On the existence of pseudoharmonic maps from pseudohermitian manifolds into Riemannian manifolds with nonpositive sectional curvature

Ting-Hui Chang (Jointed with Prof. Shu-Cheng Chang)

The 3rd OCAMI-TIMS Joint Workshop on Differential Geometry and Geometric Analysis

March 13-15, 2011
1 Introduction

2 Preliminary lemmas

3 On the pseudoharmonic map heat flow

4 Appendix I. The Folland-Stein space

5 Appendix II. The proofs
1. Introduction

Let \((M^n, h_{\alpha\beta}), (N^m, g_{ij})\) be Riemannian manifolds with \(M\) closed and let \(f : M \to N\) be a smooth map. In the paper of Eells-Sampson ([6]), they considered the harmonic map heat flow on \(M \times [0, T)\):

\[
\begin{aligned}
\frac{\partial u^k}{\partial t} - \Delta u^k &= \tilde{\Gamma}^k_{ij} \frac{\partial u^i}{\partial x^\alpha} \frac{\partial u^j}{\partial x^\alpha}, & k = 1, \ldots, m \\
u(x, 0) &= f(x),
\end{aligned}
\]

(1.1)

where \(\Delta\) is the Laplace-Beltrami operator and \(\tilde{\Gamma}^k_{ij}\) are the Christoffel symbols of \(N\). They proved the following remarkable existence theorem of harmonic maps between Riemannian manifolds.

Theorem ([6])

Suppose that the sectional curvature \(\tilde{K}^N\) is nonpositive, then (1.1) admits a unique, smooth solution \(u \in C^\infty(M \times [0, \infty); N)\) which subconverges to a harmonic map \(u_\infty \in C^\infty(M; N)\) as \(t \to \infty\).
Let M and N be Riemannian manifolds with M closed. Does there exist a harmonic map $u : M \to N$?

There always exists a harmonic $u : M \to N$ whenever the sectional curvature of N is nonpositive.
1. Introduction

Let \((M^{2n+1}, J, \theta)\) be a closed pseudohermitian manifold, \((N^m, g)\) be a Riemannian manifold and we consider the pseudoharmonic map heat flow on \(M \times [0, T)\):

\[
\begin{aligned}
\frac{\partial \varphi^k}{\partial t} - \Delta_b \varphi^k &= 2\tilde{\Gamma}^k_{ij} \varphi^i_{\alpha} \varphi^j_{\bar{\alpha}}, \quad k = 1, \ldots, m \\
\varphi(x, 0) &= f(x), \quad f \in C^\infty(M; N).
\end{aligned}
\] (1.2)

Here \(\tilde{\Gamma}^k_{ij}\) are the Christoffel symbols of \(N\). We will follow the same method of Eells-Sampson to show the existence of global smooth solutions to the pseudoharmonic map heat flow (1.2).
1. Introduction

Remark

Geometrically, in the paper of E. Barletta, S. Dragomir and H. Urakawa ([1]), they discovered the following phenomenon: Let $K(M)$ be the canonical bundle over (M^{2n+1}, J, θ) and $C(M) = (K(M)\setminus \{0\})/\mathbb{R}_+$ be the associated Fefferman manifold which is the circle bundle over M. Let $\pi : C(M) \to M$ be the projection and h be the associated Fefferman metric, a Lorentz metric on $C(M)$ (see [17] for details). Then $\varphi : (M^{2n+1}, J, \theta) \to (N, g)$ is pseudoharmonic if and only if its vertical lift $\varphi \circ \pi : (C(M), h) \to (N, g)$ is harmonic. From this point of view, pseudoharmonic maps on a pseudohermitian manifold is closely related to harmonic (wave) maps on the Minkowsky space ([22]).
1. Introduction

In fact, we have the following CR analogue of Eells-Sampson Theorem for the harmonic map heat flow.

Theorem 1.1

Let (M^{2n+1}, J, θ) be a closed pseudohermitian manifold, (N^m, g) be a Riemannian manifold with nonpositive sectional curvature \tilde{K}^N. Assume that

$$[\Delta_b, T] = 0.$$

Then for any $f \in C^\infty(M; N)$, the pseudoharmonic map heat flow (1.2) admits a unique, smooth solution $\varphi \in C^\infty(M \times [0, \infty); N)$ which subconverges to a pseudoharmonic map $\varphi_\infty \in C^\infty(M; N)$ as $t \to \infty$.
1. Introduction

Let \((M, \xi)\) be a \((2n + 1)\)-dimensional, orientable, contact manifold with contact structure \(\xi\), \(\dim_{\mathbb{R}} \xi = 2n\).

- A CR structure compatible with \(\xi\) is an endomorphism \(J : \xi \to \xi\) such that \(J^2 = -1\). We also assume that \(J\) satisfies the following integrability condition: If \(X\) and \(Y\) are in \(\xi\), then so are
 \([JX, Y] + [X, JY]\) and
 \(J([JX, Y] + [X, JY]) = [JX, JY] - [X, Y]\).

- A CR structure \(J\) can extend to \(\mathbb{C} \otimes \xi\) and decomposes \(\mathbb{C} \otimes \xi\) into the direct sum of \(T_{1,0}\) and \(T_{0,1}\) which are eigenspaces of \(J\) with respect to eigenvalues \(i\) and \(-i\), respectively.

- A pseudohermitian structure compatible with \(\xi\) is a CR structure \(J\) compatible with \(\xi\) together with a choice of contact form \(\theta\).
 Such a choice determines a unique real vector field \(T\) transverse to \(\xi\), which is called the characteristic vector field of \(\theta\), such that \(\theta(T) = 1\) and
 \(\mathcal{L}_T \theta = 0\) or \(d\theta(T, \cdot) = 0\).
1. Introduction

- Let \(\{ T, Z_\alpha, Z_{\bar{\alpha}} \} \) be a frame of \(TM \otimes \mathbb{C} \), where \(Z_\alpha \) is any local frame of \(T_{1,0} \), \(Z_{\bar{\alpha}} = \overline{Z_\alpha} \in T_{0,1} \) and \(T \) is the characteristic vector field. Then \(\{ \theta, \theta^\alpha, \theta^{\bar{\alpha}} \} \), which is the coframe dual to \(\{ T, Z_\alpha, Z_{\bar{\alpha}} \} \), satisfies

\[
d\theta = \imath h_{\alpha\overline{\beta}} \theta^\alpha \wedge \overline{\theta^\beta},
\]

for some positive definite hermitian matrix of functions \((h_{\alpha\overline{\beta}}) \). Actually, we can always choose \(Z_\alpha \) such that \(h_{\alpha\overline{\beta}} = \delta_{\alpha\beta} \).

