On Lagrangian submanifolds in complex hyperquadrics obtained from isoparametric hypersurfaces

Yoshihiro OHNITA
Joint work with Hui MA (Tsinghua Univ., Beijing, P. R. China)

Department of Mathematics, Osaka City University
Osaka City University Advanced Mathematical Institute OCAMI, JAPAN

Spanish-Japanese Workshop on Differential Geometry,
Granada, Spain, February 14-18, 2011
1. Lagrangian Submanifolds in Kähler Manifolds

\[\varphi : L \longrightarrow (M^{2n}, \omega) \text{ immersion} \]

symplectic mfd.

Definition

1. \(\varphi^* \omega = 0 \)

“Lagrangian immersion” \(\Leftrightarrow \) \(\varphi : \text{“isotropic”} \)

2. \(\dim L = n \)

\[\varphi^{-1}(TM/\varphi_* TL) \cong T^*L \]

linear isom.

\[\alpha_v := \omega(v, \cdot) \]

\[\alpha_v : \mathbb{R}^n \rightarrow \mathbb{R} \]
\(\varphi_t : L \to (M^{2n}, \omega) \) immersion with \(\varphi_0 = \varphi \)

\[V_t := \frac{\partial \varphi_t}{\partial t} \in C^\infty(\varphi_t^{-1}TM) \]

"Lagrangian deformation" \(\iff \varphi_t : \text{Lagr. imm. for}^{\forall} t \)
\(\iff \alpha_{V_t} \in Z^1(L) \text{ for}^{\forall} t \) \(\text{closed} \)

"Hamiltonian deformation" \(\iff \alpha_{V_t} \in B^1(L) \text{ for}^{\forall} t \) \(\text{exact} \)

Hamil. deform. \(\implies \) Lagr. deform.

The difference between Lagr. deform. and Hamil. deform. is equal to \(H^1(L; \mathbb{R}) \cong Z^1(L)/B^1(L) \).
\[\varphi_t : L \rightarrow M : \text{Lagr. deform.} \]
Suppose \(\frac{1}{2\pi} [\omega] \) integral.
\{\varphi_t\} : Hamil. deform.

\[
\begin{array}{c}
\varphi_t^{-1} L \\
\varphi_t^{-1} \nabla \text{ flat}
\end{array} \rightarrow \exists (L, \nabla) \downarrow
\begin{array}{c}
\pi_1(L) \rightarrow U(1) \\
(\text{"isomonodromy deformation"})
\end{array}
\]
[Lagrangian orbits and moment maps]

K : a Lie group with Lie algebra \(\mathfrak{t} \)

Suppose \(K \) has the Hamiltonian group action on a symplectic manifold \((M, \omega)\) with moment map \(\mu : M \to \mathfrak{t}^* \).

1. An orbit \(K \cdot p \) is an isotropic submfd of \(M \)
 \[\leftrightarrow \quad L = K \cdot p \subset \mu^{-1}(\alpha) \]
 for some \(\alpha \in \mathfrak{z}(\mathfrak{t}^*) \).

 Here
 \[\mathfrak{z}(\mathfrak{t}^*) := \{ \alpha \in \mathfrak{t}^* \mid \text{Ad}^*(a)\alpha = \alpha \text{ for all } a \in K \}. \]

2. Suppose \(M \) and \(K \) are compact and connected.

 \(L = K \cdot p \) is a Lagr. submfd. in \(M \)
 \[\leftrightarrow \quad L = \mu^{-1}(\alpha) \]
 for some \(\alpha \in \mathfrak{z}(\mathfrak{t}^*) \cong \mathfrak{c}(\mathfrak{k}) \) : center of \(\mathfrak{k} \).
2. Lagrangian Submanifolds in Kähler Manifolds

\((M, \omega, J, g)\) : Kähler manifold

\(\varphi : L \hookrightarrow M\) Lagr. imm.

\(B\) : the second fundamental form of \(L\) in \((M, g)\).

\(S(X, Y, Z) := \omega(B(X, Y), Z)\) sym. 3-tensor field on \(L\)

\(H\) : mean curvature vector field of \(\varphi\)

\(\uparrow\)

\(\alpha_H\) : “mean curvature form” of \(\varphi\)

\(d\alpha_H = \varphi^* \rho_M\) where \(\rho_M\) : Ricci form of \(M\).

Definition

When \((M, \omega, J, g)\) : Kähler manifold.

\(K \subset \text{Aut}(M, \omega, J, g)\) : connected Lie subgroup,

\(L = K \cdot x \subset M\) : a Lagrangian orbit

“homogeneous Lagrangian submanifold”
Suppose \(L \) : compact with \(\partial M = \emptyset \).

\(\varphi : \) “Hamiltonian minimal” or shortly “\(H \)-minimal”

\[\iff \forall \varphi_t : L \rightarrow M \text{ Hamil. deform. with } \varphi_0 = \varphi \]

\[\iff \frac{d}{dt} \text{Vol} (L, \varphi_t^* g) \bigg|_{t=0} = 0 \]

\[\iff \delta \alpha_H = 0 \]

Proposition

\(L = K \cdot x \subset M \) : compact homogeneous Lagr. submfd.

\[\implies Hamiltonian minimal \]
Theorem (Urbano, independently O., about 1985)

\(M = \tilde{\mathcal{M}}(c) \): complex space form,
\(L \): compact Lagrangian submfd. in \(M \).

