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Definitions, examples and cohomology transfer.

Definition
Suppose X and Y are Hausdorff spaces. A continuous map
f : X → Y is called an n-fold branched covering if it is

I open-closed and surjective

I finite-to-one

I n := maxy∈Y |f −1(y)| <∞

Remark

1. 1-fold branched covering is just a homeomorphism.

2. 2-fold branched covering is always equivalent to some
projection map onto the quotient space under an involution
π : X → X/Z2.
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Definitions, examples and cohomology transfer.

Some auxiliary definitions

Let X be a Hausdorff space.
Define expn(X ) := {A ⊂ X |1 ≤ |A| ≤ n} (with Vietoris topology)
Define SymnX := X n/Sn

Point of SymnX = [k1x1, . . . , ksxs ] ∈ SymnX ,
ki ∈ N, k1 + . . .+ ks = n, xi ∈ X , xi 6= xj ,∀i 6= j

< · >: SymnX → expn(X ) — ”forgetting multiplicities” map
< [k1x1, . . . , ksxs ] >= {x1, . . . , xs} ∈ expn(X )



Definitions, examples and cohomology transfer.

Definition (L.Smith, 1983)

Suppose X and Y are Hausdorff spaces. A continuous map
f : X → Y is called an n-fold Smith-Dold branched covering if
there exists a continuous ”n-inversion” map g : Y → SymnX such
that
< g(y) >= f −1(y) ∀y ∈ Y .

Remark

1. The map g : Y → SymnX is often included into the structure
of a branched covering.

2. n-fold S.-D. branched covering is always an m-fold branched
covering (in the sense of the first definition) for some m ≤ n.

An example of a 5-fold S.-D. branched covering is on the board
(Fig. 1).
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Definitions, examples and cohomology transfer.

An example of a 3-fold branched covering which is not an n-fold
branched covering of S.-D. type for any n ∈ N. (Fig. 3)

Question: Why S.-D. branched coverings are better than just
simply defined branched coverings?
Answer: For S.-D. branched coverings there exists a transfer in
cohomology!
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Definitions, examples and cohomology transfer.

Suppose X and Y are connected Hausdorff spaces, X is homotopy
equivalent to a CW complex, and a pair of maps
f : X → Y , g : Y → SymnX is an n-fold S.-D. branched covering.

There exists a homology transfer
τS : H∗(Y ;Z)→ H∗(X ;Z)

with the expected property f∗ ◦ τS = nIdH∗(Y ;Z).

Tensoring by Q we obtain transfer τS : H∗(Y ;Q)→ H∗(X ;Q)

There also exists transfer τS : H∗(Y ;Zp)→ H∗(X ;Zp) for every
prime p, (p, n) = 1.

In cohomology (by dualization) one obtains transfers
τS : H∗(X ;Q)→ H∗(Y ;Q) and
τS : H∗(X ;Zp)→ H∗(Y ;Zp) ∀p, (p, n) = 1

with the same property τS ◦ f ∗ = nIdH∗(Y ).
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Definitions, examples and cohomology transfer.

Important consequence: For n-fold S.-D. branched covering
f : X → Y the induced homomorphisms
f ∗ : H∗(Y ;Q)→ H∗(X ;Q) and
f ∗ : H∗(Y ;Zp)→ H∗(X ;Zp) ∀p, (p, n) = 1
are monomorphisms.



Definitions, examples and cohomology transfer.

There are 3 important for topology classes of maps, that are n-fold
S.-D. branched coverings

1. (unbranched) n-fold coverings f : X → Y .

2. projection maps f : X → X/G , G – a finite group,
|G | = n, X is a G-space.

3. usual branched coverings of manifolds f : Mm → Nm

(smooth, PL or ”wild”).



A.Dold classification result, group action transfer.

Theorem (A.Dold, 1986)

(1) Let X be a Hausdorff G-space, G – a finite group, H ⊂ G – a
subgroup of index n, [G : H] = n. Then the natural projection
map πG ,H : X/H → X/G is an n-fold S.-D. branched covering.
(2) For every n-fold S.-D. branched covering
f : X → Y , g : Y → SymnX there exists a canonically obtained
Hausdorff space W with the action of Sn such that
X = W /Sn−1,Y = W /Sn and f = πSn,Sn−1 .