- The Levi form \(\langle \cdot, \cdot \rangle_{L_\theta} \) is the Hermitian form on \(T_{1,0} \) defined by

\[
\langle Z, W \rangle_{L_\theta} = -\imath d\theta(Z, \overline{W}).
\]

We can extend \(\langle \cdot, \cdot \rangle_{L_\theta} \) to \(T_{0,1} \) by defining \(\langle \overline{Z}, \overline{W} \rangle_{L_\theta} = \langle Z, W \rangle_{L_\theta} \) for all \(Z, W \in T_{1,0} \).
1. Introduction

The pseudohermitian connection of (J, θ) is the connection ∇ on $TM \otimes \mathbb{C}$ given in terms of a local frame $Z_\alpha \in T_{1,0}$ by

$$\nabla Z_\alpha = \omega_\alpha^\beta \otimes Z_\beta, \quad \nabla Z_{\bar{\alpha}} = \omega_{\bar{\alpha}}^\bar{\beta} \otimes Z_{\bar{\beta}}, \quad \nabla T = 0,$$

where ω_α^β are the 1-forms uniquely determined by the following equations:

$$d\theta^\beta = \theta^\alpha \wedge \omega_\alpha^\beta + \theta \wedge \tau^\beta,$$

$$0 = \tau_\alpha \wedge \theta^\alpha,$$

$$0 = \omega_\alpha^\beta + \omega_{\bar{\beta}}^\bar{\alpha},$$

We can write (by Cartan lemma) $\tau_\alpha = A_{\alpha \gamma} \theta^\gamma$ with $A_{\alpha \gamma} = A_{\gamma \alpha}$ the pseudohermitian torsion of (M, J, θ).

Ting-Hui Chang (Jointed with Prof. Shu-Chen)
1. Introduction

- Webster showed that the curvature forms

\[\Pi^\beta_\alpha = \bar{\Pi}^\bar{\alpha}_\bar{\beta} = d\omega^\beta_\alpha - \omega^\gamma_\beta \wedge \omega^\alpha_\gamma \] satisfies the structure equation

\[\Pi^\beta_\alpha = R^\beta_\alpha \rho \bar{\sigma} \theta^\rho \wedge \bar{\theta}^\bar{\sigma} + W^\beta_\alpha \rho \theta^\rho \wedge \theta - W^\alpha_\beta \bar{\rho} \theta^\bar{\rho} \wedge \theta + i \theta^\beta \wedge \tau^\alpha - i \tau^\beta \wedge \theta^\alpha, \]

where the coefficients satisfy

\[R^\beta_\alpha \rho \bar{\sigma} = R^\alpha_\beta \rho \bar{\sigma} = R^\beta_\alpha \rho \bar{\sigma} = R^\alpha_\beta \rho \bar{\sigma} = R^\beta_\alpha \rho \bar{\sigma}, \quad \text{and} \quad W^\beta_\alpha \gamma = W^\alpha_\beta \gamma. \]

- We will denote components of covariant derivatives with indices preceded by comma; thus write \(A^\alpha_{\beta, \gamma} \). The indices \(\{0, \alpha, \bar{\alpha}\} \) indicate derivatives with respect to \(\{T, Z_\alpha, Z_{\bar{\alpha}}\} \). For derivatives of a scalar function, we will often omit the comma, for instance, \(u_\alpha = Z_\alpha u \), \(u_{\alpha \bar{\beta}} = Z_{\bar{\beta}} Z_\alpha u - \omega^\gamma_\alpha (Z_{\bar{\beta}}) Z_\gamma u \), \(u_0 = Tu \) for a smooth function \(u \).
1. Introduction

- For a real function u, the subgradient $\nabla_b u$ is defined by $\nabla_b u \in \xi$ and $\langle Z, \nabla_b u \rangle_{L_{\theta}} = du(Z)$ for all vector fields Z tangent to contact plane. Locally, $\nabla_b u = \sum_{\alpha} u_{\bar{\alpha}} Z_{\alpha} + u_{\alpha} Z_{\bar{\alpha}}$.

- We can use the connection to define the subhessian as the complex linear map
 \[(\nabla^H)^2 u : T_{1,0} \oplus T_{0,1} \rightarrow T_{1,0} \oplus T_{0,1} \]
 by
 \[(\nabla^H)^2 u(Z) = \nabla_Z \nabla_b u. \]

 In particular,
 \[|\nabla_b u|^2 = 2u_{\alpha} u_{\bar{\alpha}}, \quad |\nabla^2_b u|^2 = 2(u_{\alpha\beta} u_{\bar{\alpha}\bar{\beta}} + u_{\alpha\bar{\beta}} u_{\bar{\alpha}\beta}). \]
1. Introduction

The subLaplacian Δ_b of (M, J, θ) is locally given by

$$\Delta_b u = Tr \left((\nabla^H)^2 u \right) = \sum_{\alpha} (u_{\alpha \bar{\alpha}} + u_{\bar{\alpha} \alpha}).$$

The pseudohermitian Ricci tensor and the torsion tensor on $T_{1,0}$ are defined by

$$Ric(X, Y) = R_{\alpha \bar{\beta}} X^\alpha Y^{\bar{\beta}},$$

and

$$Tor(X, Y) = i \sum_{\alpha, \beta} (A_{\bar{\alpha} \bar{\beta}} X^{\bar{\alpha}} Y^{\bar{\beta}} - A_{\alpha \beta} X^\alpha Y^\beta),$$

where $X = X^{\alpha} Z_\alpha$, $Y = Y^{\beta} Z_\beta$.
Let \((M^{2n+1}, J, \theta)\) be a closed pseudohermitian \((2n + 1)\)-manifold, \((N^m, g)\) be a Riemannian \(m\)-manifold and let \(\varphi \in C^2(M; N)\). At each point \(p \in M\), we may take a local coordinate chart \(U_p \subset M\) of \(p\) and a local coordinate chart \(V_{\varphi(p)} \subset N\) of \(\varphi(p)\) such that \(\varphi(U_p) \subset V_{\varphi(p)}\). We define the energy density \(e(\varphi)\) of \(\varphi\) at the point \(x \in U_p\) by

\[
e(\varphi)(x) = \frac{1}{2} h^{\alpha\bar{\beta}}(x) g_{ij}(\varphi(x)) \varphi^i_x \varphi^j_{\bar{x}}.
\]

Here \(h^{\alpha\bar{\beta}}\) is the Levi metric on \((M^{2n+1}, J, \theta)\) and we may assume \(h^{\alpha\bar{\beta}} = \delta^{\alpha\bar{\beta}}\). It can be checked that the energy density is intrinsically defined, i.e., independent of the choice of local coordinates.
2. Preliminary lemmas

Now we define the energy $E(\varphi)$ of φ by

$$E(\varphi) = \int_M e(\varphi)d\mu,$$

where $d\mu = \theta \wedge (d\theta)^n$. In the paper of E. Barletta, S. Dragomir and H. Urakawa ([1]), they introduced a notion of the pseudoharmonic map from a pseudohermitian $(2n + 1)$-manifold (M^{2n+1}, J, θ) into a Riemannian m-manifold (N^m, g) as following:

Definition 2.1

A C^2-map $\varphi : (M^{2n+1}, J, \theta) \rightarrow (N^m, g)$ is said to be a pseudoharmonic map if it is a critical point of the energy functional E.
2. Preliminary lemmas

Lemma 2.1 (CR Bochner formula)

Let \((M^{2n+1}, J, \theta)\) be a closed pseudohermitian manifold. For a real smooth function \(u\) on \((M, J, \theta)\),

\[
\frac{1}{2} \Delta_b |\nabla_b u|^2 = |\nabla^2_b u|^2 + \langle \nabla_b u, \nabla_b \Delta_b u \rangle_{L^0} + 2\langle J\nabla_b u, \nabla_b u_0 \rangle_{L^0} + [2\text{Ric} - (n - 2) \text{Tor}]((\nabla_b u)_c, (\nabla_b u)_c).
\]

(2.1)

Here \((\nabla_b u)_c = u_\alpha Z_\alpha\) is the corresponding complex \((1, 0)\)-vector field of \(\nabla_b u\).
2. Preliminary lemmas

The following lemma gives a necessary and sufficient condition for a map \(\varphi \in C^2(M; N) \) to be pseudoharmonic.

