Surfaces with singularities and Osserman-type inequalities.

Masaaki Umehara (Osaka University)

Motivation.

This a development of my talk on minimal surfaces in \mathbb{R}^3 at 26th ENCOUNTER with MATHEMATICS 2003, March 14 (Chyuo Univ.).

 $\mathcal{C}:$ a class of immersed surfaces in a space form

 \exists_{∞} Non-trivial examples \implies OK

 \exists Only a few examples

 \implies Consider a new class $\tilde{\mathcal{C}} \supset \mathcal{C}$.

 $\exists \text{Osserma-type ineqality} \Longrightarrow \tilde{\mathcal{C}} \text{ is OK.}$

More precisely, there are several classes of surfaces which do not admit only a few complete immersed surfaces:

- Flat surfaces in H^3 ,
- Space-like maximal surfaces in R_1^3 ,
- space-like CMC-1 surfaces in S_1^3 ,
- Flat surfaces in \mathbb{R}^3 .

What is the best restrictions of singularities for global study of these such objects?

(Philosophy) A good classes of surfaces (which may have singularities) should satisfy certain kind of Osserman-type inequalities.

(Cohn-Vossen inequality)

 (Σ^2, ds^2) : a complete Riemannian 2-manifold with finite total curvature

$$\frac{1}{2\pi} \int_{\Sigma^2} K dA \le \chi(\Sigma^2).$$

Example (A cylinder) $\chi(\Sigma^2) = 0$ and $K \equiv 0$.

(A refinement by R. Finn 65 and K. Shiohama 85)

$$\frac{1}{2\pi} \int_{\Sigma^2} K dA = \chi(\Sigma^2) - i(\Sigma^2),$$

where

$$i(\Sigma^2) := \lim_{r \to \infty} \frac{\operatorname{Area}(B_p(r))}{\pi r^2}.$$

Osserman inequality

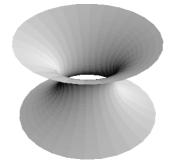
Let $f: \Sigma^2 \to \mathbf{R}^3$ be an immersed minimal surfaces with finite total curvature.

• (Huber 57) \exists a closed Riemann surface $\overline{\Sigma}^2$ such that

- $\Sigma^2 \approx \overline{\Sigma}^2 \setminus \{p_1, ..., p_n\}$ (bi-holomorphic). (Osserman 64) $\frac{1}{2\pi} \int_{\Sigma^2} (-K) dA \ge -\chi(\Sigma^2) + n$
- (Jorge-Meeks 83) The equality holds iff each end is properly embedded.

If a minimal surface admits branch points, Osserman inequality does not hold in general.

(The degree of
$$G: \bar{\Sigma}^2 \to S^2$$
) = $-\frac{1}{4\pi} \int_{\Sigma^2} K dA$



Applications of inequality

(Fact 1.)(Osserman 64)

If the Gauss map of a complete minimal (immersed) surface of finite total curvature omits more than three directions, it is a plane.

(Fact 2.)(Fujimoto 88)

If the Gauss map of a complete minimal (immersed) surface omits more than four directions, it is a plane.

(Fact 3.)(Kawakami-R.Kobayashi-Miyaoka) The Gauss map of a complete minimal (immersed) surface of finite total curvature satisfies

$$D_G \le \nu_G \le 2 + \frac{2}{R} < 4,$$

where D_G is the number of exceptional values, and

$$\begin{split} \nu_G &:= D_G + \sum_{a \in \text{Im}(G)} (1 - \frac{1}{1 + \max_{p \in G^{-1}(a)} \text{ord}_p(dG)}), \\ \frac{1}{R} &:= \frac{\text{genus} - 1 + \#(\text{ends})/2}{\text{deg}(G)}, \end{split}$$

which are geometric invariants based on Nevanlinna theory.

The Chern-Osserman inequality

Let $f: \Sigma^2 \to \mathbf{R}^N$ be an orientable complete minimal immersion with finite total curvature. Then it holds that

$$\frac{1}{2\pi} \int_{\Sigma^2} (-K) dA \ge -\chi(\Sigma^2) + \#(\text{ends}).$$

(Kokubu-Yamada-U. 2002) The equality holds iff each end is properly embedded and asymptotic to a plane or a catenoid.

