On G_{2}-holonomy metrics based on $S^{3} \times S^{3}$

Yaroslav Bazaikin, Olga Bogoyavlenskaya

Theorem (Berger, 1955)

Let M^{n} be simply connected irreducible Riemannian manifold which is not isometric to symmetric space. Then one of the following cases takes place.

1) $\mathrm{Hol}(M)=S O(n)$,
2) $n=2 m$, for $m \geq 2$ и $\mathrm{Hol}(M)=U(m) \subset S O(2 m)$,
3) $n=2 m$, for $m \geq 2$ и $\mathrm{Hol}(M)=S U(m) \subset S O(2 m)$,
4) $n=4 m$, for $m \geq 2$ и $\mathrm{Hol}(M)=S p(m) \subset S O(4 m)$,
5) $n=4 m$, for $m \geq 2$ и $\operatorname{Hol}(M)=S p(m) S p(1) \subset S O(4 m)$,
6) $n=7$ and $\mathrm{Hol}(M)=G_{2} \subset S O(7)$,
7) $n=8$ and $\mathrm{Hol}(M)=\operatorname{Spin}(7) \subset S O(8)$.

- Compact examples of Riemannian manifolds with holonomy group G_{2} : Joyce, Kovalev.
- Noncompact examples: many authors.

Representation of Lie group G_{2} :

$$
G_{2}=\operatorname{Aut}(\mathbb{C} a)
$$

The following approach is more convenient for explicit computations:

- In the Euclidean space \mathbb{R}^{7} consider orthonormal co-frame e^{1}, \ldots, e^{7} and 3 -forms

$$
\begin{gathered}
\Phi_{0}=e^{123}+e^{147}+e^{165}+e^{246}+e^{257}+e^{354}+e^{367} \\
\star \Phi_{0}=e^{4567}+e^{2356}+e^{2374}+e^{1357}+e^{1346}+e^{1276}+e^{1245}
\end{gathered}
$$

where $e^{i \ldots k}=e^{i} \wedge \ldots \wedge e^{k}$. Then

$$
G_{2}=\left\{A \in G L(7) \mid A^{*} \Phi_{0}=\Phi_{0}, A^{*}\left(\star \Phi_{0}\right)=\star \Phi_{0}\right\}
$$

Definition

Riemannian manifold (M, g) has G_{2}-structure, if it is orientable and there exist global 3-form Φ on M such that for each point $p \in M$ one can find preserving orientation linear map $\phi: T_{p} M \rightarrow \mathbb{R}^{7}$ with property $\phi^{*} \Phi_{0}=\left.\Phi\right|_{p}$.

If additionally form Φ on M is closed and coclosed then it is parallel (this is result of Gray) and M has G_{2}-holonomy.

Let $G=S U(2)$ with bi-invariant metric. Consider three Killing vector fields

$$
\begin{gathered}
\xi^{1}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \xi^{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \xi^{3}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) \\
{\left[\xi^{i}, \xi^{i+1}\right]=2 \xi^{i+2}}
\end{gathered}
$$

Let $\eta_{1}, \eta_{2}, \eta_{3}$ be dual co-frame,

$$
d \eta_{i}=-2 \eta_{i+1} \wedge \eta_{i+2}
$$

On the space $M=G \times G$ we have 6 pairwise orthonormal 1-forms $\eta_{i}, \tilde{\eta}_{i}$, $i=1,2,3$. Consider cone $\bar{M}=\mathbb{R}_{+} \times M$ over M with Riemannian metric

$$
d \bar{s}^{2}=d t^{2}+\sum_{i=1}^{3} A_{i}(t)^{2}\left(\eta_{i}+\tilde{\eta}_{i}\right)^{2}+\sum_{i=1}^{3} B_{i}(t)^{2}\left(\eta_{i}-\tilde{\eta}_{i}\right)^{2}
$$

where $A_{i}(t)$ и $B_{i}(t)$ be positive functions which control deformation of standard cone metric over M.

Consider co-frame

$$
\begin{array}{ll}
e^{1}=A_{1}\left(\eta_{1}+\tilde{\eta_{1}}\right), & e^{4}=B_{1}\left(\eta_{1}-\tilde{\eta_{1}}\right), \\
e^{2}=A_{2}\left(\eta_{2}+\tilde{\eta_{2}}\right), & e^{5}=B_{2}\left(\eta_{2}-\tilde{\eta_{2}}\right), \\
e^{3}=A_{3}\left(\eta_{3}+\tilde{\eta_{3}}\right), & e^{6}=B_{3}\left(\eta_{3}-\tilde{\eta_{3}}\right), \\
e^{7}=d t &
\end{array}
$$

and define forms Φ and $\star \Phi$ as above. So the G_{2}-holonomy (sufficient) condition for \bar{M} has the form of the next equations:

$$
d \Psi=0, d * \Psi=0
$$

To simplify further computations we consider particular case $A_{1}=A_{2}$, $B_{1}=B_{2}$.