Then
\(L \) is H-minimal and has sectional curvatures \(K_L \geq 0 \)
\iff
\(L \) has parallel second fundamental form, i.e. \(\nabla S = 0 \).

Remark

All Lagrangian submfd's with \(\nabla S = 0 \) in complex space forms were completely classified by Professors Hiroo Naitoh and Masaru Takeuchi about the first half of 1980's.
Assume $\varphi : H$-minimal.

$\forall \{\varphi_t\} : \text{Hamil. deform. of } \varphi_0 = \varphi$

$\varphi : "\text{Hamiltonian stable} " \iff \begin{align*}
\frac{d^2}{dt^2} \text{Vol} (L, \varphi_t^* g) \bigg|_{t=0} & \geq 0
\end{align*}$

(The Second Variational Formula)

\[
\begin{align*}
\frac{d^2}{dt^2} \text{Vol} (L, \varphi_t^* g) \bigg|_{t=0} &= \\
\int_L \left(\langle \Delta^1_L \alpha, \alpha \rangle - \langle \overline{R}(\alpha), \alpha \rangle - 2\langle \alpha \otimes \alpha \otimes \alpha_H, S \rangle + \langle \alpha_H, \alpha \rangle^2 \right) dv
\end{align*}
\]

where $V := \frac{\partial \varphi_t}{\partial t} \big|_{t=0} \in C^\infty(\varphi^{-1}TM)$

- $\alpha := \alpha_V \in B^1(L)$
- $\langle \overline{R}(\alpha), \alpha \rangle := \sum_{i,j=1}^n \text{Ric}^M(e_i, e_j) \alpha(e_i) \alpha(e_j)$, $\{e_i\}$: o.n.b. of T_pL
- $S(X, Y, Z) := \omega(B(X, Y), Z)$ sym. 3-tensor field on L
[The null space of the second variation on Hamiltonian deformations] = [the vector space of all solutions to the linearized Hamiltonian minimal Lagrangian submanifold equation]. The “nullity” of H-minimal Lagr. imm. φ:

$$n(\varphi) := \dim[\text{the null space}].$$

X : holomorphic Killing vector field of M

$$\implies \alpha_X = \omega(X, \cdot) \text{ is closed}$$

$$\implies \alpha_X = \omega(X, \cdot) \text{ is exact, i.e. } X \text{ is a Hamiltonian vector field on } M$$

if $H^1(M, R) = \{0\}$.

Suppose that $\pi_1(M) = \{1\}$, more generally $H^1(M, R) = \{0\}$.

$$\implies \text{Each holomorphic Killing vector field of } M \text{ generates a volume-preserving Hamiltonian deformation of } \varphi.$$

Definition

Such a Hamiltonian deformation of φ is called **trivial**.

$$n_{hk}(\varphi) := \dim\{\varphi^*\alpha_X \mid X \text{ is a holom. Killing vector field of } M\} \leq n(\varphi).$$
Suppose that $\pi_1(M) = \{1\}$, more generally $H^1(M, \mathbb{R}) = \{0\}$.

Assume φ : H-minimal Lagr. imm.

φ : “strictly Hamiltonian stable”

\iff

\begin{align*}
(1) & \text{ φ is Hamiltonian stable } \\
(2) & \text{ The null space of the second variation on Hamiltonian deformations coincides with the vector subspace induced by trivial Hamiltonian deformations of φ. That is, } n(\varphi) = n_{hk}(\varphi). \end{align*}

Remark.

φ : strictly Hamiltonain stable

\implies φ has local minimun volume under any Hamil. deform.

φ : “Hamiltonian rigid” (Yng-Ing Lee),

\iff

\begin{align*}
& n(\varphi) = n_{hk}(\varphi). \\
& \text{def}
\end{align*}
[Hamiltonian stability of min. Lagr. submfd.] Assume M: Einstein-Kähler manifold of Einstein constant κ.

$L \hookrightarrow M$ cpt. minimal Lagr. submfd. (i.e. $\alpha_H \equiv 0$)

Then the second variational formula implies

L is Hamiltonian stable $\iff \lambda_1 \geq \kappa$

Here

λ_1: the first (positive) eigenvalue of the Laplacian of L on $C^\infty(L)$.

(B. Y. Chen - T. Nagano - P. F. Leung, Y. G. Oh)
[Upper bounds of the first eigenvalue of min. Lagr. submfd. and Hamiltonian stability]

[Fact] (cf. Hajime Ono, Amarzaya - O.)

Assume M : cpt. homog. Einstein - Kähler mfd. with $\kappa > 0$.
$L \hookrightarrow M$ cpt. minimal Lagr. submfd.

$\implies \lambda_1 \leq \kappa$.

- L is Hamil. stable
 $\iff \lambda_1 = \kappa$
 The restrictions of all first eigenfunctions of M to L are constants + the first eigenfunctions of L.

- L is strictly Hamil. stable
 \iff The restrictions of all first eigenfunctions of M to L give constants + all the first eigenfunction of L.

Works on Spectral Geometry of Submanifolds by Antonio Ros, F. Urbano, etc.
Examples.