Here, a map $f : \{0 < |z| < 1\} \to \mathbf{R}^N$ is asymptotic to another map $f_0 : \{0 < |z| < 1\} \to \mathbf{R}^3 \subset \mathbf{R}^N$ if $\lim_{z \to 0} \frac{f(z) - f_0(z)}{z} = 0.$

Example $f(z) = (z, \frac{1}{z^2}) : \mathbb{C} \setminus \{0\} \to \mathbb{C}^2 = \mathbb{R}^4$ has embedded ends but total curvature -6π , which does not attain the equality.

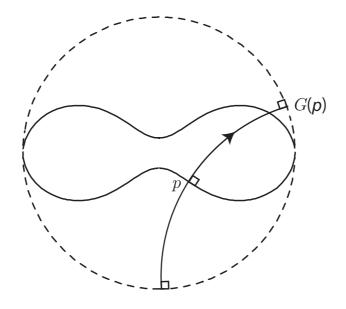
CMC-1 surfaces in
$$H^3(-1)$$

 $\mathbf{R}_1^4 \ni (t, x, y, z) \Leftrightarrow \begin{pmatrix} t+z & x+iy \\ x-iy & t-z \end{pmatrix} \in Herm(2),$
 $H^3 := \{ (t, x, y, z) \in \mathbf{R}_1^4; x^2 + y^2 + z^2 - t^2 = -1 \}$
 $= \{ X \in \text{Herm}(2); \text{trace}(X) > 0, \det(X) = 1 \}$
 $\exists_{\infty} \text{ complete CMC-1 surfaces in } H^3.$

 \exists A Weierstrass-type formula (by Bryant 87).

Minimal surfaces in \mathbf{R}^3	CMC-1 surfaces in H^3
$(1+ G ^2) \omega > 0$	$(1+ G ^2) \omega > 0$
$F: \Sigma^2 \to \mathbf{C}^3$	$F: \Sigma^2 \to SL(2, \mathbf{C})$
$dF = ((1 - G^2), i(1 + G^2), 2G)\omega/2$	
$f := F + \overline{F} \colon \Sigma^2 \to \mathbf{R}^3$	$f := F^{t}\overline{F} \colon \Sigma^{2} \to H^{3}$

(hyperbolic Gauss map)

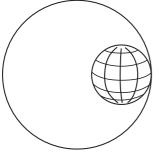


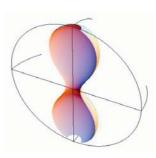
Osserman-type inequality for CMC-1 surfaces

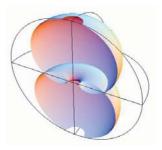
(Fact 1.) (Yamada-U. 93) The equality never holds on Cohn-Vossen inequality for complete CMC-1 immersions of finite total curvature.

 $\frac{1}{2\pi}\int_{\Sigma^2} K dA < \chi(\Sigma^2).$

The total curvature tends to 0 for a catenoid cousin.







(a) horosphere

(b) catenoid cousin 1 (c) catenoid cousin 2

(Fact 2.) (Yamada-U. 97) The following inequality holds for complete CMC-1 immersions of finite total curvature in H^3 .

 $2 \operatorname{deg}(G) \ge -\chi(\Sigma^2) + \#(\operatorname{ends}).$

= 'holds iff each end is properly embedded .

Space-like maximal surfaces in $(\mathbf{R}_1^3, ++-)$ $H \equiv 0 \iff \text{Maximal surfaces}$

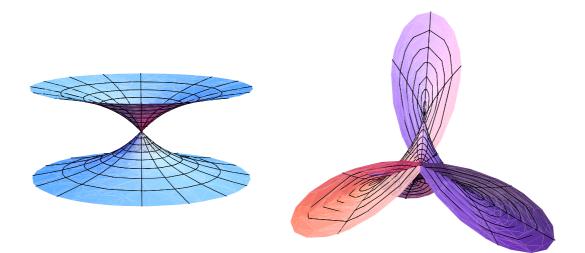
(Fact 1.) complete immersed space-like maximal surfaces in \mathbf{R}_1^3 is a plane.