Lemma 2.2

Let \((M^{2n+1}, J, \theta)\) be a closed pseudohermitian manifold and \((N^m, g)\) be a Riemannian manifold. A \(C^2\)-map \(\varphi : (M, J, \theta) \to (N, g) \) is pseudoharmonic if and only if it satisfies the Euler-Lagrange equations

\[
\Delta_b \varphi^k + 2\bar{\Gamma}^k_{ij} \varphi^i_{\alpha} \varphi^j_{\overline{\alpha}} = 0, \quad k = 1, \cdots, m, \tag{2.2}
\]

where \(\bar{\Gamma}^k_{ij}\) are the Christoffel symbols of \((N^m, g)\).
3. On the pseudoharmonic map heat flow

The organization of this section is as follows.

- Applying Moser’s Harnack inequality to show that the energy density of the pseudoharmonic map heat flow (1.2) is uniformly bounded.
- Using the higher order regularity theory of Folland-Stein space $S^{k,p}$ to show the existence of global smooth solution to (1.2).

The main difficulty comes from the CR Bochner formula (2.1) with a mixed term $\langle J\nabla b u, \nabla b u_0 \rangle_{L^0}$ involving the covariant derivative of u in the direction of T, which is hard to control. However, by adding an extra energy density

$$e_0(\varphi) := g_{ij} \varphi_0^i \varphi_0^j$$

and then estimate the total energy density

$$\hat{e}(\varphi) = 2e(\varphi) + e_0(\varphi),$$

we are able to overcome such a difficulty.
3. On the pseudoharmonic map heat flow

We first need the following lemma, which states that the energy $E(\varphi(t))$ for (1.2) is monotonically decreasing.

Lemma 3.1

For any $0 < T \leq \infty$, if $\varphi \in C^\infty(M \times [0, T); N)$ solves (1.2), then

$$E(\varphi(t)) + \int_0^t \int_M |\partial_s \varphi|^2 d\mu ds = E(f), \quad \forall \ t \in [0, T). \quad (3.1)$$
3. On the pseudoharmonic map heat flow

The following lemma gives the CR version of Bochner identity for the pseudoharmonic map heat flow (1.2).

Lemma 3.2

Let \((M^{2n+1}, J, \theta)\) be a closed pseudohermitian manifold, \((N^m, g)\) be a Riemannian manifold and let \(\phi \in C^\infty(M \times [0, T); N)\) be a solution to the pseudoharmonic map heat flow (1.2). If \([\Delta_b, T] = 0\), then there holds

\[
\left(\frac{\partial}{\partial t} - \Delta_b \right) \hat{e}(\phi) = - \sum_{k=1}^{m} \left[|\nabla^2_b \phi^k|^2 + (2Ric - (n - 2) Tor)((\nabla_b \phi^k)_c, (\nabla_b \phi^k)_c) \right] \\
+ 2 \langle J\nabla_b \phi^k, \nabla_b \phi^k \rangle_{L_\theta} + 2 |\nabla_b \phi^k|^2 \\
+ \sum_{ij, k, \ell=1}^{m} \sum_{\alpha, \beta=1}^{n} \left[2\tilde{R}_{ijkl} \phi^i_\alpha \phi^j_\beta \phi^k_\alpha \phi^\ell_\beta + 2\tilde{R}_{ijkl} \phi^i_\alpha \phi^j_\beta \phi^k_\alpha \phi^\ell_\beta \right] \\
+ 4 \sum_{i, j, k, \ell=1}^{m} \sum_{\alpha=1}^{n} \tilde{R}_{ijkl} \phi^i_\alpha \phi^j_0 \phi^k_\alpha \phi^\ell_0.
\]
3. On the pseudoharmonic map heat flow

Theorem 3.1

Let (M^{2n+1}, J, θ) be a closed pseudohermitian manifold, (N^n, g) be a Riemannian manifold with nonpositive sectional curvature \tilde{K}^N. Let $\varphi \in C^\infty(M \times [0, T); N)$ be a solution of (1.2). If

$$[\Delta_b, T] = 0,$$

then it holds

$$\left(\frac{\partial}{\partial t} - \Delta_b\right)\tilde{e}(\varphi) \leq C\tilde{e}(\varphi).$$

Here C is a positive constant depends on the pseudohermitian Ricci tensor and torsion of (M, J, θ).
3. On the pseudoharmonic map heat flow

Before we go further, let’s recall Moser’s Harnack inequality ([19]). Let

\[\mathcal{L} = \frac{\partial}{\partial t} - \Delta_b \]

be the heat operator on \((M^{2n+1}, J, \theta)\). For \(z_0 = (x_0, t_0) \in M \times (0, \infty)\), let \(0 < \delta < \text{diam}(M)\), \(0 < \tau < t_0\) and let \(R(z_0, \delta, \tau)\) be the cylinder

\[R(z_0, \delta, \tau) = \{(x, t) \in M \times [0, \infty) : |x - x_0| < \delta, \ t_0 - \tau < t < t_0\}. \]

Lemma 3.3

Let \(u\) be a positive smooth solution of

\[\mathcal{L}u \leq 0 \]

in \(R(z_0, \delta, \tau)\). Then we have

\[u(z_0) \leq C \int_{R(z_0, \delta, \tau)} u(x, t)d\mu dt, \]

where \(C > 0\) is a constant depends only on \(n, \delta\) and \(\tau\).
3. On the pseudoharmonic map heat flow

To prove our main theorem, we need one more lemma.