1. \(L \hookrightarrow M = \mathbb{C}P^n \) embedded cpt. min. Lagr. submfd.

\[L = \]

- \(\mathbb{R}P^n \) (Y. G. Oh)
- \(SU(p)/SO(p) \cdot \mathbb{Z}_p, SU(p)/\mathbb{Z}_p, SU(2p)/Sp(p) \cdot \mathbb{Z}_{2p} \)
- \(E_6/F_4 \cdot \mathbb{Z}_3 \) (Amarzaya - O., Tohoku Math. J. 2003)

\[\rho_3(SU(2))[z^3_0 + z^3_1] \subset \mathbb{C}P^3 \]

\[\implies L \text{ is strictly Hamil. stable.} \]
Examples.

1. \(L \leftrightarrow M = \mathbb{C}P^n \) embedded cpt. min. Lagr. submfd.

\[
L =
\]

- \(\mathbb{R}P^n \) (Y. G. Oh) \(S = 0 \)
- \(SU(p)/SO(p) \cdot \mathbb{Z}_p, SU(p)/\mathbb{Z}_p, SU(2p)/Sp(p) \cdot \mathbb{Z}_{2p} \)
- \(E_6/F_4 \cdot \mathbb{Z}_3 \) (Amarzaya - O., Tohoku Math.J. 2003)
 \(S \neq 0, \nabla S = 0 \)
- \(\rho_3(SU(2))[z_0^3 + z_1^3] \subset \mathbb{C}P^3 \) \(\nabla S \neq 0 \)
 (River Chiang, Inter. Math, Res, Not. 2004,
 O., Osaka J. Math. 2007)

\(\implies L \) is strictly Hamil. stable.

2
Examples.

1. \(L \leftrightarrow M = \mathbb{C}P^n \) embedded cpt. min. Lagr. submfd.
 \[
 L =
 \begin{align*}
 &\mathbb{R}P^n \quad (\text{Y. G. Oh}) \quad S = 0 \\
 &SU(p)/SO(p) \cdot \mathbb{Z}_p, \; SU(p)/\mathbb{Z}_p, \; SU(2p)/Sp(p) \cdot \mathbb{Z}_{2p} \\
 &E_6/F_4 \cdot \mathbb{Z}_3 \quad (\text{Amarzaya - O., Tohoku Math.J. 2003}) \\
 &S \neq 0, \nabla S = 0 \\
 &\rho_3(SU(2))[z_0^3 + z_1^3] \subset \mathbb{C}P^3 \quad \nabla S \neq 0 \\
 \end{align*}
 \]

\[\implies L \text{ is strictly Hamil. stable.}\]

2. \(M \) : cpt. irred. Herm. sym. sp. of rank \(\geq 2 \)

\[
(L, M) \neq \begin{cases}
(Q_{p,q}(\mathbb{R}) = (S^{p-1} \times S^{q-1})/\mathbb{Z}_2, \\
Q_{p+q-2}(\mathbb{C}))(q - p \geq 3) \\
(U(2p)/Sp(p), SO(4p)/U(p))(p \geq 3) \\
(T \cdot E_6/F_4, E_7/T \cdot E_6)
\end{cases}
\]

\[\iff L \text{ is Hamil. stable.}\]
Theorem (Urbano, 1993)

\[L^2 \leftrightarrow \mathbb{C}P^2: \text{Hamiltonian stable minimal Lagrangian torus} \]
\[\iff L^2 = T^2 \leftrightarrow \mathbb{C}P^2: \text{Clifford minimal torus} \]
\[(\Rightarrow \nabla S = 0) \]

Theorem (Amarzaya-O.)

\[L^n \leftrightarrow \tilde{M}(c) \quad (= \mathbb{C}^n, \mathbb{C}P^n, \mathbb{C}H^n) \]
\[\text{cplx. sp. form} \]
\[\text{compact embedded Lagr. submfd. with } \nabla S = 0 \]
\[\implies \text{Hamil. stable.} \]
Conjecture.

$L \hookrightarrow \mathbb{C}P^n$ compact \textit{embedded} minimal Lagr. submfd.

$\implies \lambda_1 = \kappa$?

i.e. Hamil. stable.

(Any counter example is \textbf{not} known yet.)
3. Lagrangian Submanifolds in Complex Hyperquadrics and Hypersurface Geometry in Spheres

Complex Hyperquadrics

\[Q_n(\mathbb{C}) \cong \widetilde{Gr}_2(\mathbb{R}^{n+2}) \cong SO(n + 2)/SO(2) \times SO(n) \]

is a compact Hermitian symmetric space of rank 2

\[Q_n(\mathbb{C}) := \{ [z] \in \mathbb{C}P^{n+1} \mid z_0^2 + z_1^2 + \cdots + z_{n+1}^2 = 0 \} \]

\[\widetilde{Gr}_2(\mathbb{R}^{n+2}) := \{ W \mid \text{oriented 2-dimensional vector subspace of } \mathbb{R}^{n+2} \} \]

\[Q_n(\mathbb{C}) \ni [a + \sqrt{-1}b] \leftrightarrow a \wedge b \in \widetilde{Gr}_2(\mathbb{R}^{n+2}) \]

Here \{a, b\} is an orthonormal basis of \(W \) compatible with its orientation.
[The Gauss Map of Oriented Hypersurfaces in the Unit Sphere]

Oriented hypersurface in a sphere

\[N^n \hookrightarrow S^{n+1}(1) \subset \mathbb{R}^{n+2} \]

\(x : \) the position vector of points of \(N^n \)

\(n : \) the unit normal vector field of \(N^n \) in \(S^{n+1}(1) \)

“Gauss map”

\[G : N^n \ni p \mapsto [x(p) + \sqrt{-1}n(p)] = x(p) \wedge n(p) \in Q_n(\mathbb{C}) \]

is a Lagrangian immersion.

