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Definitions, examples and cohomology transfer.

Definition
Suppose X and Y are Hausdorff spaces. A continuous map
f: X — Y is called an n-fold branched covering if it is

» open-closed and surjective
> finite-to-one

> n= maxyey\f_l(y)| < 00

Remark

1. 1-fold branched covering is just a homeomorphism.

2. 2-fold branched covering is always equivalent to some
projection map onto the quotient space under an involution
m: X = X/ Zs.



Definitions, examples and cohomology transfer.

Some auxiliary definitions

Let X be a Hausdorff space.

Define exp,(X) := {A C X|1 < |A| < n} (with Vietoris topology)
Define Sym"X := X"/S,

Point of Sym"X = [kix1, ..., ksxs] € Sym"X,

ki€ Nk + ...+ ks = n, X,'GX,X,'#XJ',VI'#j

< - >:Sym"X — exp,(X) — "forgetting multiplicities” map
< [kixt, ..., ksxs| >= {x1,...,xs} € exp,(X)



Definitions, examples and cohomology transfer.

Definition (L.Smith, 1983)

Suppose X and Y are Hausdorff spaces. A continuous map

f: X — Y is called an n-fold Smith-Dold branched covering if
there exists a continuous " n-inversion” map g : Y — Sym”X such

that
<gly)>=fy)vyeY.
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Remark

1. The map g: Y — Sym"X is often included into the structure
of a branched covering.

2. n-fold S.-D. branched covering is always an m-fold branched
covering (in the sense of the first definition) for some m < n.



Definitions, examples and cohomology transfer.

Definition (L.Smith, 1983)

Suppose X and Y are Hausdorff spaces. A continuous map

f: X — Y is called an n-fold Smith-Dold branched covering if
there exists a continuous " n-inversion” map g : Y — Sym”X such
that

<gly)>=fy)vyeY.
Remark

1. The map g: Y — Sym"X is often included into the structure
of a branched covering.

2. n-fold S.-D. branched covering is always an m-fold branched
covering (in the sense of the first definition) for some m < n.

An example of a 5-fold S.-D. branched covering is on the board
(Fig. 1).
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An example of a 3-fold branched covering which is not an n-fold
branched covering of S.-D. type for any n € N. (Fig. 3)
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simply defined branched coverings?



Definitions, examples and cohomology transfer.

An example of a 3-fold branched covering which is not an n-fold
branched covering of S.-D. type for any n € N. (Fig. 3)

Question: Why S.-D. branched coverings are better than just
simply defined branched coverings?

Answer: For S.-D. branched coverings there exists a transfer in
cohomology!
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Suppose X and Y are connected Hausdorff spaces, X is homotopy
equivalent to a CW complex, and a pair of maps
f:X—=Y, g:Y— Sym"X is an n-fold S.-D. branched covering.



Definitions, examples and cohomology transfer.

Suppose X and Y are connected Hausdorff spaces, X is homotopy
equivalent to a CW complex, and a pair of maps
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prime p, (p,n) = 1.



Definitions, examples and cohomology transfer.

Suppose X and Y are connected Hausdorff spaces, X is homotopy
equivalent to a CW complex, and a pair of maps
f:X—=Y, g:Y— Sym"X is an n-fold S.-D. branched covering.

There exists a homology transfer
7s : H (Y, Z) — H(X;Z)

with the expected property £, o 7s = nldy, (v .z).
Tensoring by Q we obtain transfer 75 : H.(Y; Q) — H.(X; Q)

There also exists transfer 75 : H.(Y; Zp) — Hy(X; Zp) for every
prime p, (p,n) = 1.

In cohomology (by dualization) one obtains transfers

7s : H*(X;Q) — H*(Y;Q) and

7s : H*(X;Zp) — H*(Y;Zp) ¥p, (p,n) =1

with the same property 75 o f* = nldy-(y).



Definitions, examples and cohomology transfer.

Important consequence: For n-fold S.-D. branched covering
f: X — Y the induced homomorphisms

f*: H*(Y;Q) — H*(X;Q) and

f*: H*(Y;Zp) = H*(X;Zp) ¥p, (p,n) =1

are monomorphisms.



Definitions, examples and cohomology transfer.

There are 3 important for topology classes of maps, that are n-fold
S.-D. branched coverings

1. (unbranched) n-fold coverings f : X — Y.
2. projection maps f : X — X/G, G — a finite group,
|G| =n, X is a G-space.

