Kawakami-R.Kobayashi-Miyaoka)
The Gauss map of a complete minimal (immersed)
surface of finite total curvature satisfies

DG ≤ νG ≤ 2 +
2

R
< 4,

where DG is the number of exceptional values, and

νG := DG +
∑

a∈Im(G)

(1 − 1

1 + max
p∈G−1(a)

ordp(dG)
),

1

R
:=

genus − 1 + #(ends)/2

deg(G)
,

which are geometric invariants based on Nevanlinna
theory.
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The Chern-Osserman inequality
Let f : Σ2 → RN be an orientable complete minimal

immersion with finite total curvature. Then it holds
that

1

2π

∫
Σ2

(−K)dA ≥ −χ(Σ2) + #(ends).

(Kokubu-Yamada-U. 2002) The equality holds iff each
end is properly embedded and asymptotic to a plane
or a catenoid.

Here, a map f : {0 < |z| < 1} → RN is asymptotic
to another map f0 : {0 < |z| < 1} → R3 ⊂ RN if

lim
z→0

f (z) − f0(z)

z
= 0.

Example f (z) = (z,
1

z2
) : C \ {0} → C2 = R4 has

embedded ends but total curvature −6π, which does
not attain the equality.
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CMC-1 surfaces in H3(−1)

R4
1  (t, x, y, z) ⇔

(
t + z x + iy
x − iy t − z

)
∈ Herm(2),

H3 : = { (t, x, y, z) ∈ R4
1 ; x2 + y2 + z2 − t2 = −1 }

= {X ∈ Herm(2) ; trace(X) > 0, det(X) = 1 }
∃∞ complete CMC-1 surfaces in H3.
∃ A Weierstrass-type formula (by Bryant 87).

Minimal surfaces in R3 CMC-1 surfaces in H3

(1 + |G|2)|ω| > 0 (1 + |G|2)|ω| > 0

F : Σ2 → C3 F : Σ2 → SL(2,C)

dF = ((1 − G2), i(1 + G2), 2G)ω/2 dFF−1 =

(
G −G2

1 −G

)
ω

f := F + F : Σ2 → R3 f := FtF : Σ2 → H3

(hyperbolic Gauss map)

(p)
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Osserman-type inequality for CMC-1 surfaces

(Fact 1.) (Yamada-U. 93)
The equality never holds on Cohn-Vossen ineqality for
complete CMC-1 immersions of finite total curvature.

1

2π

∫
Σ2

KdA<χ(Σ2).

The total curvature tends to 0 for a catenoid cousin.

(a) horosphere (b) catenoid cousin 1 (c) catenoid cousin 2

(Fact 2.) (Yamada-U. 97) The following inequality
holds for complete CMC-1 immersions of finite total
curvature in H3.

2deg(G) ≥ −χ(Σ2) + #(ends).

‘=’ holds iff each end is properly embedded．
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Space-like maximal surfaces in (R3
1, + + −)

H ≡ 0 ⇐⇒ Maximal surfaces

(Fact 1.) complete immersed space-like maximal
surfaces in R3

1 is a plane.
(Fact 2.) (Osamu Kobayashi 83)
∃ Weierstrass-type representation formula

Minimal surfaces in R3 Maximal surfaces in R3
1

(1 + |G|2)|ω| > 0 (1 − |G|2)|ω| > 0

F : Σ2 → C3 F : Σ2 → C3

dF = ((1 − G2), i(1 + G2), 2G)ω/2 dF = ((1 − G2), i(1 + G2), 2iG)ω/2

f := F + F : Σ2 → R3 f := F + F : Σ2 → R3
1

Figure 1. Representation formula for maximal surfaces

Lorentzian catenoid and Lorentzian Enneper surfaces
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A conformal maximal immersion f : Σ2 → C3

induces a holomorphic immersion
F = (F 1, F 2, F 3) : Σ̃2 → C3 such that

f = F + F̄ , F 1
z · F 1

z + F 2
z · F 2

z − F 3
z · F 3

z = 0.

Such a map F is called a Lorentzian null immersion.

Maxface = the projection of a Lorentzian null immersion

(Completeness) A maxface f : Σ2 → R3
1 is called

complete if ∃T (a symmetric tensor) such that

• supp(T ) is compact,
• T + ds2 is a complete Riemannian metric on Σ2.