Previous equations are equivalent to the next system of ODE:

$$
\begin{aligned}
& \frac{d A_{1}}{d t}=\frac{1}{4}\left(\frac{B_{1}^{2}-A_{1}^{2}+B_{3}^{2}}{B_{1} B_{3}}-\frac{A_{3}}{A_{1}}\right) \\
& \frac{d B_{1}}{d t}=\frac{1}{4}\left(\frac{A_{1}^{2}-B_{1}^{2}+B_{3}^{2}}{A_{1} B_{3}}+\frac{A_{3}}{B_{1}}\right) \\
& \frac{d A_{3}}{d t}=\frac{1}{4}\left(\frac{A_{3}^{2}}{A_{1}^{2}}-\frac{A_{3}^{2}}{B_{1}^{2}}\right) \\
& \frac{d B_{3}}{d t}=\frac{1}{2}\left(\frac{B_{1}^{2}+A_{1}^{2}-B_{3}^{2}}{B_{1} A_{1}}\right)
\end{aligned}
$$

Two types of regularity conditions for solutions of the system:

- Type I:

$$
\begin{aligned}
& A_{1}(0)=A_{3}(0)=0, \\
& B_{1}(0)=B_{3}(0) \neq 0, \\
& \frac{d A_{1}}{d t}(0)=\frac{d A_{3}}{d t}(0)=\frac{1}{4}, \\
& \frac{d B_{1}}{d t}(0)=\frac{d B_{3}}{d t}(0)=0 .
\end{aligned}
$$

In this case \bar{M} is diffeomorphic to $S^{3} \times \mathbb{R}^{4}$.

- Type II:

$$
\begin{aligned}
& B_{3}(0)=0 \\
& A_{1}(0)=B_{1}(0) \neq 0, \\
& A_{3}(0) \neq 0, \\
& \frac{d B_{3}}{d t}(0)=1, \\
& \frac{d A_{1}}{d t}(0)=-\frac{d B_{1}}{d t}(0) \\
& \frac{d A_{3}}{d t}(0)=0 .
\end{aligned}
$$

In this case \bar{M} is diffeomorphic to $S^{3} \times H$, where $H \rightarrow S^{2}$ is complex line bundle over S^{2} with $c_{1}(H)=4$.

Explicit example of solution of type I
(Brandhuber-Gomis-Gubser-Gukov, 2011):

$$
\begin{gathered}
d \bar{s}^{2}=\frac{\left(r-\frac{3}{2}\right)\left(r+\frac{3}{2}\right)}{\left(r-\frac{9}{2}\right)\left(r+\frac{9}{2}\right)} d r^{2}+ \\
\frac{1}{12}\left(r-\frac{9}{2}\right)\left(r+\frac{3}{2}\right)\left(\left(\eta_{1}+\tilde{\eta_{1}}\right)^{2}+\left(\eta_{2}+\tilde{\eta_{2}}\right)^{2}\right)+ \\
\frac{\left(r-\frac{9}{2}\right)\left(r+\frac{9}{2}\right)}{\left(r-\frac{3}{2}\right)\left(r+\frac{3}{2}\right)}\left(\eta_{3}+\tilde{\eta_{3}}\right)^{2}+ \\
\frac{1}{12}\left(r+\frac{9}{2}\right)\left(r-\frac{3}{2}\right)\left(\left(\eta_{1}-\tilde{\eta_{1}}\right)^{2}+\left(\eta_{2}-\tilde{\eta_{2}}\right)^{2}\right)+\frac{r^{2}}{9}\left(\eta_{3}-\tilde{\eta_{3}}\right)^{2}
\end{gathered}
$$

Definition

Solution corresponded to deformation functions $A_{i}(t), B_{i}(t)$ is called ALC (asymptotically locally conical), if there exists linear functions \tilde{A}_{i}, \tilde{B}_{i} such that

$$
\frac{A_{i}-\tilde{A}_{i}}{\tilde{A}_{i}} \rightarrow 0, \frac{B_{i}-\tilde{B}_{i}}{\tilde{B}_{i}} \rightarrow 0, \text { as } t \rightarrow \infty
$$

Theorem (B.-B.)

There exist one-parameter family of (pairwise non-homothetic)
complete Riemannian G_{2}-holonomy ALC metrics of type II. This family is controlled by parameter

$$
\tau=\frac{\frac{d A_{1}}{d t}(0)}{A_{1}(0)}
$$

and asymptotically metrics locally look like $S^{1} \times C\left(S^{2} \times H\right)$

In \mathbb{R}^{4} let $R(t)=\left(A_{1}(t), A_{2}(t), A_{3}(t), B(t)\right)^{T}$ and $V: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be the right hand of our ODE system. Then system looks like

$$
\frac{d R}{d t}=V(R) .
$$

As is invariant with respect to homothety we put $R(t)=f(t) S(t)$, where

$$
\begin{gathered}
|S(t)|=1, f(t)=|R(t)|, \\
S(t)=\left(\alpha_{1}(t), \alpha_{2}(t), \alpha_{3}(t), \alpha_{4}(t)\right) .
\end{gathered}
$$

Our system splits to radial and tangential parts:

$$
\begin{gathered}
\frac{d S}{d u}=V(S)-\langle V(S), S\rangle S=W(S), \\
\frac{1}{f} \frac{d f}{d u}=\langle V(S), S\rangle, \\
d t=f d u .
\end{gathered}
$$

The first equation is the autonomous system on the sphere S^{3} and the other equations can be solved by ordinary integration if solution of the first equation is known.