3. usual branched coverings of manifolds f : M™ — N™
(smooth, PL or "wild").



A.Dold classification result, group action transfer.

Theorem (A.Dold, 1986)

(1) Let X be a Hausdorff G-space, G — a finite group, H C G —a
subgroup of index n, [G : H| = n. Then the natural projection
map 7. X/H — X /G is an n-fold S.-D. branched covering.
(2) For every n-fold S.-D. branched covering

f:X—=Y, g:Y — Sym"X there exists a canonically obtained
Hausdorff space W with the action of S,, such that

X = W/S,,,l, Y = W/S,, and f = Ts,,S

n—1"



A.Dold classification result, group action transfer.

Theorem (A.Dold, 1986)

(1) Let X be a Hausdorff G-space, G — a finite group, H C G —a
subgroup of index n, [G : H| = n. Then the natural projection
map 7 H : X/H — X/G is an n-fold S.-D. branched covering.
(2) For every n-fold S.-D. branched covering

f:X—=Y, g:Y — Sym"X there exists a canonically obtained
Hausdorff space W with the action of S,, such that

X = W/S,,,l, Y = W/S,, and f = Ts,,S

n—1"
From this statement one can obtain a transfer in a new way.

All spaces now are paracompact and locally contractible.
(One can simply consider arbitrary ENR spaces or arbitrary CW
complexes).



A.Dold classification result, group action transfer.

Theorem (A)

Suppose X is a paracompact G-space, G — finite group,
|G| = n, K — a field, charK =0 or p, (p,n) =1. Let
m: X = X/G be a projection map. Then the induced
homomorphism in Cech cohomology

™ H¥(X/G;K) = H*(X;K)¢

is an isomorphism onto the G-invariant cohomology.



A.Dold classification result, group action transfer.

Theorem (A)

Suppose X is a paracompact G-space, G — finite group,
|G| = n, K — a field, charK =0 or p, (p,n) =1. Let
m: X = X/G be a projection map. Then the induced
homomorphism in Cech cohomology

™ H¥(X/G;K) = H*(X;K)¢

is an isomorphism onto the G-invariant cohomology.

Theorem (B)

Let X be a locally contractible paracompact space. Then there is a
canonical isomorphism of algebras

H*(X;K) = H*(X; K),

where K = Z or is a field.



A.Dold classification result, group action transfer.

Suppose X and Y are locally contractible paracompact spaces.
f:X—=Y, g:Y—Sym"X — an n-fold S.-D. branched
covering.

There exists a Hausdorff space W (which by construction occurs to
be paracompact) with the action of S, such that

X = W/S,,,l,Y: W/S,, and f:ﬂ'sms 1 W/S,,,l — W/S,,

n—

Let K= Q or Zp, Vp > n (we need (p,n!)=1)
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A.Dold classification result, group action transfer.

Suppose X and Y are locally contractible paracompact spaces.
f:X—=Y, g:Y—Sym"X — an n-fold S.-D. branched
covering.

There exists a Hausdorff space W (which by construction occurs to
be paracompact) with the action of S, such that

X=W/S,_1,Y=W/Syand f =755, , : W/S,—1 = W/S,
Let K= Q or Zp, Vp > n (we need (p,n!)=1)

*: H(Y;K) - H*(X;K)

fr=mns s, H'(W/Sp K) — H*(W/S,-1; K)

TS 5 H*(W/S,; K) — H*(W/S,_1;K) — a monomorphism.

s, o H(W/SpiK) = H*(W;K)* and
7-‘-~>§r1—1 : H*(W/Sn—l;K) = F/*(W;K)Sn—l and

k% * %k *
7-‘-Sn - 7r5n71 © 7T5,,,S,,71 - 7r5n71 © f



A.Dold classification result, group action transfer.

Denote H*(W;K) = A*.
H*(X; K) = (A*)>-1 and H*(Y;K) = (A*)*" and
f:H*(Y;K) = H*(X;K) isjust i:(A*)> C (A*)>-1
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n, [G: H]=n.charK=0or p, (p,n) =1.



A.Dold classification result, group action transfer.

Denote H*(W;K) = A*.
H*(X; K) = (A*)>-1 and H*(Y;K) = (A*)*" and
fH*(Y;K) = H*(X;K) isjust i:(A*)% C (A*)>1

Generalize it a little:

Suppose A* is a graded commutative algebra over a field K with
the action of a finite group G, and H C G is a subgroup of index
n, [G: H]=n.charK=0or p, (p,n) =1.