Lemma 3.4

Let \((M^{2n+1}, J, \theta)\) be a closed pseudohermitian manifold and \((N^m, g)\) be a Riemannian manifold with nonpositive sectional curvature \(\tilde{K}^N\). For any \(0 < T \leq \infty\), if \(\varphi \in C^\infty(M \times [0, T); N)\) solves (1.2), then

\[
\hat{E}(\varphi(t)) := E(\varphi(t)) + E^0(\varphi(t))
\]

is decreasing in \(t\). Here \(E^0(\varphi(t))\) is given by

\[
E^0(\varphi(t)) := \int_M e_0(\varphi) d\mu = \int_M g_{ij} \varphi_0^i \varphi_0^j d\mu.
\]

Remark 3.1

The energy \(E^0(\varphi(t))\) is decreasing in \(t\) under the flow only in case of \((N^m, g)\) with nonpositive sectional curvature \(\tilde{K}^N\).
3. On the pseudoharmonic map heat flow

The proof of Theorem 1.1

We first show that $|\nabla_b \varphi|$ is uniformly bounded. In fact, we will show that $\hat{e}(\varphi)$ is uniformly bounded. Let

$$F(x, t) := e^{-Ct} \hat{e}(\varphi(x, t)), \quad (x, t) \in M \times [0, T).$$

Here $C > 0$ is a constant satisfying

$$\left(\frac{\partial}{\partial t} - \Delta_b \right) \hat{e}(\varphi) \leq C \hat{e}(\varphi).$$

It is easy to check that

$$\left(\frac{\partial}{\partial t} - \Delta_b \right) F(x, t) = e^{-Ct} \left[\left(\frac{\partial}{\partial t} - \Delta_b \right) \hat{e}(\varphi) - C \hat{e}(\varphi) \right] \leq 0.$$
3. On the pseudoharmonic map heat flow

Then for any $z_0 = (x_0, t_0) \in M \times [0, T)$ we have by Lemma 3.3, that

$$\hat{e}(\varphi(z_0)) \leq C_1 e^{-C t_0} \int_{R(z_0, \delta, 1)} F(x, s) d\mu ds$$

$$= C_1 \int_{t_0 - 1}^{t_0} \int_{B_\delta(x_0)} e^{-C(t_0 - s)} \hat{e}(\varphi(x, s)) d\mu ds$$

$$\leq C_1 \int_{t_0 - 1}^{t_0} \int_{B_\delta(x_0)} \hat{e}(\varphi(x, s)) d\mu ds$$

$$\leq C_1 \int_{t_0 - 1}^{t_0} \hat{E}(\varphi(s)) ds \leq C_1 \hat{E}(f),$$

since $\hat{E}(\varphi(t))$ is decreasing in t by Lemma 3.4. This shows that $|\nabla_b \varphi|$ is uniformly bounded and we conclude that $\varphi \in C^\infty(M \times [0, \infty); N)$ by the higher order regularity theory of the Folland-Stein space (see [7] and [2]).
By a direct computation one has

\[(\frac{\partial}{\partial t} - \Delta_b)|\partial_t \varphi|^2\]

\[= -2 \sum_{k=1}^{m} \left| \nabla_b \left(\frac{\partial \varphi^k}{\partial t} \right) \right|^2 + 4 \sum_{i,j,k,\ell=1}^{m} \sum_{\alpha=1}^{n} \tilde{R}_{ijk\ell} \varphi_{\alpha}^i \frac{\partial \varphi^j}{\partial t} \varphi_{\alpha}^k \frac{\partial \varphi^\ell}{\partial t}\]

\[= -2 \sum_{k=1}^{m} \left| \nabla_b \left(\frac{\partial \varphi^k}{\partial t} \right) \right|^2

+ 4 \sum_{\alpha=1}^{n} \left[\tilde{R}(\text{Re}(X_{\alpha}), W, \text{Re}(X_{\alpha}), W) + \tilde{R}(\text{Im}(X_{\alpha}), W, \text{Im}(X_{\alpha}), W) \right],\]

where \(X_{\alpha} = \varphi_{\alpha}^i \partial y_i\) and \(W = \frac{\partial \varphi^i}{\partial t} \partial y_i\) with \(\partial y_i = \partial / \partial y^i\) the local coordinates of \(N\). Thus, the sectional curvature \(\tilde{K}^N\) of \(N\) is nonpositive implies that

\[(\frac{\partial}{\partial t} - \Delta_b)|\partial_t \varphi|^2 \leq 0.\]
Thus, from Lemma 3.3 we have

$$\| \partial_t \varphi \|_{C^0(M \times [t-1,t])} \leq C \| \partial_t \varphi \|_{L^2(M \times [t-2,t])}.$$

Since from Lemma 3.1,

$$\int_0^t \int_M |\partial_s \varphi|^2 d\mu ds \leq E(f) < +\infty, \quad \forall \, t,$$

we see that

$$\lim_{t \to \infty} \int_{t-2}^t \int_M |\partial_s \varphi|^2 d\mu ds = 0$$

and so

$$\| \partial_t \varphi \|_{C^0(M \times [t-1,t])} \leq C \| \partial_t \varphi \|_{L^2(M \times [t-2,t])} \to 0$$

as $t \to \infty$.

Therefore, we may choose a sequence \(\{t_\ell\}_\ell \) with \(t_\ell \uparrow \infty \) as \(\ell \to \infty \) such that \(\varphi_t(\cdot, t_\ell) \to 0 \) in \(C^0(M) \) and \(\varphi(\cdot, t_\ell) \to \varphi_\infty \) in \(C^2(M; N) \). Since

\[
\Delta_b(\varphi_\infty)^k + 2\tilde{\Gamma}^k_{ij}(\varphi_\infty)^i\alpha(\varphi_\infty)^j\alpha = \lim_{\ell \to \infty} \left[\Delta_b \varphi^k(\cdot, t_\ell) + 2\tilde{\Gamma}^k_{ij}\varphi^i\alpha(\cdot, t_\ell)\varphi^j\alpha(\cdot, t_\ell) \right]
\]

\[
= \lim_{\ell \to \infty} \varphi_t(\cdot, t_\ell) = 0,
\]

\(\varphi_\infty \in C^2(M; N) \) satisfies the Euler-Lagrange equations and hence we conclude by Lemma 2.2, that \(\varphi_\infty \) is a pseudoharmonic map.
Open problems

1° The monotonicity inequality for the pseudoharmonic map heat flow.
2° Finite time blow-up of solutions.
Appendix I. The Folland-Stein space

We recall below what the Folland-Stein space $S^{k,p}$ is. Let D denote a differential operator acting on functions. We say D has weight m, denoted $w(D) = m$, if m is the smallest integer such that D can be locally expressed as a polynomial of degree m in vector fields tangent to the contact bundle ξ. We define the Folland-Stein space $S^{k,p}$ of functions on M by

$$S^{k,p} = \{ f \in L^p : Df \in L^p \text{ whenever } w(D) \leq k \}.$$

We define the L^p norm of $\nabla_b f$, $\nabla_b^2 f$, ... to be $(\int |\nabla_b f|^p \theta \wedge d\theta)^{1/p}$, $(\int |\nabla_b^2 f|^p \theta \wedge d\theta)^{1/p}$, ..., respectively, as usual. So it is natural to define the $S^{k,p}$ norm of $f \in S^{k,p}$ as follows:

$$\|f\|_{S^{k,p}} \equiv \left(\sum_{0 \leq j \leq k} \|\nabla_b^j f\|^p_{L^p} \right)^{1/p}.$$

The function space $S^{k,p}$ with the above norm is a Banach space for $k \geq 0$, $1 < p < \infty$. There are also embedding theorems of Sobolev type. (\cite{2, 7, 8}).
Appendix II. The proofs