Kim-Yang maximal torus (by Fujimori)
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Osserman-type inequality for maxfaces

Fact 3.（Yamada-Umehara 03）Let f : Σ2 → R3
1

be a complete maxface, then

• Σ2 ≈ Σ̄2 \ {p1, ..., pn} (bi-holomorphic)．
• The Gauss map

G : Σ2 → H2
+ ∪ H2− = S2 = C ∪ {∞}

is a meromorphic function on Σ̄2．
• An Osserman-type inequality holds:

2deg(G) ≥ −χ(Σ2) + #(ends).

‘=’ holds iff all ends are properly embedded.

P

G(p)

Figure 2. The streo-graphic projection
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The duality between swallowtails and cuspidal cross caps

swallowtail and cuspidal cross-cap

Fact 4.(Fujimori-Saji-Yamada-U. 07)
Let f = Re(F ) : Σ2 → R3

1 be a maxface,

and f⊥ := Im(F ) its conjugate surface. Then

a swallowtail of f ⇐⇒ a cuspidal cross-cap of f⊥.

Fact 5.(Fujimori-Lopez 08)
∃ non-orientable complete maxfaces with one end of
genus zero or genus one.

non-orientable maxface (by Fujimori)
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Spacelike CMC-1 surfaces in S3
1

S3
1 := SL(2,C)/SU(1, 1): de Sitter space-time

R4
1  (t, x, y, z) ⇔

(
t + z x1 + iy
x − iy t − z

)
∈ Herm(2),

S3
1 = {(t, x, y, z) ∈ R4

1 ; −t2 + x2 + y2 + z2 = 1},
= {ae3

tā ∈ Herm(2) ; a ∈ SL(2,C)},

where e3 =

(
1 0
0 −1

)
.

(Fact 1.) A complete space-like CMC-1 immersion
in S3

1 is totally umbilical.
(Fact 2.) (Aiyama-Akutagawa 98)
∃ Weierstrass-type representation formula

CMC-1 surfaces in S3
1 CMC-1 surfaces in H3

(1 + |G|2)|ω| > 0 (1 + |G|2)|ω| > 0

F : Σ2 → SL(2,C) F : Σ2 → SL(2,C)

dFF−1 =

(
G −G2

1 −G

)
ω dFF−1 =

(
G −G2

1 −G

)
ω

f := Fe3
tF : Σ̃2 → S3

1 f := FtF : Σ̃2 → H3

Figure 3. Representation formulas

13



space-like CMC-1 surface with singularities.
A conformal CMC-1 immersion f : Σ2 → S3

1 induces

a holomorphic immersion F : Σ̃2 → SL(2,C) such
that

det(Fz) = 0.

F is called the null holomorphic immersion.

CMC-1 faces ⇐⇒ Projection of null immersions

We can define the completeness like as the
case of maxfaces.

∃ three type of complete ends according to the
monodromy matrix of the lift F of f .

• elliptic ends (accumulate to one of ∂±S3
1)

• parabolic ends (accumulate to one of ∂±S3
1)

• hyperbolic ends (accumulate both of ∂±S3
1)

Singular sets of an incomplete elliptic end and of hyperbolic ends
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Osserman-type inequality for CMC-1 faces
Fact 3.（Fujimori-Rossman-Yamada-S.D.Yang-U.）Let
f : Σ2 → S3

1 be a complete CMC-1 face, then

• Σ2 ≈ Σ̄2 \ {p1, ..., pn} (bi-holomorphic),
• All ends are elliptic or parabolic

An end pj is called regular if it is at most pole of the
Gauss map

G : Σ2 → C ∪ {∞}.
Fact 4.（Fujimori-Rossman-Yamada-S.D.Yang-U.）
Let f : Σ2 → S3

1 be a complete CMC-1 face, then the
following Osserman-type inequality holds

2deg(G) ≥ −χ(Σ2) + #(ends).

‘=’ holds if and only if all ends are regular and properly
embedded.
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Flat surfaces in H3

(Fact 1.) (Volkov& Vladimirova 71, S.Sasaki 73)
A complete flat (immersed) surface in H3 is a
horosphere or a parallel surface of a geodesic.