(Fact 2.) (Osamu Kobayashi 83)

 \exists Weierstrass-type representation formula

Minimal surfaces in \mathbf{R}^3	Maximal surfaces in \mathbf{R}_1^3
$(1+ G ^2) \omega > 0$	$(1 - G ^2) \omega > 0$
$F: \Sigma^2 \to \mathbf{C}^3$	$F: \Sigma^2 \to \mathbf{C}^3$
$dF = ((1 - G^2), i(1 + G^2), 2G)\omega/2$	$dF = ((1-G^2), i(1+G^2), 2iG)\omega/2$
$f := F + \overline{F} \colon \Sigma^2 \to \mathbf{R}^3$	$f := F + \overline{F} \colon \Sigma^2 \to \mathbf{R}_1^3$

FIGURE 1. Representation formula for maximal surfaces



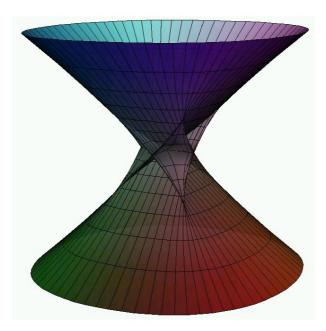
Lorentzian catenoid and Lorentzian Enneper surfaces

A conformal maximal immersion $f: \Sigma^2 \to \mathbb{C}^3$ induces a holomorphic immersion $F = (F^1, F^2, F^3): \tilde{\Sigma}^2 \to \mathbb{C}^3$ such that $f = F + \bar{F}, \quad F_z^1 \cdot F_z^1 + F_z^2 \cdot F_z^2 - F_z^3 \cdot F_z^3 = 0.$ Such a map F is called a *Lorentzian null immersion*.

Maxface = the projection of a Lorentzian null immersion

(Completeness) A maxface $f : \Sigma^2 \to \mathbf{R}_1^3$ is called *complete* if $\exists T$ (a symmetric tensor) such that

- $\operatorname{supp}(T)$ is compact,
- $T + ds^2$ is a complete Riemannian metric on Σ^2 .



Kim-Yang maximal torus (by Fujimori)

Osserman-type inequality for maxfaces

Fact 3. (Yamada-Umehara 03) Let $f: \Sigma^2 \to \mathbf{R}_1^3$ be a complete maxface, then

- $\Sigma^2 \approx \overline{\Sigma}^2 \setminus \{p_1, ..., p_n\}$ (bi-holomorphic).
- The Gauss map

$$G: \Sigma^2 \to \overline{H^2_+ \cup H^2_-} = S^2 = \mathbf{C} \cup \{\infty\}$$

is a meromorphic function on $\bar{\Sigma}^2$.

• An Osserman-type inequality holds:

$$2\deg(G) \ge -\chi(\Sigma^2) + \#(\text{ends}).$$

'=' holds iff all ends are properly embedded.

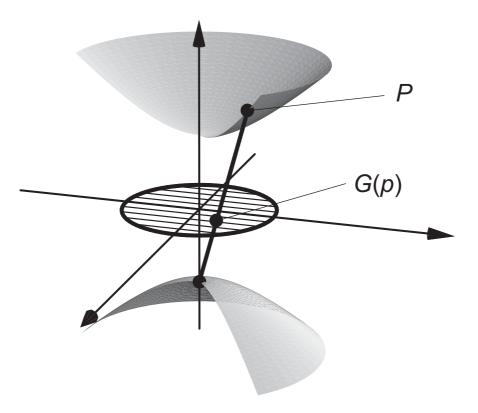
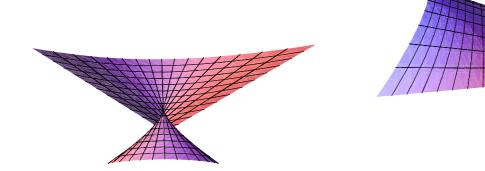