The proof of Lemma 2.1

First from [11], we have for a real smooth function \(u \)

\[
\frac{1}{2} \Delta_b |\nabla_b u|^2 = |\nabla_b^2 u|^2 + \langle \nabla_b u, \nabla_b \Delta_b u \rangle_{L_\theta} - 2i \sum_{\alpha=1}^{n} (u_\alpha u_{\bar{\alpha}0} - u_{\bar{\alpha}} u_\alpha 0) \tag{5.1}
\]

\[+ [2Ric - nTor] ((\nabla_b u)_C, (\nabla_b u)_C).\]

Next from Lemma 2.2 of [3], one has that

\[i \sum_{\alpha} (u_\alpha u_{\bar{\alpha}0} - u_{\bar{\alpha}} u_\alpha 0) = i \sum_{\alpha} (u_\alpha u_0{\bar{\alpha}} - u_{\bar{\alpha}} u_0 \alpha) - Tor ((\nabla_b u)_C, (\nabla_b u)_C)\]

\[= -\langle J\nabla_b u, \nabla_b u_0 \rangle_{L_\theta} - Tor ((\nabla_b u)_C, (\nabla_b u)_C). \tag{5.2}\]

Then Lemma 2.1 follows from (5.1) and (5.2).
The proof of Lemma 2.2

Let $\varphi_t, -\varepsilon < t < \varepsilon$, be a smooth variation of φ so that

$$
\varphi_0 = \varphi, \quad \text{and} \quad \frac{d\varphi_t}{dt} \bigg|_{t=0} = V \in \Gamma(\varphi^{-1}TN).
$$

φ_t may be viewed as a map from $(-\varepsilon, \varepsilon) \times M$ into N. By direct computations one has

$$
\frac{d}{dt} E(\varphi_t) = \frac{1}{2} \frac{d}{dt} \int_M g_{ij}(\varphi_t) \varphi_t^i \varphi_t^j d\mu
$$

$$
= -\frac{1}{2} \int_M g_{k\ell} \left[\Delta_b \varphi_t^k + 2\tilde{\Gamma}_{ij}^k \varphi_t^i \varphi_t^{j\bar{\alpha}} \right] \frac{d\varphi_t^\ell}{dt} d\mu
$$

$$
= -\frac{1}{2} \int_M \left< \frac{d\varphi_t}{dt}, \tau(\varphi_t) \right>_N d\mu.
$$
Thus, the first variational formula is given by

\[
\frac{d}{dt} E(\varphi_t) \bigg|_{t=0} = -\frac{1}{2} \int_M \langle V, \tau(\varphi) \rangle_N d\mu,
\]

where \(\tau(\varphi) \) is so called the tension field of \(\varphi \), which is defined by

\[
\tau(\varphi) = \sum_{k=1}^{m} \left[\Delta_b \varphi^k + 2\tilde{\Gamma}_{ij}^k \varphi^i \varphi^j \alpha \right] \frac{\partial}{\partial y_k}.
\]

Therefore \(\varphi \in C^2(M; N) \) is a critical point of the energy functional \(E \) if and only if its tension field \(\tau(\varphi) \) vanishes identically. That is, \(\varphi \) is pseudoharmonic if and only if it satisfies the Euler-Lagrange equations (2.2).

\[\square \]
Appendix II. The proofs

The proof of Lemma 3.1

By integration by parts, one has

\[\frac{d}{ds} E(\varphi(s)) = \int_M \frac{\partial}{\partial s} \left(g_{ij} \varphi_\beta^i \varphi_\beta^j \right) d\mu \]

\[= \int_M g_{ij,k} \varphi_\beta^i \varphi_\beta^j \frac{\partial \varphi^k}{\partial s} d\mu - \int_M g_{ij} \frac{\partial \varphi^i}{\partial s} \varphi_\beta^j d\mu - \int_M g_{ij,k} \varphi_\beta^i \varphi_\beta^j \frac{\partial \varphi^k}{\partial s} d\mu \]

\[- \int_M g_{ij} \frac{\partial \varphi^i}{\partial s} \varphi_\beta^j d\mu - \int_M g_{ij,k} \varphi_\beta^i \varphi_\beta^j \frac{\partial \varphi^k}{\partial s} d\mu \]

\[= -\int_M g_{ij} \frac{\partial \varphi^i}{\partial s} \Delta_b \varphi^j d\mu - \int_M \left(g_{kj,i} + g_{ik,j} - g_{ij,k} \right) \varphi_\beta^i \varphi_\beta^j \frac{\partial \varphi^k}{\partial s} d\mu \]

\[= -\int_M g_{ij} \frac{\partial \varphi^i}{\partial s} \left[\Delta_b \varphi^j + 2\tilde{\Gamma}_{pq}^j \varphi_\beta^p \varphi_\beta^q \right] d\mu = -\int_M g_{ij} \frac{\partial \varphi^i}{\partial s} \frac{\partial \varphi^j}{\partial s} d\mu. \]

That is,

\[\frac{d}{ds} E(\varphi(s)) = -\int_M |\partial_s \varphi|^2 d\mu. \]

Integrating the above equality over \([0, t]\) gives (3.1).
The proof of Lemma 3.4

From (5.6) and (5.8) one has

\[
\frac{d}{dt} E^0(\varphi(t)) = \int_M \frac{\partial}{\partial t} (e_0(\varphi)) \, d\mu \\
= \int_M \left[4\tilde{R}^0 - 2 \sum_{k=1}^m |\nabla b \varphi_0^k|^2 \right] \, d\mu \leq 0,
\]

provided the sectional curvature \tilde{K}^N of N is nonpositive. This says that $E^0(\varphi(t))$ is decreasing in t. Since $E(\varphi(t))$ is also decreasing in t (see Lemma 3.1), we then conclude that $\hat{E}(\varphi(t))$ is decreasing in t. \qed
The proof of Lemma 3.2

Recall that \(\hat{e}(\varphi) = 2e(\varphi) + e_0(\varphi) \) with

\[
e_0(\varphi) := g_{ij}\varphi_0^i\varphi_0^j.
\]

Since \(e(\varphi) \) and \(\hat{e}(\varphi) \) are independent of the choice of local coordinates, for each point \((p, t)\) one may choose a normal coordinate chart \(U \) at \((p, t)\) and a normal coordinate chart \(V \) at \(\varphi(p, t) \) such that \(\varphi(U) \subset V \) and then fulfill the following computations at the point \((p, t)\).
Appendix II. The proofs

(a) We first compute \((\frac{\partial}{\partial t} - \Delta_b)(2e(\varphi))\).