Proposition

\(N_1^n, N_2^n \subset S^{n+1}(1) \) are parallel \iff \(G(N_1^n) = G(N_2^n) \)
Oriented hypersurface in a sphere

\[N^n \hookrightarrow S^{n+1}(1) \subset \mathbb{R}^{n+2} \]

- \(x \) : the position vector of points of \(N^n \)
- \(n \) : the unit normal vector field of \(N^n \) in \(S^{n+1}(1) \)

“Gauss map”

\[G : N^n \ni p \longmapsto [x(p) + \sqrt{-1}n(p)] = x(p) \wedge n(p) \in Q_n(\mathbb{C}) \]

is a Lagrangian immersion.

Proposition

Deformation of \(N^n = \) Hamiltonian deformation of \(G \)
Remark. \((2n + 1)\)-dimensional real Stiefel manifold

\[V_2(R^{n+2}) := \{ (a, b) | a, b \in R^{n+2} \text{ orthonormal} \} \cong SO(n+2)/SO(n) \]

the standard Einstein-Sasakian manifold over \(Q_n(C)\).

The natural projections

\[p_1 : V_2(R^{n+2}) \ni (a, b) \mapsto a \in S^{n+1}(1), \]
\[p_2 : V_2(R^{n+2}) \ni (a, b) \mapsto a \wedge b \in Q_n(C). \]

\[\tilde{N}^n \xrightarrow{\psi} UTS^{n+1} = V_2(R^{n+2}) \]
\[\text{Legend.} \]
\[\text{ori.hypsurf.} \]

Here the Legendrian life \(\tilde{N}^n\) of \(N^n \hookrightarrow S^{n+1}(1)\) to \(V_2(R^{n+2})\) is defined by \(N^n \ni p \mapsto (x(p), n(p)) \in V_2(R^{n+2}).\)
(Conormal bundle construction)
More generally for a given $N^m \subset S^{n+1}(1)$ submanifold,

In the case $m = n$ and N^n oriented, it coincides with our Gauss map construction.
Lemma (Mean Curvature Form Formula (Palmer, 1997))

\[\alpha_H = -d \left(\sum_{i=1}^{n} \arccot \kappa_i \right) \]

\[= d \left(\text{Im} \left(\log \prod_{i=1}^{n} (1 + \sqrt{-1} \kappa_i) \right) \right), \]

where \(H \) : mean curvature vector field of \(G \),
\(\kappa_i \ (i = 1, \cdots, n) \) : principal curvatures of \(N^n \subset S^{n+1}(1) \).

\(N^2 \subset S^3(1) \) min. surf.
\[\implies G : N^2 \to Q_2(\mathbb{C}) \cong S^2 \times S^2 \] min. Lagr. imm.
See [Castro-Urbano, 2007].

\(N^n \subset S^{n+1}(1) \) austere min. hypersurf.
\[\implies G : N^n \to Q_n(\mathbb{C}) \] min. Lagr. imm.
Oriented hypersurface in a sphere

\[N^n \hookrightarrow S^{n+1}(1) \subset \mathbb{R}^{n+2} \] with constant principal curvatures ("isoparametric hypersurface")

"Gauss map"

\[\mathcal{G} : N^n \ni p \overset{\text{Larg. imm.}}{\mapsto} [x(p) \wedge n(p)] \in Q_n(\mathbb{C}) \]

\[N^n \twoheadrightarrow \mathcal{G}(N^n) \cong N^n/\mathbb{Z}_g \hookrightarrow Q_n(\mathbb{C}) \]

cpt. embedded minimal Lagr. submfd

Here \(g := \# \{\text{distinct principal curvatures of } N^n\} \),
\(m_1 \leq m_2 \) : multiplicities of the principal curvatures.
Oriented hypersurface in a sphere

\[N^n \hookrightarrow S^{n+1}(1) \subset \mathbb{R}^{n+2} \]

with constant principal curvatures ("isoparametric hypersurface")

"Gauss map"

\[\mathcal{G} : N^n \ni p \quad \mapsto \quad x(p) \wedge n(p) \in Q_n(\mathbb{C}) \]

\[N^n \xrightarrow{\mathcal{G}} L^n = \mathcal{G}(N^n) \cong N^n/\mathbb{Z}_g \hookrightarrow Q_n(C) \]

cpt. embedded minimal Lagr. submfd

Here \(g := \# \{ \text{distinct principal curvatures of } N^n \} \),

\(m_1, m_2 \) : multiplicities of the principal curvatures.
Isoparametric Hypersurface Theory in $S^{n+1}(1)$]