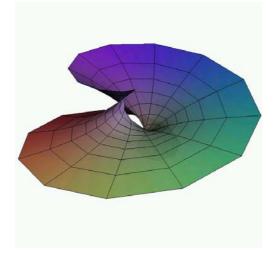
FIGURE 2. The streo-graphic projection

The duality between swallowtails and cuspidal cross caps



swallowtail and cuspidal cross-cap **Fact 4.**(Fujimori-Saji-Yamada-U. 07) Let $f = \operatorname{Re}(F) : \Sigma^2 \to \mathbf{R}_1^3$ be a maxface, and $f^{\perp} := \operatorname{Im}(F)$ its conjugate surface. Then a swallowtail of $f \iff$ a cuspidal cross-cap of f^{\perp} .

Fact 5.(Fujimori-Lopez 08) \exists non-orientable complete maxfaces with one end of genus zero or genus one.



non-orientable maxface (by Fujimori)

Spacelike CMC-1 surfaces in
$$S_1^3$$

 $S_1^3 := SL(2, \mathbb{C})/SU(1, 1)$: de Sitter space-time
 $\mathbb{R}_1^4 \ni (t, x, y, z) \Leftrightarrow \begin{pmatrix} t+z & x_1+iy \\ x-iy & t-z \end{pmatrix} \in Herm(2),$

 $S_1^3 = \{(t, x, y, z) \in \mathbf{R}_1^4; -t^2 + x^2 + y^2 + z^2 = 1\},\$ = $\{ae_3{}^t\bar{a} \in Herm(2); a \in SL(2, \mathbf{C})\},\$

where
$$e_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
.

(Fact 1.) A complete space-like CMC-1 immersion in S_1^3 is totally umbilical.

(Fact 2.) (Aiyama-Akutagawa 98)

 \exists Weierstrass-type representation formula

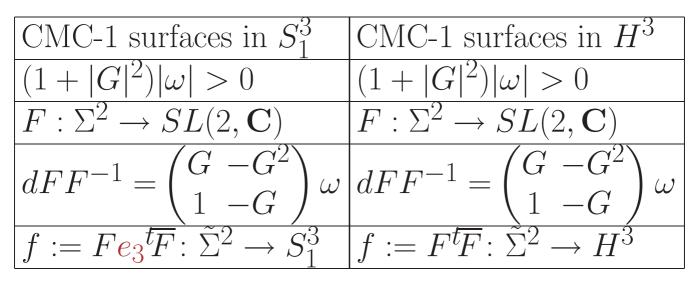


FIGURE 3. Representation formulas

space-like CMC-1 surface with singularities.

A conformal CMC-1 immersion $f: \Sigma^2 \to S_1^3$ induces a holomorphic immersion $F: \tilde{\Sigma}^2 \to SL(2, \mathbb{C})$ such that

$$\det(F_z) = 0.$$

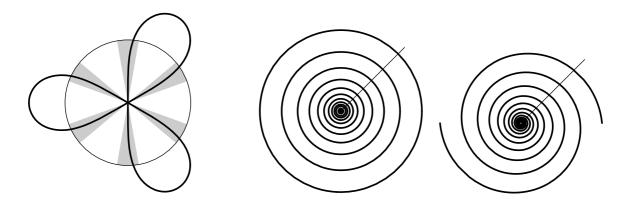
F is called the *null holomorphic immersion*.

CMC-1 faces \iff Projection of null immersions

We can define the completeness like as the case of maxfaces.

 \exists three type of complete ends according to the monodromy matrix of the lift F of f.