\[
\frac{\partial}{\partial t} (2e(\varphi)) = \frac{\partial}{\partial t} \left(\sum_{i,j = 1}^{m} \sum_{\beta = 1}^{n} g_{ij} \varphi_{\beta}^i \varphi_{\bar{\beta}}^j \right)
\]

\[
= \sum_{k=1}^{m} \sum_{\beta = 1}^{n} \left\{ \varphi_{\beta}^k \left(\frac{\partial \varphi_{\beta}^k}{\partial t} \right)_{\bar{\beta}} + \varphi_{\bar{\beta}}^k \left(\frac{\partial \varphi_{\beta}^k}{\partial t} \right)_{\bar{\beta}} \right\}
\]

\[
= \sum_{k=1}^{m} \sum_{\alpha, \beta = 1}^{n} \left[\varphi_{\beta}^k \left(\Delta_b \varphi_{\beta}^k + 2 \tilde{\Gamma}_{ij}^k \varphi_{\alpha}^i \varphi_{\bar{\alpha}}^j \right)_{\bar{\beta}} + \varphi_{\bar{\beta}}^k \left(\Delta_b \varphi_{\beta}^k + 2 \tilde{\Gamma}_{ij}^k \varphi_{\alpha}^i \varphi_{\bar{\alpha}}^j \right)_{\bar{\beta}} \right]
\]

\[
= \sum_{k=1}^{m} \left\langle \nabla_b \varphi_{\beta}^k, \nabla_b \Delta_b \varphi_{\beta}^k \right\rangle_{L_0}
\]

\[
+ 2 \sum_{i,j,k,\ell = 1}^{m} \sum_{\alpha, \beta = 1}^{n} \left[\tilde{\Gamma}_{ij}^k \varphi_{\alpha}^i \varphi_{\alpha}^{j} \varphi_{\beta}^k \varphi_{\bar{\beta}}^\ell + \tilde{\Gamma}_{ij}^k \varphi_{\alpha}^i \varphi_{\alpha}^{j} \varphi_{\bar{\beta}}^k \varphi_{\beta}^\ell \right].
\]
Appendix II. The proofs

From the CR Bochner formula (Lemma 2.1), one has

\[\Delta_b(2e(\varphi)) = \Delta_b\left(\sum_{i,j=1}^{m} g_{ij} \varphi^i_{\alpha} \varphi^i_{\bar{\alpha}} \right) \]

\[= \frac{1}{2} \sum_{k=1}^{m} \Delta_b |\nabla_b \varphi^k|^2 + \sum_{i,j=1}^{m} \varphi^i_{\alpha} \varphi^i_{\bar{\alpha}} \Delta_b(g_{ij}) \]

\[= \sum_{k=1}^{m} \left[|\nabla^2_b \varphi^k|^2 + \langle \nabla_b \varphi^k, \nabla_b \Delta_b \varphi^k \rangle_{L_\theta} + 2 \langle J\nabla_b \varphi^k, \nabla_b \varphi^k_0 \rangle_{L_\theta} \right. \]

\[+ \left. (2Ric - (n - 2) Tor) ((\nabla_b \varphi^k)_C, (\nabla_b \varphi^k)_C) \right] \]

\[+ \sum_{i,j=1}^{m} \sum_{\alpha=1}^{n} \varphi^i_{\alpha} \varphi^i_{\bar{\alpha}} \Delta_b(g_{ij}). \]
Appendix II. The proofs

Thus

\[
\left(\frac{\partial}{\partial t} - \Delta_b \right) (2e(\varphi)) = - \sum_{k=1}^{m} \left[|\nabla_b \varphi^k|^2 + 2 \langle J \nabla_b \varphi^k, \nabla_b \varphi_0^k \rangle_{L^\theta} \right.

+ (2Ric - (n - 2) Tor) \left((\nabla_b \varphi^k)_C, (\nabla_b \varphi^k)_C \right) \\

+ 2 \sum_{i,j,k,\ell=1}^{m} \sum_{\alpha,\beta=1}^{n} \left[\tilde{\Gamma}^{k}_{ij,\ell} \varphi^i_\alpha \varphi^j_\alpha \varphi^k_\beta \varphi^\ell_\beta + \tilde{\Gamma}^{k}_{ij,\ell} \varphi^i_\alpha \varphi^j_\alpha \varphi^k_\beta \varphi^\ell_\beta \right] \\

- \sum_{i,j=1}^{m} \sum_{\alpha=1}^{n} \varphi^i_\alpha \varphi^j_\alpha \Delta_b(g_{ij}).
\]

(5.3)
Furthermore at the point \((p, t)\),

\[
2 \sum_{i,j,k,\ell=1}^{m} \sum_{\alpha,\beta=1}^{n} \left[\tilde{\Gamma}^{k}_{ij,\ell} \varphi_{\alpha} \varphi_{\alpha} \varphi_{\beta} \varphi_{\beta} + \tilde{\Gamma}^{k}_{ij,\ell} \varphi_{\alpha} \varphi_{\alpha} \varphi_{\beta} \varphi_{\beta} \right] - \sum_{i,j=1}^{m} \sum_{\alpha=1}^{n} \varphi_{\alpha} \varphi_{\alpha} \Delta b(g_{ij})
\]

\[
= \sum_{i,j,k,\ell=1}^{m} \sum_{\alpha,\beta=1}^{n} \left[2\tilde{\Gamma}^{k}_{ij,\ell} \varphi_{\alpha} \varphi_{\alpha} \varphi_{\beta} \varphi_{\beta} + 2\tilde{\Gamma}^{k}_{ij,\ell} \varphi_{\alpha} \varphi_{\alpha} \varphi_{\beta} \varphi_{\beta} - 2g_{ij,\ell} \varphi_{\alpha} \varphi_{\alpha} \varphi_{\beta} \varphi_{\beta} \right]
\]

\[
= \sum_{i,j,k,\ell=1}^{m} \sum_{\alpha,\beta=1}^{n} \left[(g_{kj,\ell} + g_{ik,\ell} - g_{ij,\ell}) \varphi_{\alpha} \varphi_{\alpha} \varphi_{\beta} \varphi_{\beta} \right]
\]

\[
- (g_{ik,\ell} + g_{kj,\ell} + g_{ij,\ell}) \varphi_{\alpha} \varphi_{\alpha} \varphi_{\beta} \varphi_{\beta} - 2g_{ij,\ell} \varphi_{\alpha} \varphi_{\alpha} \varphi_{\beta} \varphi_{\beta} \right]
\]

\[
= \sum_{i,j,k,\ell=1}^{m} \sum_{\alpha,\beta=1}^{n} g_{ij,\ell} \left[\varphi_{\alpha} \varphi_{\beta} \varphi_{\alpha} \varphi_{\beta} + \varphi_{\alpha} \varphi_{\beta} \varphi_{\alpha} \varphi_{\beta} \right]
\]

\[
+ \varphi_{\alpha} \varphi_{\beta} \varphi_{\alpha} \varphi_{\beta} + \varphi_{\alpha} \varphi_{\beta} \varphi_{\alpha} \varphi_{\beta} - 4\varphi_{\alpha} \varphi_{\alpha} \varphi_{\beta} \varphi_{\beta} \right].
\]
Appendix II. The proofs