All isoparametric hypersurfaces in $S^{n+1}(1)$ are classified into

- **Homogeneous** ones (Hsiang-Lawson, R. Takagi-T. Takahashi) can be obtained as principal orbits of the isotropy representations of Riemannian symmetric pairs (U, K) of rank 2.
 - $g = 1 : N^n = S^n$, a great or small sphere;
 - $g = 2, N^n = S^{m_1} \times S^{m_2}, (n = m_1 + m_2, 1 \leq m_1 \leq m_2)$, the Clifford hypersurfaces;
 - $g = 3, N^n$ is homog., $N^n = \frac{SO(3)}{\mathbb{Z}_2 + \mathbb{Z}_2}, \frac{SU(3)}{T^2}, \frac{Sp(3)}{Sp(1)^3}, \frac{F_4}{Spin(8)}$;
 - $g = 6$: Only homog. examples are known now.
 - $g = 6, m_1 = m_2 = 1$: homog. (Dorfmeister-Neher, R. Miyaoka)
 - $g = 6, m_1 = m_2 = 2$: homog. (R. Miyaoka)

- **Non-homogenous** ones exist (H. Ozeki- M. Takeuchi, 1975) and are almost classified (Ferus-Karcher-Münzner, Cecil-Chi-Jensen, Immervoll).
 - $g = 4$: except for $(m_1, m_2) = (4, 5), (6, 9), (7, 8)$, either homog. or OT-FKM type.
4. The Gauss Images of Isoparametric Hypersurfaces

Oriented hypersurface in a sphere

\[N^n \hookrightarrow S^{n+1}(1) \subset \mathbb{R}^{n+2} \] with constant principal curvatures ("isoparametric hypersurface")

“Gauss map”

\[G : N^n \ni p \quad \mapsto \quad x(p) \wedge n(p) \in Q_n(\mathbb{C}) \]

\[N^n \xrightarrow{\mathbb{Z}_g} L^n = G(N^n) \cong N^n/\mathbb{Z}_g \hookrightarrow Q_n(\mathbb{C}) \]

cpt. embedded minimal Lagr. submfd

Lemma (Hui Ma-O.)

\[L^n = G(N^n) \text{ is orientable} \iff \frac{2n}{g} \text{ is even.} \]

Note that \[\frac{2n}{g} = \begin{cases} m_1 + m_2 & \text{if } g \text{ is even,} \\ 2m_1 & \text{if } g \text{ is odd.} \end{cases} \]
4. The Gauss Images of Isoparametric Hypersurfaces

Oriented hypersurface in a sphere

\[N^n \hookrightarrow S^{n+1}(1) \subset \mathbb{R}^{n+2} \text{ with constant principal curvatures} \]

(“isoparametric hypersurface”)

“Gauss map”

\[G : N^n \ni p \mapsto x(p) \wedge n(p) \in Q_n(\mathbb{C}) \]

\[N^n \twoheadrightarrow L^n = G(N^n) \cong N^n / \mathbb{Z}_g \hookrightarrow Q_n(\mathbb{C}) \]

cpt. embedded minimal Lagr. submfd

Theorem (Hui Ma-O.)

\[L^n = G(N^n) \text{ is a monotone and cyclic Lagrangian submanifold whose minimal Maslov number is equal to} \]

\[\Sigma_L = \frac{2n}{g} \]
5. Classification of Compact Homogeneous Lagr. Submfd.s. in $Q_n(\mathbb{C})$.

Oriented hypersurface in a sphere

$N^n \hookrightarrow S^{n+1}(1) \subset \mathbb{R}^{n+2}$ with constant principal curvatures ("isoparametric hypersurface")

“Gauss map”

\[G : N^n \ni p \quad \overset{\text{Larg. imm.}}{\longrightarrow} \quad x(p) \wedge n(p) \in Q_n(\mathbb{C}) \]

\[N^n \overset{\mathbb{Z}_g}{\longrightarrow} L^n = G(N^n) \cong N^n/\mathbb{Z}_g \hookrightarrow Q_n(\mathbb{C}) \]

cpt. embedded minimal Lagr. submfd

Proposition (Hui Ma-O.)

N^n is homogeneous $\iff L^n = G(N^n)$ is homogeneous
Classification of Homogeneous Lagr. submfds. in $\mathbb{C}P^n$ (Bedulli and Gori, math.DG/0604169)

16 examples of minimal Lagr. orbits in $\mathbb{C}P^n$

$= [5 \text{ examples with } \nabla S = 0] + [11 \text{ examples with } \nabla S \neq 0]$

$K \subset SU(n + 1)$: cpt. simple subgroup

Lemma (Bedulli-Gori)

Suppose M: cpt. Kähler mfd. with $\dim H^{1,1}(M; \mathbb{C}) = 1$.

$L = K \cdot [v] \subset M$ Lagr. submfd.

\hookrightarrow

complexified orbit (Zariski open) $K^c \cdot [v] \subset M$ is Stein.
Classification of Homogeneous Lagr. submfds. in $\mathbb{C}P^n$ (Bedulli and Gori, Comm. Anal. Geom. (2008))

16 examples of minimal Leagr. orbits in $\mathbb{C}P^n$

$= [5$ examples with $\nabla S = 0] + [11$ examples with $\nabla S \neq 0]$

$K \subset SU(n + 1):$cpt. simple subgroup

Lemma (Bedulli-Gori)

Suppose M: cpt. Kähler mfd. with $\text{dim } H^{1,1}(M; \mathbb{C}) = 1$.