(A*)C c (A*)H — an inclusion of algebras.
G={gH}U...U{g,H} — left cosets.

gi : A* — A* — automorphisms.

Tc=g1+&+...+gn: (AT = A* (a sum of n K-linear

homomorphisms)
Im7g = (A*)C.



A.Dold classification result, group action transfer.

Consequence:

76 : (A*)" = (A*)€ is a (A*)C-linear transfer
76(a) = na Va € (A*)C¢ (the expected property)



A.Dold classification result, group action transfer.

Consequence:

76 : (A*)" = (A*)€ is a (A*)C-linear transfer

76(a) = na Va € (A*)C¢ (the expected property)

*: H*(Y;K) = H*(X;K) is a monomorphism, and

76 : H*(X;K) — H*(Y;K) is a H*(Y; K)-linear transfer with the
expected property

TG © f* = nIdH*(y;K)



The case of manifolds. "Wild" coverings and
A.V.Chernavskii theorem.

Suppose X and Y are connected PL (TOP) manifolds of equal

dimension.

Definition (Classical, PL case)

A continuous map f : M™ — N™ is a branched covering if it is
» open-closed and PL (= it is discrete)

> finite-to-one

Definition (Classical, TOP case)
A continuous map f : M™ — N™ is a branched covering if it is
» open-closed

> finite-to-one



The case of manifolds. "Wild" coverings and
A.V.Chernavskii theorem.

Theorem (A.V.Chernavskii,1964)

Suppose f : M™ — N™ s purely continuous branched covering of
connected TOP (PL) manifolds of dimension m > 3. Then the
following hols:

(1) n:= maxyenm|f1(y)| < co. The set

U={y e N™||f~Y(y)| = n} is an open dense domain in N™.
(2) Define the branch set

Bf = {x € M™ |fis not a local homeomorphism at x} C M™.

(Bf C M™ is closed and also f(Bf) C N™ is closed).
Then dimBr < m — 2.



The case of manifolds. "Wild" coverings and
A.V.Chernavskii theorem.

Theorem (A.V.Chernavskii,1964)

Suppose f : M™ — N™ s purely continuous branched covering of
connected TOP (PL) manifolds of dimension m > 3. Then the
following hols:

(1) n:= maxyenm|f1(y)| < co. The set

U={y e N™||f~Y(y)| = n} is an open dense domain in N™.

(2) Define the branch set

Bf = {x € M™ |fis not a local homeomorphism at x} C M™.
(Bf C M™ is closed and also f(Bf) C N™ is closed).

Then dimBr < m — 2.

At the late 70-s there was constructed examples of coverings with
dimBf = m — 4 for all m > 5. Purely continuous coverings may be
very wild.



The case of manifolds. "Wild" coverings and
A.V.Chernavskii theorem.

Theorem (l.Berstein-A.L.Edmonds,1978)

For every n-fold branched covering of connected TOP manifolds
f:M™ — N™ there exists a locally compact separable metric
space W with the action of some finite group G provided with a
subgroup H C G of index n such that

M™=W/H, N"=W/G and f = mg p.



Orientable manifolds case. |.Berstein-A.L.Edmonds
inequality and Alexander theorem.

Definition

Let X be a topological space and R — commutative ring with
identity element. The the cup-length Lg(X) over R is the maximal
number k such that there exists homogeneous elements

a1, ...,ax € H*21(X; R) of positive degrees with nonzero product

3132...ak750.



Orientable manifolds case. |.Berstein-A.L.Edmonds
inequality and Alexander theorem.

Definition

Let X be a topological space and R — commutative ring with
identity element. The the cup-length Lg(X) over R is the maximal
number k such that there exists homogeneous elements

a1, ...,ax € H*21(X; R) of positive degrees with nonzero product
aiaz...ag 750.

Theorem (Classical)

For an arbitrary connected ANR space X and the arbitrary ring R
the following double inequality holds:

Lr(X) < Cat(X) < dimX.



Orientable manifolds case. |.Berstein-A.L.Edmonds
inequality and Alexander theorem.

Cat(X) is Lusternik-Shnirelmann category of X

Cat(X) is the minimal k > 0 such that there exists a closed cover
X = Uﬁ:o Xs with the property that all inclusion maps
is 1 Xs C X,0 < s < k, are nullhomotopic.