On the other hand, we have

\[
\sum_{i,j,k,\ell=1}^{m} \sum_{\alpha,\beta=1}^{n} \left[2\tilde{R}_{ijk\ell} \phi^i_{\alpha} \phi^j_{\beta} \phi^k_{\alpha} \phi^\ell_{\beta} + 2\tilde{R}_{ijk\ell} \phi^i_{\alpha} \phi^j_{\beta} \phi^k_{\alpha} \phi^\ell_{\beta} \right] = \sum_{i,j,k,\ell=1}^{m} \sum_{\alpha,\beta=1}^{n} \left[2(\tilde{\Gamma}_{j\ell,k} - \tilde{\Gamma}_{jk,\ell}) \phi^i_{\alpha} \phi^j_{\beta} \phi^k_{\alpha} \phi^\ell_{\beta} + 2(\tilde{\Gamma}_{j\ell,k} - \tilde{\Gamma}_{jk,\ell}) \phi^i_{\alpha} \phi^j_{\beta} \phi^k_{\alpha} \phi^\ell_{\beta} \right]
\]

\[
= \sum_{i,j,k,\ell=1}^{m} \sum_{\alpha,\beta=1}^{n} \left[(g_{i\ell,jk} + g_{ji,\ell k} - g_{j\ell,ik}) - (g_{ik,\ell j} + g_{ji,\ell k} - g_{jk,i\ell}) \right] \phi^i_{\alpha} \phi^j_{\beta} \phi^k_{\alpha} \phi^\ell_{\beta} + \phi^i_{\alpha} \phi^j_{\beta} \phi^k_{\alpha} \phi^\ell_{\beta}
\]

\[
+ \sum_{i,j,k,\ell=1}^{m} \sum_{\alpha,\beta=1}^{n} \left[(g_{i\ell,jk} + g_{ji,\ell k} - g_{j\ell,ik}) - (g_{ik,\ell j} + g_{ji,\ell k} - g_{jk,i\ell}) \right] \phi^i_{\alpha} \phi^j_{\beta} \phi^k_{\alpha} \phi^\ell_{\beta}
\]

\[
= \sum_{i,j,k,\ell=1}^{m} \sum_{\alpha,\beta=1}^{n} g_{ij,\ell k} \left[\phi^i_{\alpha} \phi^j_{\beta} \phi^k_{\alpha} \phi^\ell_{\beta} + \phi^i_{\alpha} \phi^j_{\beta} \phi^k_{\alpha} \phi^\ell_{\beta} \right]
\]

\[
+ \phi^i_{\alpha} \phi^j_{\beta} \phi^k_{\alpha} \phi^\ell_{\beta} + \phi^i_{\alpha} \phi^j_{\beta} \phi^k_{\alpha} \phi^\ell_{\beta} - 4\phi^i_{\alpha} \phi^j_{\beta} \phi^k_{\alpha} \phi^\ell_{\beta} \right].
\]
Appendix II. The proofs

Therefore, equation (5.3) gives

\[
\left(\frac{\partial}{\partial t} - \Delta_b \right) (2e(\varphi)) = - \sum_{k=1}^{m} \left[|\nabla^2_b \varphi^k|^2 + 2 \langle J \nabla_b \varphi^k, \nabla_b \varphi_0^k \rangle_{L^\theta} \right.
\]

\[
+ \left. (2 \text{Ric} - (n - 2) \text{Tor}) \left((\nabla_b \varphi^k)_C, (\nabla_b \varphi^k)_C \right) \right]
\]

\[
+ \sum_{i,j,k,\ell=1}^{m} \sum_{\alpha,\beta=1}^{n} \left[2 \tilde{R}_{ijkl} \varphi^{i}_\alpha \varphi^{j}_\beta \varphi^{k}_{\bar{\alpha}} \varphi^{\ell}_{\bar{\beta}} + 2 \tilde{R}_{ijkl} \varphi^{i}_\alpha \varphi^{j}_\beta \varphi^{k}_{\bar{\alpha}} \varphi^{\ell}_{\bar{\beta}} \right].
\]
Appendix II. The proofs

(b) We next compute \((\frac{\partial}{\partial t} - \Delta_b)e_0(\varphi)\). Again, we have at the point \((p, t)\), that

\[
\frac{\partial}{\partial t}(e_0(\varphi)) = \frac{\partial}{\partial t}\left(\sum_{i,j=1}^{m} g_{ij}\varphi_i^0\varphi_j^0\right) = 2 \sum_{k=1}^{m} \varphi_k^0\left(\frac{\partial\varphi_k^0}{\partial t}\right)_0.
\]

We also compute

\[
\Delta_b(e_0(\varphi)) = \Delta_b\left(\sum_{i,j=1}^{m} g_{ij}\varphi_i^0\varphi_j^0\right) = \sum_{k=1}^{m} \left[2\varphi_k^0\Delta_b\varphi_k^0 + 2|\nabla_b\varphi_k^0|^2\right] + \sum_{i,j=1}^{m} \varphi_i^0\varphi_j^0\Delta_b(g_{ij}).
\]

Ting-Hui Chang (Jointed with Prof. Shu-ChOn the existence of pseudoharmonic maps fi}
Thus, under the assumption that $[\Delta_b, T] = 0$ we have

\[
\left(\frac{\partial}{\partial t} - \Delta_b \right) (e_0(\phi)) = \sum_{k=1}^{m} \left[\left(\frac{\partial}{\partial t} - \Delta_b \right) \phi^k \right)_0 - 2|\nabla_b \phi_0^k|^2 - \sum_{i,j=1}^{m} \phi_0^i \phi_0^j \Delta_b (g_{ij}) - 2 \sum_{k=1}^{m} |\nabla_b \phi_0^k|^2. \tag{5.5}
\]
Appendix II. The proofs

As what we computed in part (a), it is easy to see that

\[
4 \sum_{i,j,k,\ell=1}^{m} \sum_{\alpha=1}^{n} \tilde{\Gamma}_{ij}^{k} \varphi_{\alpha}^{i} \varphi_{\partial}^{j} \varphi_{0}^{k} \varphi_{0}^{\ell} - \sum_{i,j=1}^{m} \varphi_{0}^{i} \varphi_{0}^{j} \Delta_{b}(g_{ij})
\]

\[= 4 \sum_{i,j,k,\ell=1}^{m} \sum_{\alpha=1}^{n} \tilde{R}_{ijk\ell} \varphi_{\alpha}^{i} \varphi_{0}^{j} \varphi_{\partial}^{k} \varphi_{0}^{\ell} \]

and so

\[
\left(\frac{\partial}{\partial t} - \Delta_{b}\right)(e_{0}(\varphi)) = 4 \sum_{i,j,k,\ell=1}^{m} \sum_{\alpha=1}^{n} \tilde{R}_{ijk\ell} \varphi_{\alpha}^{i} \varphi_{0}^{j} \varphi_{\partial}^{k} \varphi_{0}^{\ell} - 2 \sum_{k=1}^{m} |\nabla b \varphi_{0}^{k}|^{2}. \tag{5.6}
\]