From this statement one can obtain a transfer in a new way.

All spaces now are paracompact and locally contractible.
(One can simply consider arbitrary ENR spaces or arbitrary CW
complexes).
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A.Dold classification result, group action transfer.

Theorem (A)

Suppose X is a paracompact G -space, G — finite group,
|G | = n, K — a field, charK = 0 or p, (p, n) = 1. Let
π : X → X/G be a projection map. Then the induced
homomorphism in Č ech cohomology
π∗ : Ȟ∗(X/G ;K) ∼= Ȟ∗(X ;K)G

is an isomorphism onto the G -invariant cohomology.

Theorem (B)

Let X be a locally contractible paracompact space. Then there is a
canonical isomorphism of algebras
H∗(X ;K) ∼= Ȟ∗(X ;K),
where K = Z or is a field.
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A.Dold classification result, group action transfer.

Suppose X and Y are locally contractible paracompact spaces.
f : X → Y , g : Y → SymnX — an n-fold S.-D. branched
covering.
There exists a Hausdorff space W (which by construction occurs to
be paracompact) with the action of Sn such that

X = W /Sn−1,Y = W /Sn and f = πSn,Sn−1 : W /Sn−1 →W /Sn

Let K = Q or Zp, ∀p > n (we need (p,n!)=1)

f ∗ : H∗(Y ;K)→ H∗(X ;K)
f ∗ = π∗Sn,Sn−1

: H∗(W /Sn;K)→ H∗(W /Sn−1;K)

π∗Sn,Sn−1
: Ȟ∗(W /Sn;K)→ Ȟ∗(W /Sn−1;K) — a monomorphism.

π∗Sn : Ȟ∗(W /Sn;K) ∼= Ȟ∗(W ;K)Sn and

π∗Sn−1
: Ȟ∗(W /Sn−1;K) ∼= Ȟ∗(W ;K)Sn−1 and

π∗Sn = π∗Sn−1
◦ π∗Sn,Sn−1

= π∗Sn−1
◦ f ∗
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A.Dold classification result, group action transfer.

Denote Ȟ∗(W ;K) = A∗.

H∗(X ;K) = (A∗)Sn−1 and H∗(Y ;K) = (A∗)Sn and

f : H∗(Y ;K)→ H∗(X ;K) is just i : (A∗)Sn ⊂ (A∗)Sn−1

Generalize it a little:
Suppose A∗ is a graded commutative algebra over a field K with
the action of a finite group G , and H ⊂ G is a subgroup of index
n, [G : H] = n. charK = 0 or p, (p, n) = 1.

(A∗)G ⊂ (A∗)H — an inclusion of algebras.
G = {g1H} t . . . t {gnH} — left cosets.
gi : A∗ → A∗ — automorphisms.

τG = g1 + g2 + . . .+ gn : (A∗)H → A∗ (a sum of n K-linear
homomorphisms)
ImτG = (A∗)G .
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A.Dold classification result, group action transfer.

Consequence:

τG : (A∗)H → (A∗)G is a (A∗)G -linear transfer
τG (a) = na ∀a ∈ (A∗)G (the expected property)

f ∗ : H∗(Y ;K)→ H∗(X ;K) is a monomorphism, and
τG : H∗(X ;K)→ H∗(Y ;K) is a H∗(Y ;K)-linear transfer with the
expected property

τG ◦ f ∗ = nIdH∗(Y ;K)
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The case of manifolds. ”Wild” coverings and
A.V.Chernavskii theorem.

Suppose X and Y are connected PL (TOP) manifolds of equal
dimension.

Definition (Classical, PL case)

A continuous map f : Mm → Nm is a branched covering if it is

I open-closed and PL (⇒ it is discrete)

I finite-to-one

Definition (Classical, TOP case)

A continuous map f : Mm → Nm is a branched covering if it is

I open-closed

I finite-to-one



The case of manifolds. ”Wild” coverings and
A.V.Chernavskii theorem.

Theorem (A.V.Chernavskii,1964)

Suppose f : Mm → Nm is purely continuous branched covering of
connected TOP (PL) manifolds of dimension m ≥ 3. Then the
following hols:
(1) n := maxy∈Nm |f −1(y)| <∞. The set
U = {y ∈ Nm | |f −1(y)| = n} is an open dense domain in Nm.

