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Theorem (Berger, 1955)
Let Mn be simply connected irreducible Riemannian manifold which is
not isometric to symmetric space. Then one of the following cases takes
place.

1) Hol(M) = SO(n),
2) n = 2m, for m ≥ 2 и Hol(M) = U(m) ⊂ SO(2m),
3) n = 2m, for m ≥ 2 и Hol(M) = SU(m) ⊂ SO(2m),
4) n = 4m, for m ≥ 2 и Hol(M) = Sp(m) ⊂ SO(4m),
5) n = 4m, for m ≥ 2 и Hol(M) = Sp(m)Sp(1) ⊂ SO(4m),
6) n = 7 and Hol(M) = G2 ⊂ SO(7),
7) n = 8 and Hol(M) = Spin(7) ⊂ SO(8).
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Compact examples of Riemannian manifolds with holonomy group
G2: Joyce, Kovalev.
Noncompact examples: many authors.

Representation of Lie group G2:

G2 = Aut(Ca).

The following approach is more convenient for explicit computations:
In the Euclidean space R7 consider orthonormal co-frame
e1, . . . ,e7 and 3-forms

Φ0 = e123 + e147 + e165 + e246 + e257 + e354 + e367,

?Φ0 = e4567 + e2356 + e2374 + e1357 + e1346 + e1276 + e1245,

where ei...k = ei ∧ . . . ∧ ek . Then

G2 = {A ∈ GL(7)|A∗Φ0 = Φ0,A∗(?Φ0) = ?Φ0}.
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Definition
Riemannian manifold (M,g) has G2-structure, if it is orientable and
there exist global 3-form Φ on M such that for each point p ∈ M one
can find preserving orientation linear map φ : TpM → R7 with property
φ∗Φ0 = Φ|p.

If additionally form Φ on M is closed and coclosed then it is parallel
(this is result of Gray) and M has G2-holonomy.
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Let G = SU(2) with bi-invariant metric. Consider three Killing vector
fields

ξ1 =

(
i 0
0 −i

)
, ξ2 =

(
0 1
−1 0

)
, ξ3 =

(
0 i
i 0

)
,

[ξi , ξi+1] = 2ξi+2.

Let η1, η2, η3 be dual co-frame,

dηi = −2ηi+1 ∧ ηi+2.

On the space M = G×G we have 6 pairwise orthonormal 1-forms ηi , η̃i ,
i = 1,2,3. Consider cone M̄ = R+ ×M over M with Riemannian metric

ds̄2 = dt2 +
3∑

i=1

Ai(t)2 (ηi + η̃i)
2 +

3∑
i=1

Bi(t)2 (ηi − η̃i)
2 ,

where Ai(t) и Bi(t) be positive functions which control deformation of
standard cone metric over M.
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Consider co-frame

e1 = A1 (η1 + η̃1) , e4 = B1 (η1 − η̃1) ,
e2 = A2 (η2 + η̃2) , e5 = B2 (η2 − η̃2) ,
e3 = A3 (η3 + η̃3) , e6 = B3 (η3 − η̃3) ,
e7 = dt

and define forms Φ and ?Φ as above. So the G2-holonomy (sufficient)
condition for M̄ has the form of the next equations:

dΨ = 0,d ∗Ψ = 0.

To simplify further computations we consider particular case A1 = A2,
B1 = B2.
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Previous equations are equivalent to the next system of ODE:

dA1
dt = 1

4

(
B2

1−A2
1+B2

3
B1B3

− A3
A1

)
dB1
dt = 1

4

(
A2

1−B2
1+B2

3
A1B3

+ A3
B1

)
dA3
dt = 1

4

(
A2

3
A2

1
− A2

3
B2

1

)
dB3
dt = 1

2

(
B2

1+A2
1−B2

3
B1A1

)
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Two types of regularity conditions for solutions of the system:

Type I:
A1(0) = A3(0) = 0,
B1(0) = B3(0) 6= 0,
dA1
dt (0) = dA3

dt (0) = 1
4 ,

dB1
dt (0) = dB3

dt (0) = 0.

In this case M̄ is diffeomorphic to S3 × R4.
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Type II:
B3(0) = 0,
A1(0) = B1(0) 6= 0,
A3(0) 6= 0,
dB3
dt (0) = 1,

dA1
dt (0) = −dB1

dt (0)
dA3
dt (0) = 0.

In this case M̄ is diffeomorphic to S3 × H, where H → S2 is
complex line bundle over S2 with c1(H) = 4.
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Explicit example of solution of type I
(Brandhuber-Gomis-Gubser-Gukov, 2011):

ds̄2 =

(
r − 3

2

) (
r + 3

2

)(
r − 9

2

) (
r + 9

2

)dr2+

1
12

(
r − 9

2

)(
r +

3
2

)(
(η1 + η̃1)2 + (η2 + η̃2)2

)
+(

r − 9
2

) (
r + 9

2

)(
r − 3

2

) (
r + 3

2

) (η3 + η̃3)2 +

1
12

(
r +

9
2

)(
r − 3

2

)(
(η1 − η̃1)2 + (η2 − η̃2)2

)
+

r2

9
(η3 − η̃3)2 .
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Definition
Solution corresponded to deformation functions Ai(t), Bi(t) is called
ALC (asymptotically locally conical), if there exists linear functions Ãi ,
B̃i such that

Ai − Ãi

Ãi
→ 0,

Bi − B̃i

B̃i
→ 0, as t →∞.

Theorem (B.-B.)
There exist one-parameter family of (pairwise non-homothetic)
complete Riemannian G2-holonomy ALC metrics of type II. This family
is controlled by parameter

τ =
dA1
dt (0)

A1(0)

and asymptotically metrics locally look like S1 × C(S2 × H)
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In R4 let R(t) = (A1(t), A2(t), A3(t), B(t))T and V : R4 → R4 be the
right hand of our ODE system. Then system looks like

dR
dt

= V (R).

As is invariant with respect to homothety we put R(t) = f (t)S(t), where

|S(t)| = 1, f (t) = |R(t)|,
S(t) = (α1(t), α2(t), α3(t), α4(t)).

Our system splits to radial and tangential parts:

dS
du

= V (S)− 〈V (S),S〉S = W (S),

1
f

df
du

= 〈V (S),S〉,

dt = fdu.

The first equation is the autonomous system on the sphere S3 and the
other equations can be solved by ordinary integration if solution of the
first equation is known.
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Type II metrics correspond to solutions of autonomous system with
initial point S0 = (λ, λ, µ, 0), where 2λ2 + µ2 = 1.

Lemma
For every S0 as above there exist (at least locally) solution S(u) with
S(0) = S0.

The following proposition shows the role of stationary points:

Lemma
Stationary solutions of autonomous system on S3 correspond to ALC
metrics on M̄
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The system on S3 has following stationary solutions (zeros of vector
field W on S3):
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Consider domain Π ⊂ S3:

Π = {(α1, α3, β1, β3)|β1 ≥ α1 ≥ 0, α3 ≥ 0, β3 ≥ 0}

Lemma
Function

F = ln
β3
(
β2

1 − α2
1
)

α1β1α3

increases in the domain Π along trajectories of autonomous system

Theorem
For every initial point S0 there exist unique solution S(u) which
converges at infinity to stationary point S∞ = (

√
3√
10
,
√

3√
10
,0,

√
2√
5

).
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THANK YOU!
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