$L = K \cdot [v] \subset M$ Lagr. submfd.

complexified orbit (Zariski open) $K^c \cdot [v] \subset M$ is Stein.

Classification Theory of “Prehomogeneous Vector Spaces” (Mikio Sato and Tatsuo Kimura)
Classification of Homogeneous Lagrangian submanifolds in $Q_n(\mathbb{C})$ (Hui Ma and O., Math. Z. 2009)

Suppose

$$G \subset SO(n + 2) : \text{cpt. subgroup},$$

$$L = G \cdot [W] \subset Q_n(\mathbb{C}) \quad \text{Lagr. submfd.}$$

There exists

$$N^n \subset S^{n+1}(1) \subset \mathbb{R}^{n+2} : \text{cpt. homog. isopara. hypersurf.}$$

such that

(a) $L = G(N)$ and L is a cpt. minimal Lagr. submfd., or
(b) L is a Lagrangian deformation of $G(N)$.
W.Y.Hsiang-H.B.Lawson’s theorem (1971)

There is a compact Riemannian symmetric pair \((U, K)\) of rank 2 such that

\[N = \text{Ad}(K)v \subset S^{n+1}(1) \subset \mathbb{R}^{n+2} = \mathfrak{p}, \]

where \(u = \mathfrak{k} + \mathfrak{p}\) is the canonical decomposition of \((U, K)\).

Moment map

The moment map of the induced action of \(K\) on \(Q_n(\mathbb{C}) = \text{Gr}_2(\mathfrak{p})\) is given by

\[\mu : Q_n(\mathbb{C}) = \text{Gr}_2(\mathfrak{p}) \ni [W] \mapsto [a, b] \in \mathfrak{k} \cong \mathfrak{k}^* \]

where \([a, b] : \text{orthonormal basis of } W \text{ compatible with the orientation of } [W].\)
The case (b) happens only when \((U, K)\) is one of

1. \((S^1 \times SO(3), SO(2))\),
2. \((SO(3) \times SO(3), SO(2) \times SO(2))\),
3. \((SO(3) \times SO(n + 1), SO(2) \times SO(n))\) \((n \geq 3)\),
4. \((SO(m + 2), SO(2) \times SO(m))\) \((n = 2m - 2, m \geq 3)\).

In the first two cases, it is elementary and well-known to describe all Lagrangian orbits of the natural actions of \(K = SO(2)\) on \(Q_1(C) \cong S^2\) and \(K = SO(2) \times SO(2)\) on \(Q_2(C) \cong S^2 \times S^2\). Also in the last two cases there exist one-parameter families of Lagrangian \(K\)-orbits in \(Q_n(C)\) and each family contains Lagrangian submanifolds which can NOT be obtained as the Gauss image of any homogeneous isoparametric hypersurface in a sphere. The fourth one is a new family of Lagrangian orbits.
If \((U, K)\) is \((S^1 \times SO(3), SO(2))\),
then \(L\) is a small or great circle in \(Q_1(C) \cong S^2\).

If \((U, K)\) is \((SO(3) \times SO(3), SO(2) \times SO(2))\),
then \(L\) is a product of small or great circles of \(S^2\) in
\(Q_2(C) \cong S^2 \times S^2\).
If \((U, K)\) is \((SO(3) \times SO(n + 1), SO(2) \times SO(n))\) \((n \geq 2)\), then

\[
L = K \cdot [W_\lambda] \subset Q_n(C) \quad \text{for some} \ \lambda \in S^1 \setminus \{\pm \sqrt{-1}\},
\]

where \(K \cdot [W_\lambda] \ (\lambda \in S^1)\) is the \(S^1\)-family of Lagr. or isotropic \(K\)-orbits satisfying

1. \(K \cdot [W_1] = K \cdot [W_{-1}] = G(N^n)\) is a tot. geod. Lagr. submfd. in \(Q_n(C)\).

2. For each \(\lambda \in S^1 \setminus \{\pm \sqrt{-1}\},\)

\[
K \cdot [W_\lambda] \cong (S^1 \times S^{n-1})/\mathbb{Z}_2 \cong Q_{2,n}(\mathbb{R})
\]

is a Lagr. orbit in \(Q_n(C)\) with \(\nabla S = 0\).

3. \(K \cdot [W_{\pm \sqrt{-1}}]\) are isotropic orbits in \(Q_n(C)\) with \(\dim K \cdot [W_{\pm \sqrt{-1}}] = 0\).
If \((U, K)\) is \((SO(m + 2), SO(2) \times SO(m))\) \((n = 2m - 2)\), then

\[
L = K \cdot [W_\lambda] \subset Q_n(C) \quad \text{for some } \lambda \in S^1 \setminus \{\pm \sqrt{-1}\},
\]

where \(K \cdot [W_\lambda] \ (\lambda \in S^1)\) is the \(S^1\)-family of Lagr. or isotropic orbits satisfying

1. \(K \cdot [W_1] = K \cdot [W_{-1}] = G(N^n)\) is a minimal (NOT tot. geod.) Lagr. submfd. in \(Q_n(C)\).