(2) Define the branch set
Bf = {x ∈ Mm |f is not a local homeomorphism at x} ⊂ Mm.
(Bf ⊂ Mm is closed and also f (Bf ) ⊂ Nm is closed).
Then dimBf ≤ m − 2.

At the late 70-s there was constructed examples of coverings with
dimBf = m − 4 for all m ≥ 5. Purely continuous coverings may be
very wild.
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The case of manifolds. ”Wild” coverings and
A.V.Chernavskii theorem.

Theorem (I.Berstein-A.L.Edmonds,1978)

For every n-fold branched covering of connected TOP manifolds
f : Mm → Nm there exists a locally compact separable metric
space W with the action of some finite group G provided with a
subgroup H ⊂ G of index n such that

Mm = W /H, Nm = W /G and f = πG ,H .



Orientable manifolds case. I.Berstein-A.L.Edmonds
inequality and Alexander theorem.

Definition
Let X be a topological space and R — commutative ring with
identity element. The the cup-length LR(X ) over R is the maximal
number k such that there exists homogeneous elements
a1, . . . , ak ∈ H∗≥1(X ; R) of positive degrees with nonzero product
a1a2 . . . ak 6= 0.

Theorem (Classical)

For an arbitrary connected ANR space X and the arbitrary ring R
the following double inequality holds:

LR(X ) ≤ Cat(X ) ≤ dimX .



Orientable manifolds case. I.Berstein-A.L.Edmonds
inequality and Alexander theorem.

Definition
Let X be a topological space and R — commutative ring with
identity element. The the cup-length LR(X ) over R is the maximal
number k such that there exists homogeneous elements
a1, . . . , ak ∈ H∗≥1(X ; R) of positive degrees with nonzero product
a1a2 . . . ak 6= 0.

Theorem (Classical)

For an arbitrary connected ANR space X and the arbitrary ring R
the following double inequality holds:

LR(X ) ≤ Cat(X ) ≤ dimX .



Orientable manifolds case. I.Berstein-A.L.Edmonds
inequality and Alexander theorem.

Cat(X ) is Lusternik-Shnirelmann category of X

Cat(X ) is the minimal k ≥ 0 such that there exists a closed cover
X =

⋃k
s=o Xs with the property that all inclusion maps

is : Xs ⊂ X , 0 ≤ s ≤ k , are nullhomotopic.

For example:
(1) X = Tm. LQ(Tm) = m = dimTm So, Cat(Tm) = m

(2) X = RPm. LZ2(RPm) = m = dimRPm So, Cat(RPm) = m

(3) Cat(CPm) = m and Cat(HPm) = m
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Orientable manifolds case. I.Berstein-A.L.Edmonds
inequality and Alexander theorem.

Let us consider the case of branched coverings of closed connected
orientable manifolds.
Using the existence of group action transfer, I.Berstein and
A.L.Edmonds obtained the following crucial result.

Theorem (I.Berstein-A.L.Edmonds,1978)

Suppose f : Mm → Nm is an n-fold branched covering of closed
connected orientable manifolds. Then the following inequality
holds:
nLQ(Nm) ≥ LQ(Mm).

Let us rewrite: LQ(Nm) ≥ LQ(M
m)

n .

The rational cup-length of the base has the lower bound in terms
of the cup-length of the covering space!
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Orientable manifolds case. I.Berstein-A.L.Edmonds
inequality and Alexander theorem.

Let us rewrite once more: n ≥ LQ(M
m)

LQ(Nm) .

The degree of the branched covering has a lower bound in terms of
cohomology rings of the base and the covering space!

Special case: branched coverings over the sphere.

Theorem (Alexander,1920)

For every closed connected orientable PL manifold Mm there exists
a PL branched covering f : Mm → Sm over the m-sphere.

The Alexander construction is represented on the board (m = 2).

The degree of a branched covering in Alexander constructon is
n = (m+1)!

2 Number[m-simplexes] >> m.
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The degree of a branched covering in Alexander constructon is
n = (m+1)!

2 Number[m-simplexes] >> m.



Orientable manifolds case. I.Berstein-A.L.Edmonds
inequality and Alexander theorem.

Consider B.-E. inequality in this case:

for arbitrary f : Mm → Sm one has n ≥ LQ(Mm).