Type II metrics correspond to solutions of autonomous system with initial point $S_{0}=(\lambda, \lambda, \mu, 0)$, where $2 \lambda^{2}+\mu^{2}=1$.

Lemma

For every S_{0} as above there exist (at least locally) solution $S(u)$ with $S(0)=S_{0}$.

The following proposition shows the role of stationary points:

Lemma

Stationary solutions of autonomous system on S^{3} correspond to ALC metrics on \bar{M}

The system on S^{3} has following stationary solutions (zeros of vector field W on S^{3}):

$$
\begin{gathered}
\pm\left(\frac{\sqrt{3}}{2 \sqrt{2}}, \frac{1}{2 \sqrt{2}}, \frac{1}{2 \sqrt{2}}, \frac{\sqrt{3}}{2 \sqrt{2}}\right), \pm\left(\frac{1}{2 \sqrt{2}}, \frac{\sqrt{3}}{2 \sqrt{2}},-\frac{1}{2 \sqrt{2}}, \frac{\sqrt{3}}{2 \sqrt{2}}\right), \\
\pm\left(\frac{\sqrt{3}}{2 \sqrt{2}}, \frac{1}{2 \sqrt{2}},-\frac{1}{2 \sqrt{2}},-\frac{\sqrt{3}}{2 \sqrt{2}}\right), \pm\left(\frac{1}{2 \sqrt{2}}, \frac{\sqrt{3}}{2 \sqrt{2}}, \frac{1}{2 \sqrt{2}},-\frac{\sqrt{3}}{2 \sqrt{2}}\right), \\
\pm\left(-\frac{\sqrt{3}}{2 \sqrt{2}}, \frac{1}{2 \sqrt{2}},-\frac{1}{2 \sqrt{2}}, \frac{\sqrt{3}}{2 \sqrt{2}}\right), \pm\left(\frac{1}{2 \sqrt{2}},-\frac{\sqrt{3}}{2 \sqrt{2}}, \frac{1}{2 \sqrt{2}}, \frac{\sqrt{3}}{2 \sqrt{2}}\right), \\
\pm\left(-\frac{\sqrt{3}}{2 \sqrt{2}}, \frac{1}{2 \sqrt{2}}, \frac{1}{2 \sqrt{2}},-\frac{\sqrt{3}}{2 \sqrt{2}}\right), \pm\left(\frac{1}{2 \sqrt{2}},-\frac{\sqrt{3}}{2 \sqrt{2}},-\frac{1}{2 \sqrt{2}},-\frac{\sqrt{3}}{2 \sqrt{2}}\right), \\
\quad \pm\left(\frac{\sqrt{3}}{\sqrt{10}}, \frac{\sqrt{3}}{\sqrt{10}}, 0, \frac{\sqrt{2}}{\sqrt{5}}\right), \pm\left(\frac{\sqrt{3}}{\sqrt{10}}, \frac{\sqrt{3}}{\sqrt{10}}, 0,-\frac{\sqrt{2}}{\sqrt{5}}\right), \\
\pm\left(\frac{\sqrt{3}}{\sqrt{10}},-\frac{\sqrt{3}}{\sqrt{10}}, 0, \frac{\sqrt{2}}{\sqrt{5}}\right), \pm\left(\frac{\sqrt{3}}{\sqrt{10}},-\frac{\sqrt{3}}{\sqrt{10}}, 0,-\frac{\sqrt{2}}{\sqrt{5}}\right) .
\end{gathered}
$$

Consider domain $\Pi \subset S^{3}$:

$$
\Pi=\left\{\left(\alpha_{1}, \alpha_{3}, \beta_{1}, \beta_{3}\right) \mid \beta_{1} \geq \alpha_{1} \geq 0, \alpha_{3} \geq 0, \beta_{3} \geq 0\right\}
$$

Lemma

Function

$$
F=\ln \frac{\beta_{3}\left(\beta_{1}^{2}-\alpha_{1}^{2}\right)}{\alpha_{1} \beta_{1} \alpha_{3}}
$$

increases in the domain Π along trajectories of autonomous system

Theorem

For every initial point S_{0} there exist unique solution $S(u)$ which converges at infinity to stationary point $S_{\infty}=\left(\frac{\sqrt{3}}{\sqrt{10}}, \frac{\sqrt{3}}{\sqrt{10}}, 0, \frac{\sqrt{2}}{\sqrt{5}}\right)$.

THANK YOU!