2. For each \(\lambda \in S^1 \setminus \{\pm \sqrt{-1}\}\),

\[
K \cdot [W_\lambda] \cong (SO(2) \times SO(m))/(Z_2 \times Z_4 \times SO(m - 2))
\]

is a Lagr. orbit in \(Q_n(C)\) with \(\nabla S \neq 0\).

3. \(K \cdot [W_\pm \sqrt{-1}] \cong SO(m)/S(O(1) \times O(m - 1)) \cong \mathbb{RP}^{m-1}\) are isotropic orbits in \(Q_n(C)\) with \(\dim K \cdot [W_{\pm \sqrt{-1}}] = m - 1\).
6. Hamiltonian Stability of Gauss Images of Homogeneous Isoparametric Hypersurfaces

Suppose

\[N^n \hookrightarrow S^{n+1}(1) \subset \mathbb{R}^{n+2} \text{ cpt. embedded isopara. hypersurf.} \]

\[G : N^n \xrightarrow{\mathbb{Z}_g} G(N^n) \cong N^n/\mathbb{Z}_g \xhookrightarrow{\subset} Q_n(C) = \widetilde{\text{Gr}}_2(\mathbb{R}^{n+2}) \subset \bigwedge^2 \mathbb{R}^{n+2} \]

\[\mathfrak{v} \subset \mathfrak{o}(n + 2) : \text{Lie algebra of all Killing vector fields tangent to } N^n \text{ or } G(N^n). \]

\[\bigwedge^2 \mathbb{R}^{n+2} = \mathfrak{o}(n + 2) = \mathfrak{i} + \mathcal{V} \quad (\text{orthog. direct sum}). \]

Lemma

\[G(N^n) \subset \widetilde{\text{Gr}}_2(\mathbb{R}^{n+2}) \cap \mathcal{V} \text{ and } G(N^n) \text{ is a cpt. minimal submfd. in the unit hypersphere of } \mathcal{V}. \]
Suppose

\[N^n \hookrightarrow S^{n+1}(1) \subset \mathbb{R}^{n+2} \text{ cpt. embedded isopara. hypersurf.}\]

\[\mathcal{G} : N^n \overset{\mathbb{Z}_g}{\longrightarrow} \mathcal{G}(N^n) \cong N^n / \mathbb{Z}_g \hookrightarrow Q_n(C) = \widetilde{Gr}_2(\mathbb{R}^{n+2}) \subset \bigwedge^2 \mathbb{R}^{n+2} \]

\(\tilde{\mathfrak{k}}: \) Lie algebra of all Killing vector fields tangent to \(N^n \) or \(\mathcal{G}(N^n) \).

\[\bigwedge^2 \mathbb{R}^{n+2} = \mathfrak{o}(n + 2) = \tilde{\mathfrak{k}} + \mathcal{V} \quad \text{(orthog. direct sum)}.\]

Proposition

\(N^n \) is homogeneous \(\iff \mathcal{G}(N^n) = \widetilde{Gr}_2(\mathbb{R}^{n+2}) \cap \mathcal{V} \)
Suppose

\[N^n \hookrightarrow S^{n+1}(1) \subset \mathbb{R}^{n+2} \text{ cpt. embedded isopara. hypersurf.} \]

\[\mathcal{G} : N^n \rightarrow \mathcal{G}(N^n) \cong N^n/\mathbb{Z}_g \hookrightarrow Q_n(C) = \widetilde{\text{Gr}}_2(\mathbb{R}^{n+2}) \subset \bigwedge^2 \mathbb{R}^{n+2} \]

\[\tilde{\mathfrak{k}}: \text{Lie algebra of all Killing vector fields tangent to } N^n \text{ or } \mathcal{G}(N^n). \]

\[\bigwedge^2 \mathbb{R}^{n+2} = \mathfrak{o}(n + 2) = \tilde{\mathfrak{k}} + \mathcal{V} \text{ (orthog. direct sum).} \]

Note that \(n_{hk}(\mathcal{G}(N^n)) = \text{dim} \mathcal{V}. \)

Corollary

\(\mathcal{G}(N^n) \) is Hamil. stable. \(\iff \) Each coordinate function of \(\mathcal{V} \) restricted to \(\mathcal{G}(N^n) \) is the first eigenfunction of \(\mathcal{G}(N^n) \).

\(\mathcal{G}(N^n) \) is strictly Hamil. stable. \(\iff \) \(\dim \mathcal{V} \) is equal to the multiplicity of the first eigenvalue \(n \).
$N^n \leftrightarrow S^{n+1}(1)$: cpt. embedded isopara. hypersurf.

Hamiltonian stability of the Gauss map (Palmer, 1997)

Its Gauss map $G : N \rightarrow Q_n(\mathbb{C})$ is Hamiltonian stable
$\iff N^n = S^n \subset S^{n+1} (g = 1)$.

Question

Hamiltonian stability of its Gauss image $L = G(N^n) \subset Q_n(\mathbb{C})$?

Main result

We determine the Hamiltonian stability of Gauss images of **ALL** homogeneous isoparametric hypersurfaces.
\(g = 1 \) : \(L \) is strictly Hamilton. stable

\(g = 2 \) : \(L \) is Hamilton. stable \(\Longleftrightarrow \) \(m_2 - m_1 < 3 \)
\[\Rightarrow L = Q_{p,q}(\mathbb{R}) \text{ tot. geod.} \]

\(m_2 - m_1 \geq 3 \Rightarrow \) the spherical harmonics of degree 2 on the sphere \(S^{m_1} \subset \mathbb{R}^{m_1+1} \) of smaller dimension give volume-decreasing Hamilton. deformations of \(G(N^n) \).