The maximal value of the cup-length here is m (e.g. for Tm), so
n = m is not forbidden anyway.



Orientable manifolds case. I.Berstein-A.L.Edmonds
inequality and Alexander theorem.

Problem: Does the branched covering over the m-sphere with
n = m always exist for every PL orientable closed connected Mm.

History:
I m = 2 hyperelliptic surfaces give the positive answer: n = 2.

I m = 3 (1974, H.M. Hilden, U.Hirsh and J.M.Montesinos –
independently) Every M3 is a 3-fold branched cover of S3 and
the branch set f (Bf ) ⊂ S3 is a knot.

I m = 4 (1995, R.Piegallini) Every PL M4 is a 4-fold branched
cover of S4 and the branch set f (Bf ) ⊂ S4 is a trasversally
immersed PL surface (with double points).

I m ≥ 5 Open Problem!
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Main result.

Theorem (G.,2011)

Suppose X and Y are locally contractible paracompact spaces and
f : X → Y is an n-fold S.-D. branched covering. Then the
following general inequality holds:

nLQ(Y ) + n − 1 ≥ LQ(X ) and

nLZp(Y ) + n − 1 ≥ LZp(X ) ∀p > n.

Both inequalities are sharp for n = 2.

Theorem (G.,2011)

Suppose f : Xm → Y m is an n-fold S.-D. branched covering, where
Y m is a closed connected orientable manifold and Xm is an ENR
space (pseudomanifold). Then the B.-E. inequality holds true:

nLQ(Y m) ≥ LQ(Xm) and

nLZp(Y m) ≥ LZp(Xm) ∀p > n.
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Main result.

Method of the proof (briefly):

A detailed examination of algebraic structure of the
group action transfer and its properties.



Applications to nonorientable manifolds.

Let us consider branched coverings f : Mm → Nm of closed
connected manifolds with a nonorientable base.

The general inequality may be rewritten:

n ≥ LK(X )+1
LK(Y )+1 , K = Q or Zp, ∀p > n.

Example:
f : S2m → RP2m, n = 2

B.-E. inequality is not correct: 2 � LQ(S
2m)

LQ(RP2m)
= 1

0 .

General inequality holds: 2 ≥ 1+1
0+1 = 2.
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Applications to nonorientable manifolds.

R.Piergallini theorem implies the existense of a 4-fold branched
covering

f1 : T 4 → S4, n1 = 4

f2 : S4 → RP4, n2 = 2

By composition: f = f2 ◦ f1 : T 4 → RP4, n = n1n2 = 8.

Problem: What is the minimal degree (number of sheets) n of a
branched covering f : T 4 → RP4 ?

General inequality: n ≥ LQ(T
4)+1

LQ(RP4)+1
= 4+1

0+1 = 5. ⇒
5 ≤ n ≤ 8.
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Applications to nonorientable manifolds.

What can still give the B.-E. inequality?

Case 1. Suppose f : T 4 → RP4 can be lifted to f̂ : T 4 → S4,

f = π ◦ f̂ , π : S4 → RP4 — 2-sheet covering. Then

n = degf = 2degf̂ ≥ 8. (A stronger estimate)

Case 1 occures iff f∗ : π1(T 4)→ π1(RP4) is zero.

Case 2. Suppose f∗ : π1(T 4)→ π1(RP4) is an epimorphism. By
pullback one obtains n ≥ 4. (See the whiteboard)

Remark
For odd n there is a transfer in Z2 cohomology. So the induced
homomorphism f ∗ : H∗(RP4;Z2)→ H∗(T 4;Z2) must be a
monomorphism. But H∗(RP4;Z2) = Z2[u]/(u5 = 0) and
H∗(T 4;Z2) = Z2[v1, . . . , v4]/(v2

i = 0). So one has a contradiction:
f ∗(u2) = (f ∗u)2 = 0.
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Applications to nonorientable manifolds.

Conclusion:

General inequality gives the following possible values: n = 6, 8.

B.-E. inequality gives only n = 4, 6, 8.

Conjecture 1. The minimal degree of a branched covering
f : T 4 → RP4 is 8.
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Applications to nonorientable manifolds.

Generalization: Consider branched coverings over Q-acyclic
manifolds.