For example:
(1) X=Tm Ly(T™)=m=dimT™ So, Cat(T™) = m
(2) X =RP™. Lz,(RP™) = m = dimRP™ So, Cat(RP™) =m



Orientable manifolds case. |.Berstein-A.L.Edmonds
inequality and Alexander theorem.

Cat(X) is Lusternik-Shnirelmann category of X

Cat(X) is the minimal k > 0 such that there exists a closed cover
X = Uﬁ:o Xs with the property that all inclusion maps
is 1 Xs C X,0 < s < k, are nullhomotopic.

For example:

(1) X=T" Lo(T")=m=dimT™ So, Cat(T™)=m

(2) X =RP™. Lz,(RP™) = m = dimRP™ So, Cat(RP™)=m
(3) Cat(CP™) = m and Cat(HP™) =m



Orientable manifolds case. |.Berstein-A.L.Edmonds
inequality and Alexander theorem.

Let us consider the case of branched coverings of closed connected
orientable manifolds.

Using the existence of group action transfer, |.Berstein and
A.L.Edmonds obtained the following crucial result.

Theorem (I.Berstein-A.L.Edmonds,1978)

Suppose f : M™ — N™ is an n-fold branched covering of closed
connected orientable manifolds. Then the following inequality
holds:

nLo(N™) > Lo(M™).



Orientable manifolds case. |.Berstein-A.L.Edmonds
inequality and Alexander theorem.

Let us consider the case of branched coverings of closed connected
orientable manifolds.

Using the existence of group action transfer, |.Berstein and
A.L.Edmonds obtained the following crucial result.

Theorem (I.Berstein-A.L.Edmonds,1978)

Suppose f : M™ — N™ is an n-fold branched covering of closed
connected orientable manifolds. Then the following inequality
holds:

nLo(N™) > Lo(M™).

Let us rewrite: Lo(N™) > M'

The rational cup-length of the base has the lower bound in terms
of the cup-length of the covering space!



Orientable manifolds case. |.Berstein-A.L.Edmonds
inequality and Alexander theorem.

Let us rewrite once more: n > %.
The degree of the branched covering has a lower bound in terms of

cohomology rings of the base and the covering space!



Orientable manifolds case. |.Berstein-A.L.Edmonds
inequality and Alexander theorem.

. Lo(Mm
Let us rewrite once more: n > Lm).
Lo(N™)

The degree of the branched covering has a lower bound in terms of
cohomology rings of the base and the covering space!

Special case: branched coverings over the sphere.

Theorem (Alexander,1920)

For every closed connected orientable PL manifold M™ there exists
a PL branched covering f : M™ — S™ over the m-sphere.

The Alexander construction is represented on the board (m = 2).



Orientable manifolds case. |.Berstein-A.L.Edmonds
inequality and Alexander theorem.

. Lo(Mm
Let us rewrite once more: n > Lm).
Lo(N™)

The degree of the branched covering has a lower bound in terms of
cohomology rings of the base and the covering space!

Special case: branched coverings over the sphere.

Theorem (Alexander,1920)
For every closed connected orientable PL manifold M™ there exists
a PL branched covering f : M™ — S™ over the m-sphere.

The Alexander construction is represented on the board (m = 2).

The degree of a branched covering in Alexander constructon is

= WNumber[m—simplexes] >>m.



Orientable manifolds case. |.Berstein-A.L.Edmonds
inequality and Alexander theorem.

Consider B.-E. inequality in this case:
for arbitrary f : M™ — S™ one has n > Lo(M™).

The maximal value of the cup-length here is m (e.g. for T™), so
n = m is not forbidden anyway.



Orientable manifolds case. |.Berstein-A.L.Edmonds
inequality and Alexander theorem.

Problem: Does the branched covering over the m-sphere with
n = m always exist for every PL orientable closed connected M.



Orientable manifolds case. |.Berstein-A.L.Edmonds
inequality and Alexander theorem.

Problem: Does the branched covering over the m-sphere with
n = m always exist for every PL orientable closed connected M.
History:
» m = 2 hyperelliptic surfaces give the positive answer: n = 2.
» m = 3 (1974, H.M. Hilden, U.Hirsh and J.M.Montesinos —

independently) Every M3 is a 3-fold branched cover of S3 and
the branch set f(Bs) C S3 is a knot.