(Fact 2.) Parallel surfaces of flat surfaces are also
flat.

(Fact 3.) ∃ Weierstrass-type representation formula
(The complex structure is induced from the second fundamental form.)

[Galvez-Martinez-Milan 00]

rotationally symmetric examples
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Wave fronts
Let M3(c) be a space form. A C∞-map

f : Σ2 → M3(c)

is called a frontal map if there exists a C∞-map

L : Σ2 → T1M
3(c)

such that L is the unit normal vector field along f .
Moreover, if L is an immersion, f is called a wave
front (or a front).
(Examples of frontals)

• Maxfaces in R3
1,

• CMC-1 faces in S3
1.

A front f is called flat if the regular set R of f is
open dense and f |R has zero Gaussian curvature.
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（Global Results）

(Fact 4.) (Kokubu-Rossman-Yamada-U. 07)
Flat fronts are all orientable.

Completeness: A flat front f : Σ2 → H3 is called
complete if ∃T such that

• supp(T ) is compact and,
• ds2 + T : a complete Riemannian metric on Σ2.

(Fact 5.)（Kokubu-Rossman-Yamada-U.07）A flat
front f : Σ2 → H3 is complete iff

• The singlar set is comapct.
• The metric |df |2 + |dν|2 is complete and of finite

total curvature.
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(Fact 6.) (Kokubu-Yamada-U. 04) Let f : Σ2 → H3

be a complete flat front. Then

• Σ2 ≈ Σ̄2 \ {p1, ..., pn} (bi-holomorphic),
• the hyperbolic Gauss maps (G+, G−) are

meromorphic functions on Σ2.

If G+, G− have at most pole at pj, an end pj is called
a regular end.
(Fact 7.)（Kokubu-Yamada-U.04）For a complete

flat fronts in H3, it holds that

deg(G+) + deg(G−) ≥ #(Ends).

The equality holds iff all ends are regular and properly
embedded.
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(Examples of flat fronts in H3)
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Flat surfaces in R3

(Fact 1.)(Hartman-Nirenberg 59) A complete flat
immersed surface is a plane or a cylinder over a planar
curve.

A C∞-map f : Σ2 → R3 is called a wave front (or
front) if there exists a C∞-map ν : Σ2 → S2 such
that

df (TpΣ
2) ⊥ ν(p) (p ∈ Σ2),

and L := (f, ν) : Σ2 → R3 × S2 is an immersion.
The map ν is called the Gauss map of f .

f is called a flat front ⇔ ν is degenerate
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(Completeness) A wave front f : Σ2 → R3 is
called complete if ∃T (a symmetric tensor) such that

• supp(T ) is compact,
• T + ds2 is a complete Riemannian metric on Σ2.

(Fact 2.)(Murata-U.) A flat front f : Σ2 → R3 is
complete iff the singular set is compact and the metric

|df |2 + |dν|2
gives a complete Riemannian metric.

(Fact 3.)(Murata-U.) If a complete flat front admits
singular points, then it does not admit umbilics.
The converse is not true. ∃ a circular cylinder.
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A representation formula for complete flat fronts

S1 := R/(2πZ)

(Fact 4.)(Murata-U.)
Let ξ : S1 → S2 be a regular curve without inflections.
Let α be a 1-form on S1 such that ξα is exact, namely∫ 2π

0
ξα = 0. Then

f : S1 × R  (t, u) �→ γ(t) + uξ(t) ∈ R3,(
γ(t) :=

∫ t

0
ξα

)

gives a complete flat front with singularity. Conversely,
any complete flat fronts with singular points are given
in this manner.

(Cor.) Let f : Σ2 → R3 be a complete flat front.
Then Σ2 is diffeomorphic to S1 × R.
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[An Osserman-type inequality]
(Fact 5.)(Murata-U.) The image Im(ν) of the Gauss

map of a complete flat front is a regular spherical closed
curve without inflection point. Moreover,

Im(ν): convex curve ⇐⇒ f : embedded ends,

that is
#(the crossings of Im(ν)) ≥ 0

holds.

[An analogue of the four vetex theorem]
(Fact 6.)(Murata-U.) ∃ at least four singular points
other than cupidal edges on a complete flat front with
embedded ends.
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