N2mk →RP2sk−1→ N2mk−1 → . . .→RP2s1→ N2m1 = RP2m1

Suppose M2m is orientable, LQ(M2m) = 2m and N2m is Q-acyclic.
Then for an n-fold branched covering f : M2m → N2m general
inequality gives the estimate n ≥ 2m + 1.

B.-E. inequality gives only n ≥ 2m if f induces an epimorphism of
fundamental groups.



Applications to nonorientable manifolds.

Conjecture 2: Every nonorientable PL closed connected
manifold M4 is a branched cover over RP4. (n ≤ 8 ?)

Remark

I (I.Berstein-A.L.Edmonds,1979) M3
nonori → S1 × RP2 with

n ≤ 6.

I For {M5
nonori} there is no terminal oblect!

S1 × RP4 and S3 × RP2



Our approach. Extension of V.M.Buchstaber-E.G.Rees
theory to graded algebras.

Recall τ = τG : g1 + . . .+ gn : (A∗)H → (A∗)G

A∗ is a commutative graded algebra with an action of a finite group
G , H ⊂ G is a subgroup of index n, G = {g1H} t . . . t {gnH}

Generalize Suppose A∗ and B∗ are commutative graded
K-algebras, charK = 0 or p, p > n.

f1, f2, . . . , fn : A∗ → B∗ — algebra homomorphisms.
f = f1 + . . .+ fn : A∗ → B∗ — a K-linear map.

A map f : A∗ → B∗ is not an algebra homomorphism, as
f (ab) 6= f (a)f (b) for many a, b ∈ A∗.

Our approach: There is still some weak multiplicativity
property for such maps f .
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Our approach. Extension of V.M.Buchstaber-E.G.Rees
theory to graded algebras.

n = 2 The ”weak multiplicativity” property:

f (abc) = 1
2(−f (a)f (b)f (c) + f (a)f (bc) + f (ab)f (c) +

(−1)|a||b|f (b)f (ac)) ∀a, b, c ∈ A∗.



Our approach. Extension of V.M.Buchstaber-E.G.Rees
theory to graded algebras.

Definition
Suppose f : A∗ → B∗ is a K-linear map. Define by induction
polylinear symmetric maps Φm(f ) : (A∗)×m → B∗:
Φ1(f )(a1) = f (a1)
Φ2(f )(a1, a2) = f (a1)f (a2)− f (a1a2)
Graded Frobenius Recursion:

Φm+1(f )(a1, a2, . . . , am+1) = f (a1)Φm(f )(a2, . . . , am+1) −
− Φm(f )(a1a2, a3 . . . , am+1) −
(−1)|a1||a2|Φm(f )(a2, a1a3, . . . , am+1) −
(−1)|a1||a2|+|a1||a3|Φm(f )(a2, a3, a1a4, . . . , am+1) −
. . . − (−1)|a1||a2|+...+|a1||am|Φm(f )(a2, . . . , am, a1am+1).



Our approach. Extension of V.M.Buchstaber-E.G.Rees
theory to graded algebras.

Definition
A K-linear map f : A∗ → B∗ of graded commutative K-algebras
with 1 is called a graded Frobenius n-homomorphism if the
following holds:

1. f (1A∗) = n1B∗

2. Φn+1(f )(a1, . . . , an+1) = 0 ∀a1, . . . , an+1 ∈ A∗

Original definition for ungraded algebras was introduces by
V.M.Buchstaber and E.G.Rees in 1996.

Remark

I 1-homomorphisms are just algebra homomorphisms.

I The second axiom implies f (a1a2 . . . an+1) is a polynomial of
f (ai1ai2 . . . ais ) for 1 ≤ s ≤ n and
1 ≤ i1 < i2 < . . . < is ≤ n + 1.



Our approach. Extension of V.M.Buchstaber-E.G.Rees
theory to graded algebras.

Theorem (G., 2011)

Suppose f : A∗ → B∗ is an n-homomorphism and g : A∗ → B∗ is
an m-homomorphism. Then the sum f + g : A∗ → B∗ is an
(n + m)-homomorphism.

Corollary

The sum f = f1 + . . .+ fn : A∗ → B∗ is an n-homomorphism for
arbitrary algebra homomorphisms f1, . . . , fn : A∗ → B∗.
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Thank you for your attention!