» m =4 (1995, R.Piegallini) Every PL M* is a 4-fold branched
cover of S* and the branch set f(Br) C S* is a trasversally
immersed PL surface (with double points).

» m >5 Open Problem!



Main result.

Theorem (G.,2011)

Suppose X and Y are locally contractible paracompact spaces and
f: X — Y is an n-fold 5.-D. branched covering. Then the
following general inequality holds:

nlo(Y)+n—12> Lg(X) and
nlz,(Y)+n—-1>1z,(X) Vp>n.

Both inequalities are sharp for n = 2.



Main result.

Theorem (G.,2011)

Suppose X and Y are locally contractible paracompact spaces and
f: X — Y is an n-fold 5.-D. branched covering. Then the
following general inequality holds:

nlo(Y)+n—12> Lg(X) and
nlz,(Y)+n—-1>1z,(X) Vp>n.

Both inequalities are sharp for n = 2.

Theorem (G.,2011)

Suppose f : X™ — Y™ js an n-fold S.-D. branched covering, where
Y™ is a closed connected orientable manifold and X™ is an ENR
space (pseudomanifold). Then the B.-E. inequality holds true:

nlo(Y™) > Lo(X™) and
Ly, (Y™) > Ly, (X™) Vp > n.



Main result.

Method of the proof (briefly):

A detailed examination of algebraic structure of the
group action transfer and its properties.



Applications to nonorientable manifolds.

Let us consider branched coverings f : M™ — N™ of closed
connected manifolds with a nonorientable base.
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Applications to nonorientable manifolds.

Let us consider branched coverings f : M™ — N™ of closed
connected manifolds with a nonorientable base.

The general inequality may be rewritten:

nz tigigﬁv K=QorZp, Vp>n.

Example:
f:52" 5 RP?™ n=2
Lo(s?™) _ 1

B.-E. inequality is not correct: 2 # To(RP™) = 0

General inequality holds: 2 > % =2.



Applications to nonorientable manifolds.

R.Piergallini theorem implies the existense of a 4-fold branched
covering

f1:T4*>S4, n1:4
f2:54—>]RP4, np =2
By composition: f =fHhof,: T* - RP* n=nin, =8.

Problem: What is the minimal degree (number of sheets) n of a
branched covering f : T — RP* ?



Applications to nonorientable manifolds.

R.Piergallini theorem implies the existense of a 4-fold branched
covering

i:T*—=S* m=4

fo:5* 5 RPY, =2

By composition: f =fHhof,: T* - RP* n=nin, =8.
Problem: What is the minimal degree (number of sheets) n of a
branched covering f : T — RP* ?

Lo(TH4+1 _ 441 _ g

General inequality: n > To(RPH)TT = 041

5<n<8.

=



Applications to nonorientable manifolds.

What can still give the B.-E. inequality?

Case 1. Suppose f : T4 — RP* can be lifted to f : T# — S*,
f=m o/f:,w : §% — RP* — 2-sheet covering. Then

n=degf = 2deg? > 8. (A stronger estimate)

Case 1 occures iff f, : w1 (T*) — 71 (RP*) is zero.

Case 2. Suppose f, : m1(T*) — w1 (RP*) is an epimorphism. By
pullback one obtains n > 4. (See the whiteboard)



Applications to nonorientable manifolds.

What can still give the B.-E. inequality?

Case 1. Suppose f : T4 — RP* can be lifted to f : T# — S*,
f=m o/f:,w : §% — RP* — 2-sheet covering. Then

n=degf = 2deg? > 8. (A stronger estimate)

Case 1 occures iff f, : w1 (T*) — 71 (RP*) is zero.

Case 2. Suppose f, : m1(T*) — w1 (RP*) is an epimorphism. By
pullback one obtains n > 4. (See the whiteboard)

Remark

For odd n there is a transfer in Z, cohomology. So the induced
homomorphism f* : H*(RP*; Zy) — H*(T*; Z,) must be a
monomorphism. But H*(RP*; Zy) = Z,[u]/(u® = 0) and

H*(T*; Zs) = Za[w1, ..., va]/(v} = 0). So one has a contradiction:
f*(u?) = (fu)® = 0.



Applications to nonorientable manifolds.

Conclusion:

General inequality gives the following possible values: n =6, 8.

B.-E. inequality gives only n =4,6,8.



Applications to nonorientable manifolds.