\(m_2 - m_1 = 2 \Rightarrow \) Hamilton. stable but not strictly Hamilton. stable.

\(m_2 - m_1 = 0 \) or \(1 \Rightarrow \) strictly Hamilton. stable.

\(g = 3 \) : \(L \) is strictly Hamilton. stable \(\Rightarrow \) homog. (E. Cartan)

Homog. case ?

Non-homog. case ??

\(g = 4 \) :

\begin{align*}
\text{Theorem (Hui Ma and O.)} \\
g = 6 \ : & \ L = SO(4)/(\mathbb{Z}_2 + \mathbb{Z}_2) \cdot \mathbb{Z}_6 \quad (m_1 = m_2 = 1) \\
& L = G_2/T^2 \cdot \mathbb{Z}_6 \quad (m_1 = m_2 = 2) \text{ homog.} \\
\Rightarrow & L \text{ is strictly Hamilton. stable.}
\end{align*}
Theorem (Hui Ma and O.)

\[g = 4, \text{ homogeneous :} \]

1. \[L = SO(5)/T^2 \cdot \mathbb{Z}_4 \quad (m_1 = m_2 = 2) \text{ is Hamil. stable.} \]
2. \[L = U(5)/(SU(2) \times SU(2) \times U(1)) \cdot \mathbb{Z}_4 \]
 \[(m_1 = 4, m_2 = 5) \text{ is Hamil. stable.} \]
3. \[L = (SO(2) \times SO(m))/\mathbb{Z}_2 \times SO(m - 2) \cdot \mathbb{Z}_4 \]
 \[(m_1 = 1, m_2 = m - 2, m \geq 3) \]
 \[m_2 - m_1 \geq 3 \iff L \text{ is NOT Hamil. stable.} \]
 \[m_2 - m_1 = 2 \implies L \text{ is Hamil. stable but not strictly Hamil. stable.} \]
 \[m_2 - m_1 = 1 \text{ or } 0 \implies L \text{ is strictly Hamil. stable.} \]
4. \[L = S(U(2) \times U(m))/S(U(1) \times U(1) \times U(m - 2))) \cdot \mathbb{Z}_4 \]
 \[(m_1 = 2, m_2 = 2m - 3, m \geq 2) \]
 \[m_2 - m_1 \geq 3 \iff L \text{ is NOT Hamil. stable.} \]
 \[m_2 - m_1 = 1 \text{ or } -1 \implies L \text{ is strictly Hamil. stable.} \]
5. \[L = Sp(2) \times Sp(m)/(Sp(1) \times Sp(1) \times Sp(m - 2))) \cdot \mathbb{Z}_4 \]
 \[(m_1 = 4, m_2 = 4m - 5, m \geq 2) \]
 \[m_2 - m_1 \geq 3 \iff L \text{ is NOT Hamil. stable.} \]
 \[m_2 - m_1 = -1 \implies L \text{ is strictly Hamil. stable.} \]
Theorem (Hui Ma and O.)

\(g = 4 \), homogeneous:

\[
(6) \ L = U(1) \cdot Spin(10)/(S^1 \cdot Spin(6)) \cdot \mathbb{Z}_4
\]

\((m_1 = 6, m_2 = 9, \text{ thus } m_2 - m_1 = 3!) \)

\(\implies L \) is strictly Hamil. stable!
Theorem (Hui Ma and O.)

\[g = 4, \ \text{homogeneous:} \]
\[(6) \ L = U(1) \cdot \text{Spin}(10)/(S^1 \cdot \text{Spin}(6)) \cdot \mathbb{Z}_4 \]
\[(m_1 = 6, m_2 = 9, \text{thus } m_2 - m_1 = 3!) \]
\[\implies L \text{ is strictly Hamil. stable!} \]

In a summary, we obtain a Hamiltonian stability result on the Gauss images of ALL homogeneous isoparametric hypersurfaces in spheres as follows:

Theorem (Hui Ma-O.)

Suppose that \((U, K)\) is not of type \(\text{EIII}\), that is, \((U, K) \neq (E_6, U(1) \cdot \text{Spin}(10))\). Then \(L = G(N)\) is NOT Hamiltonian stable if and only if \(m_2 - m_1 \geq 3\). Moreover if \((U, K)\) is of type \(\text{EIII}\), that is, \((U, K) = (E_6, U(1) \cdot \text{Spin}(10))\), then \((m_1, m_2) = (6, 9)\) but \(L = G(N)\) is strictly Hamiltonian stable.
Further questions

1. Investigate the Hamiltonian stability and other properties of the Gauss images of compact non-homogenous isoparametric hypersurfaces, particularly OT-FKM type, embedded in spheres with $g = 4$.

2. Investigate the relation between our Gauss image construction and Karigiannis-Min-Oo’s results.

3. Are there similar constructions of Lagrangian subamnifolds in compact Hermitian symmetric spaces other than \mathbb{CP}^n, $Q_n(\mathbb{C})$, generalized flag manifolds or the spaces of oriented geodesics?
Many Thanks !