- elliptic ends (accumulate to one of $\partial_{\pm}S_1^3$)
- parabolic ends (accumulate to one of $\partial_{\pm}S_1^3$)
- hyperbolic ends (accumulate both of $\partial_{\pm}S_1^3$)



Singular sets of an incomplete elliptic end and of hyperbolic ends

Osserman-type inequality for CMC-1 faces Fact 3. (Fujimori-Rossman-Yamada-S.D.Yang-U.)Let

- $f: \Sigma^2 \to S_1^3$ be a complete CMC-1 face, then
 - $\Sigma^2 \approx \overline{\Sigma}^2 \setminus \{p_1, ..., p_n\}$ (bi-holomorphic),
 - All ends are elliptic or parabolic

An end p_j is called *regular* if it is at most pole of the Gauss map

$$G: \Sigma^2 \to \mathbf{C} \cup \{\infty\}.$$

Fact 4. (Fujimori-Rossman-Yamada-S.D.Yang-U.) Let $f: \Sigma^2 \to S_1^3$ be a complete CMC-1 face, then the following Osserman-type inequality holds

 $2\deg(G) \ge -\chi(\Sigma^2) + \#(\text{ends}).$

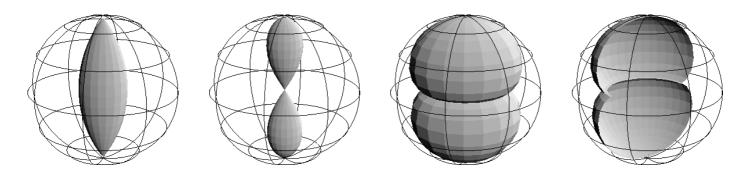
'=' holds if and only if all ends are regular and properly embedded.

Flat surfaces in H^3

(Fact 1.) (Volkov& Vladimirova 71, S.Sasaki 73) A complete flat (immersed) surface in H^3 is a horosphere or a parallel surface of a geodesic.

(Fact 2.) Parallel surfaces of flat surfaces are also flat.

(Fact 3.) ∃ Weierstrass-type representation formula
(The complex structure is induced from the second fundamental form.)
[Galvez-Martinez-Milan 00]



rotationally symmetric examples

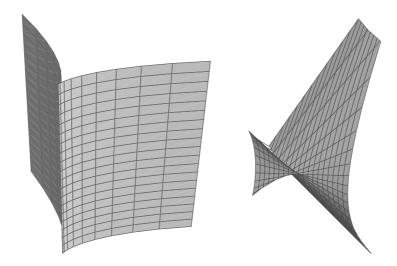
Wave fronts Let $M^3(c)$ be a space form. A C^∞ -map $f: \Sigma^2 \to M^3(c)$

is called a *frontal map* if there exists a C^{∞} -map $L: \Sigma^2 \to T_1 M^3(c)$

such that L is the unit normal vector field along f. Moreover, if L is an immersion, f is called a *wave* front (or a front).

- (Examples of frontals)
- Maxfaces in \mathbf{R}_1^3 ,
- CMC-1 faces in S_1^3 .

A front f is called *flat* if the regular set R of f is open dense and $f|_R$ has zero Gaussian curvature.



(Global Results)

(Fact 4.) (Kokubu-Rossman-Yamada-U. 07) Flat fronts are all orientable.

Completeness: A flat front $f: \Sigma^2 \to H^3$ is called complete if $\exists T$ such that

- $\operatorname{supp}(T)$ is compact and,
- $ds^2 + T$: a complete Riemannian metric on Σ^2 .

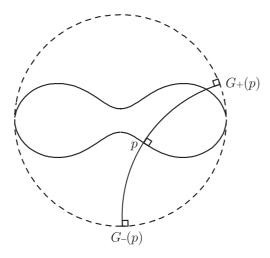
(Fact 5.) (Kokubu-Rossman-Yamada-U.07) A flat front $f: \Sigma^2 \to H^3$ is complete iff

- The singlar set is comapct.
- The metric $|df|^2 + |d\nu|^2$ is complete and of finite total curvature.

(Fact 6.) (Kokubu-Yamada-U. 04) Let $f : \Sigma^2 \to H^3$ be a complete flat front. Then

• $\Sigma^2 \approx \overline{\Sigma}^2 \setminus \{p_1, ..., p_n\}$ (bi-holomorphic),

• the hyperbolic Gauss maps (G_+, G_-) are meromorphic functions on Σ^2 .