Therefore, Lemma 3.2 follows from (5.4) and (5.6).
Appendix II. The proofs

The proof of Theorem 3.1

By Lemma 3.2 and using the Cauchy inequality, one has

\[
\left(\frac{\partial}{\partial t} - \Delta_b \right) \widehat{e}(\varphi) \\
\leq - \sum_{k=1}^{m} \left[|\nabla_b^2 \varphi_k|^2 + (2\text{Ric} - (n - 2)\text{Tor}) \left((\nabla_b \varphi^k)_c, (\nabla_b \varphi^k)_c \right) \right] \\
+ \sum_{k=1}^{m} \left[(\varepsilon - 2) |\nabla_b \varphi_0^k|^2 + \frac{1}{\varepsilon} |\nabla_b \varphi^k|^2 \right] + 2\widehat{R} + 4\widehat{R}^0,
\]

for some positive constant \(\varepsilon \). Here

\[
\widehat{R} = \sum_{ij, k, \ell=1}^{m} \sum_{\alpha, \beta=1}^{n} \left[\widehat{R}_{ijkl} \varphi_i^\alpha \varphi_j^\beta \varphi^k_{\alpha} \varphi^\ell_{\beta} + \widehat{R}_{ijkl} \varphi_i^\alpha \varphi_j^\beta \varphi^k_{\alpha} \varphi^\ell_{\beta} \right]
\]

and

\[
\widehat{R}^0 = \sum_{i, j, k, \ell=1}^{m} \sum_{\alpha=1}^{n} \widehat{R}_{ijkl} \varphi_i^\alpha \varphi_0^j \varphi^k_{\alpha} \varphi_0^\ell.
\]
Appendix II. The proofs

Let \(\partial y_i = \partial / \partial y^i \) be the local coordinate of \(N \) and
\[
\tilde{R}(U, V, W, Z) := \langle \tilde{R}(W, Z) V, U \rangle.
\]
Thus
\[
\tilde{R}_{ijk\ell} \varphi^i_\alpha \varphi^j_\beta \varphi^k_\alpha \varphi^\ell_\beta
= \langle \tilde{R}(\varphi^k_\alpha \partial y_k, \varphi^\ell_\beta \partial y_\ell) \varphi^j_\beta \partial y_j, \varphi^i_\alpha \partial y_i \rangle = \tilde{R}(X_\alpha, Y_\beta, \overline{X_\alpha}, \overline{Y_\beta})
\]
\[
= \tilde{R}(\text{Re}(X_\alpha), \text{Re}(Y_\beta), \text{Re}(X_\alpha), \text{Re}(Y_\beta)) + \tilde{R}(\text{Re}(X_\alpha), \text{Im}(Y_\beta), \text{Re}(X_\alpha), \text{Im}(Y_\beta))
+ \tilde{R}(\text{Im}(X_\alpha), \text{Re}(Y_\beta), \text{Im}(X_\alpha), \text{Re}(Y_\beta)) + \tilde{R}(\text{Im}(X_\alpha), \text{Im}(Y_\beta), \text{Im}(X_\alpha), \text{Im}(Y_\beta))
- 2 \tilde{R}(\text{Re}(X_\alpha), \text{Re}(Y_\beta), \text{Im}(X_\alpha), \text{Im}(Y_\beta)) + 2 \tilde{R}(\text{Re}(X_\alpha), \text{Im}(Y_\beta), \text{Im}(X_\alpha), \text{Re}(Y_\beta)),
\]
where \(X_\alpha = \varphi^i_\alpha \partial y_i, \ Y_\beta = \varphi^j_\beta \partial y_j. \)
Similarly, we have

\[\tilde{R}_{ijk\ell} \varphi^i_\alpha \varphi^j_\beta \varphi^k_\alpha \varphi^\ell_\beta = \langle \tilde{R}(\varphi^k_\alpha \partial y_k, \varphi^\ell_\beta \partial y_\ell) \varphi^j_\beta \partial y_j, \varphi^i_\alpha \partial y_i \rangle = \tilde{R}(X_\alpha, Y_\beta, X_\alpha, Y_\beta) \]

\[= \tilde{R}(\text{Re}(X_\alpha), \text{Re}(Y_\beta), \text{Re}(X_\alpha), \text{Re}(Y_\beta)) + \tilde{R}(\text{Re}(X_\alpha), \text{Im}(Y_\beta), \text{Re}(X_\alpha), \text{Im}(Y_\beta)) + \tilde{R}(\text{Im}(X_\alpha), \text{Re}(Y_\beta), \text{Im}(X_\alpha), \text{Re}(Y_\beta)) + \tilde{R}(\text{Im}(X_\alpha), \text{Im}(Y_\beta), \text{Im}(X_\alpha), \text{Im}(Y_\beta)) + 2\tilde{R}(\text{Re}(X_\alpha), \text{Re}(Y_\beta), \text{Im}(X_\alpha), \text{Im}(Y_\beta)) - 2\tilde{R}(\text{Re}(X_\alpha), \text{Im}(Y_\beta), \text{Im}(X_\alpha), \text{Re}(Y_\beta)) \]
and so
\[
\tilde{R} = \tilde{R}_{ijkl} \varphi_{\alpha}^i \varphi_{\beta}^j \varphi_{\alpha}^k \varphi_{\beta}^\ell + \tilde{R}_{ijkl} \varphi_{\alpha}^i \varphi_{\beta}^j \varphi_{\alpha}^k \varphi_{\beta}^\ell
\]
\[
= 2\tilde{R}(\text{Re}(X_{\alpha}), \text{Re}(Y_{\beta}), \text{Re}(X_{\alpha}), \text{Re}(Y_{\beta}))
\]
\[
+ 2\tilde{R}(\text{Re}(X_{\alpha}), \text{Im}(Y_{\beta}), \text{Re}(X_{\alpha}), \text{Im}(Y_{\beta}))
\]
\[
+ 2\tilde{R}(\text{Im}(X_{\alpha}), \text{Re}(Y_{\beta}), \text{Im}(X_{\alpha}), \text{Re}(Y_{\beta}))
\]
\[
+ 2\tilde{R}(\text{Im}(X_{\alpha}), \text{Im}(Y_{\beta}), \text{Im}(X_{\alpha}), \text{Im}(Y_{\beta})).
\]

Furthermore, similar computations show that
\[
\tilde{R}^0 = \tilde{R}(\text{Re}(X_{\alpha}), Z, \text{Re}(X_{\alpha}), Z) + \tilde{R}(\text{Im}(X_{\alpha}), Z, \text{Im}(X_{\alpha}), Z),
\]
where \(X_{\alpha} = \varphi_{\alpha}^i \partial y_i\) and \(Z = \varphi_{0}^i \partial y_i\). Therefore, if the sectional curvature \(\tilde{K}^N\) of \(N\) is nonpositive, we see that
\[
\tilde{R} \leq 0 \quad \text{and} \quad \tilde{R}^0 \leq 0.
\]
Appendix II. The proofs

Now by taking $\varepsilon = 2$ in (5.7) we obtain

\[
\left(\frac{\partial}{\partial t} - \Delta_b \right) \hat{e}(\varphi)
\leq \sum_{k=1}^{m} \left[(2Ric - (n - 2) Tor) \left((\nabla_b \varphi^k)_C, (\nabla_b \varphi^k)_C \right) + \frac{1}{2} |\nabla_b \varphi^k|^2 \right]
\leq C \sum_{k=1}^{m} |\nabla_b \varphi^k|^2 \leq C \hat{e}(\varphi).
\]

Here C is a positive constant depends on the pseudohermitian Ricci tensor and torsion of (M, J, θ).

\[\blacksquare\]