Conclusion:
General inequality gives the following possible values: n =6, 8.
B.-E. inequality gives only n =4,6,8.

Conjecture 1. The minimal degree of a branched covering
f.: T — RP*is 8.



Applications to nonorientable manifolds.

Generalization: Consider branched coverings over Q-acyclic
manifolds.

N2me GRPPRSL L npmey Ly JRPEL L p2my R p2m

Suppose M2™ is orientable, Lo(M?™) = 2m and N?™ is Q-acyclic.
Then for an n-fold branched covering f : M?™ — N?™ general
inequality gives the estimate n > 2m + 1.

B.-E. inequality gives only n > 2m if f induces an epimorphism of
fundamental groups.



Applications to nonorientable manifolds.

Conjecture 2: Every nonorientable PL closed connected
manifold M* is a branched cover over RP*. (n < 8 ?)

Remark

> (I.Berstein-A.L.Edmonds,1979) M3 . — S x RP? with
n <6.

» For {M>, .} there is no terminal oblect!

Sl x RP* and S3 x RP?



Our approach. Extension of V.M.Buchstaber-E.G.Rees
theory to graded algebras.

Recall 7 =76 g1 + ...+ gn : (A" — (A%)C

A* is a commutative graded algebra with an action of a finite group
G, H C G is a subgroup of index n, G ={giH}U...U{gH}



Our approach. Extension of V.M.Buchstaber-E.G.Rees
theory to graded algebras.

Recall r=r¢: g+ ... + g, : (A)H = (A")C

A* is a commutative graded algebra with an action of a finite group
G, H C G is a subgroup of index n, G ={giH}U...U{gH}
Generalize Suppose A* and B* are commutative graded
K-algebras, charK =0 or p, p > n.

fi,fo, ..., f : A* = B* — algebra homomorphisms.
f=fA+...+f : A* = B* — a K-linear map.

A map f : A* — B* is not an algebra homomorphism, as

f(ab) # f(a)f(b) for many a, b € A*.

Our approach: There is still some weak multiplicativity
property for such maps f.



Our approach. Extension of V.M.Buchstaber-E.G.Rees
theory to graded algebras.

n = 2 The "weak multiplicativity” property:

f(abc) = 1(—f(a)f(b)f(c) + f(a)f(bc) + f(ab)f(c) +
(—1)lallBlF(b)f(ac)) Va,b,c € A*.



Our approach. Extension of V.M.Buchstaber-E.G.Rees
theory to graded algebras.

Definition
Suppose f : A* — B* is a K-linear map. Define by induction
polylinear symmetric maps ®,(f) : (A*)*™ — B*:
®1(f)(a1) = f(a1)
¢2(f)(31, 32) = f(al)f(ag) — f(alaz)
Graded Frobenius Recursion:
¢m+1(f)(al, an, ..., am+1) = f(al)cbm(f)(ag, ey am+1) —
— ®n(f)(araz, a3 ..., ams+1) —
(—1)\81H32‘d>m(f)(ag,ala3,...,am+1) —
(—1)‘31Ha2‘+‘31"33‘¢m(f)(32, az,aia4,. .., am+1) —

. (_1)|31H32|+'”+|31Ha’"‘¢m(f)(a27 <oy dmy 313m+1)-



Our approach. Extension of V.M.Buchstaber-E.G.Rees
theory to graded algebras.

Definition
A K-linear map f : A* — B* of graded commutative K-algebras
with 1 is called a graded Frobenius n-homomorphism if the
following holds:

1. f(].A*) = n]_B*

2. ©ppa(f)(a1,---,an41) =0 Vay,...,ap41 € A*

Original definition for ungraded algebras was introduces by
V.M.Buchstaber and E.G.Rees in 1996.

Remark
» 1-homomorphisms are just algebra homomorphisms.

» The second axiom implies f(ajaz...apt1) is a polynomial of
f(ajaj,...a;,) for 1 <s <nand
1<i<hb<...<is<n+1.



Our approach. Extension of V.M.Buchstaber-E.G.Rees
theory to graded algebras.

Theorem (G., 2011)

Suppose f : A* — B* is an n-homomorphism and g : A* — B* is
an m-homomorphism. Then the sum f + g : A* — B* is an

(n + m)-homomorphism.

Corollary
Thesum f =f + ...+ f,: A* — B* is an n-homomorphism for
arbitrary algebra homomorphisms fi,...,f, : A* — B*.
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Thank you for your attention!