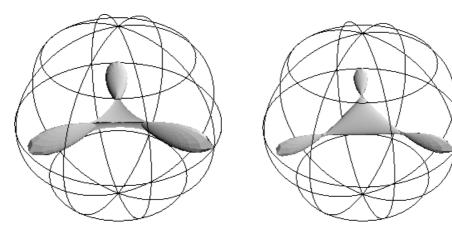
If G_+ , G_- have at most pole at p_j , an end p_j is called a *regular end*.

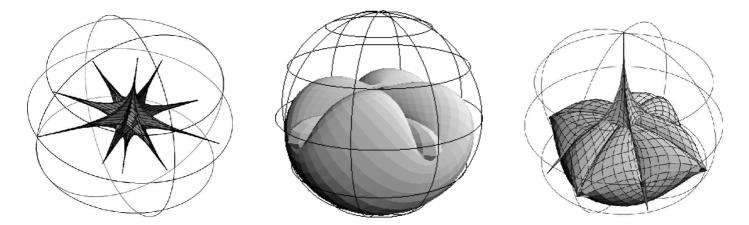
(Fact 7.) (Kokubu-Yamada-U.04) For a complete flat fronts in H^3 , it holds that

 $\deg(G_+) + \deg(G_-) \ge \#(\operatorname{Ends}).$

The equality holds iff all ends are regular and properly embedded.

(Examples of flat fronts in H^3)





Flat surfaces in \mathbb{R}^3

(Fact 1.)(Hartman-Nirenberg 59) A complete flat immersed surface is a plane or a cylinder over a planar curve.

A C^{∞} -map $f: \Sigma^2 \to \mathbb{R}^3$ is called a *wave front* (or *front*) if there exists a C^{∞} -map $\nu: \Sigma^2 \to S^2$ such that

 $df(T_p\Sigma^2) \perp \nu(p) \qquad (p \in \Sigma^2),$

and $L := (f, \nu) : \Sigma^2 \to \mathbf{R}^3 \times S^2$ is an immersion. The map ν is called the *Gauss map* of f.

f is called a flat front $\Leftrightarrow \nu$ is degenerate

(Completeness) A wave front $f : \Sigma^2 \to \mathbb{R}^3$ is called *complete* if $\exists T$ (a symmetric tensor) such that • $\operatorname{supp}(T)$ is compact,

• $T + ds^2$ is a complete Riemannian metric on Σ^2 .

(Fact 2.)(Murata-U.) A flat front $f : \Sigma^2 \to \mathbf{R}^3$ is complete iff the singular set is compact and the metric $|df|^2 + |d\nu|^2$

gives a complete Riemannian metric.

(Fact 3.) (Murata-U.) If a complete flat front admits singular points, then it does not admit umbilics.

The converse is not true. \exists a circular cylinder.

A representation formula for complete flat fronts

 $S^1 := \mathbf{R}/(2\pi \mathbf{Z})$

(Fact 4.)(Murata-U.)

Let $\xi : S^1 \to S^2$ be a regular curve without inflections. Let α be a 1-form on S^1 such that $\xi \alpha$ is exact, namely $\int_{\alpha}^{2\pi} \xi \alpha = 0$. Then

$$f: S^1 \times \mathbf{R} \ni (t, u) \mapsto \gamma(t) + u\xi(t) \in \mathbf{R}^3, \\ \left(\gamma(t) := \int_0^t \xi \alpha\right)$$

gives a complete flat front with singularity. Conversely, any complete flat fronts with singular points are given in this manner.

(Cor.) Let $f : \Sigma^2 \to \mathbf{R}^3$ be a complete flat front. Then Σ^2 is diffeomorphic to $S^1 \times \mathbf{R}$. [An Osserman-type inequality]

(Fact 5.) (Murata-U.) The image $\text{Im}(\nu)$ of the Gauss map of a complete flat front is a regular spherical closed curve without inflection point. Moreover,

 $\operatorname{Im}(\nu): \text{ convex curve} \Longleftrightarrow f: \text{ embedded ends},$ that is

```
#(the crossings of \operatorname{Im}(\nu)) \geq 0
```

holds.

[An analogue of the four vetex theorem] (Fact 6.)(Murata-U.) \exists at least four singular points other than cupidal edges on a complete flat front with embedded ends.

