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Coxeter automorphism on GC/TC and conditions for it to
preserve a real form
de Sitter spheres S2n

1 and isotropic flag bundles
Toda integrable system and relationship to cyclic primitive
maps from a surface into G/T
Solution in terms of ODEs (finite type)
Applications to superconformal tori in S2n
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Applications to Willmore tori in S3.
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Coxeter automorphism on GC/TC

Let GC be a simple complex Lie group and TC a Cartan
subgroup.

The homogeneous space GC/TC is naturally a k -symmetric
space.

That is, we have an automorphism σ : GC → GC with σk = 1
and

(GC
σ )id ⊂ TC ⊂ GC

σ .

Recall that a non-zero α ∈ (tC)∗ is a root with root space
Gα ⊂ gC if

[H,Rα] = α(H)Rα ∀H ∈ t, Rα ∈ Gα.

Emma Carberry and Katharine Turner Harmonic maps, Toda frames and extended Dynkin diagrams



Choose a set of simple roots, that is roots {α1, . . . , αN} such
that every root can be written uniquely as

α =
N∑

j=1

mjαj ,

where all mj ∈ Z+ or all mj ∈ Z−.

The height of α is h(α) =
∑N

j=1 mj and the root of minimal
height is called the lowest root.

Let η1, . . . , ηN ∈ tC be the dual basis to α1, . . . , αN and
σ : GC → GC be conjugation by

exp(
2πi
k

N∑
j=1

ηj) (Coxeter automorphism).

Then σ has order k , where k − 1 is the maximal height of a root
of gC.
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Let G be a real simple Lie group with Cartan subgroup T and
assume that the Coxeter automorphism preserves the real form
G.

I will describe class of harmonic maps from the surface into
G/T which are given simply by solving ordinary differential
equations and give a relationship between these maps and the
Toda equations.

This will generalise work of Bolton, Pedit and Woodward for the
case when G is compact.
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Example: SO(2n,1)

Let R2n,1 denote R2n+1 with the Minkowski inner product

x1y1 + x2y2 + · · ·+ x2ny2n − x2n+1y2n+1

Consider the de Sitter group SO(2n,1) of orientation
preserving isometries of R2n,1. Take as Cartan subgroup

T = diag (1,SO(2), . . . ,SO(2),SO(1,1)) .
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Define ãk ∈ t∗, k = 1, . . . ,n by

ãk

(
diag

{
0,
(

0 a1
−a1 0

)
, . . .

(
0 an
an 0

)})
= ak .

Take as simple roots of so(2n,1,C) the roots

α1 = i ã1,

αk = i ãk − i ãk−1 for 1 < k < n and
αn = ãn − i ãn−1.

The lowest root is then α0 = −ãn − i ãn−1, which is of height
−2n + 1.
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Then writing ηj for the dual basis of tC, conjugation by

Q = exp
(πi

n

n∑
j=1

ηj

)
= diag

(
1,R

(π
n

)
,R
(

2π
n

)
, . . . ,R

( rπ
n

)
,−I2

)
is an automorphism of order 2n.

It is not hard to prove directly in this case that the real form
SO(2n,1) is preserved by the Coxeter automorphism.
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Let 〈·, ·〉 denote the complex bilinear form

〈z,w〉 = z1w1 + z2w2 + · · ·+ z2nw2n − z2n+1w2n+1

on C2n+1.

A subspace V ⊂ C2n+1 is isotropic if 〈u, v〉 = 0 for all u, v ∈ V .

Geometrically,

SO(2n,1)/T = SO(2n,1)/(1×SO(2)×· · ·×SO(2)×SO(1,1))

is the full isotropic flag bundle

Fl(S2n
1 ) = {V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ TCS2n

1 | Vj is an
isotropic sub-bundle of dimension j}
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We now give conditions under which a choice of

real form g of a simple complex Lie algebra gC,
Cartan subalgebra tC and simple roots αj

yield a Coxeter automorphism σ = Adexp( 2πi
k

∑N
j=1 ηj )

which
preserves the real Lie algebra g.
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The condition for the Coxeter automorphism σ to preserve g is
that for the simple roots α1, . . . , αN we have

ᾱj ∈ {−α0, . . . ,−αN},

where ᾱ(X ) = α(X̄ ) and α0 is the lowest root.

We will now use a Cartan involution to express this reality
condition in terms of the extended Dynkin diagram.
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A Cartan involution for g is an involution Θ of gC such that

〈X ,Y 〉Θ = −〈X ,Θ(Y )〉

is positive definite on g, where 〈·, ·〉 denotes the Killing form.
Alternatively, it is an involution for which

k⊕ im

is compact, where

k = +1-eigenspace of Θ

m = −1-eigenspace of Θ.

We may choose a Cartan involution which preserves the given
Cartan subalgebra t
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Proposition

Let g be a real simple Lie algebra, t a Cartan subalgebra and Θ
be a Cartan involution preserving t. Choose simple roots
α1, . . . , αN and let σ = Adexp( 2πi

k
∑N

j=1 ηj )
be the corresponding

Coxeter automorphism of gC. Then the following are equivalent:

1 σ preserves the real form g,
2 σ commutes with Θ,
3 Θ defines an involution of the extended Dynkin diagram for

gC consisting of the usual Dynkin diagram augmented with
the lowest root α0.
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For a Θ-stable Cartan subalgebra t,

t is maximally
compact

⇔ Θ defines a permutation
of the Dynkin diagram for gC

and so when t is maximally compact (e.g. g is compact), the
real form g is preserved by any Coxeter automorphism defined
by simple roots for t.

The more interesting case is when we have an involution of the
extended Dynkin diagram which does not restrict to an
involution of the Dynkin diagram (i.e. t is not maximally
compact).

Call these non-trivial involutions.
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E8
α0 α8 α7 α6 α5 α4 α3 α1

α2

DN . . .
α1 α2

α0

αN−2

αN−1

αN

CN . . .
α0 α1 α2 αN−1 αN

BN . . .
α1 α2 αN−1 αN

α0

. . .

AN

α1 αN

αN−1α2

α0

E7 α7 α6 α5 α4 α3 α1 α0

α2

E6 α6 α5 α4 α3 α1

α2

α0

F4 α0 α1 α2 α3 α4

G2 α0 α1 α2

There are nontrivial involutions for all root systems except
E8,F4 and G2.
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Theorem

Every involution of the extended Dynkin diagram for a simple
complex Lie algebra gC is induced by a Cartan involution of a
real form of gC.

More precisely, let gC be a simple complex Lie algebra with
Cartan subalgebra tC and choose simple roots α1, . . . , αN for
the root system ∆(gC, tC). Given an involution π of the
extended Dynkin diagram for ∆, there exists a real form g of gC

and a Cartan involution Θ of g preserving t = g ∩ tC such that Θ
induces π and t is a real form of tC. The Coxeter automorphism
σ determined by α1, . . . , αN preserves the real form g.

Emma Carberry and Katharine Turner Harmonic maps, Toda frames and extended Dynkin diagrams



Primitive Maps and Loop Groups

The Coxeter automorphism σ : g→ g of order k induces a
Zk -grading

gC =
k−1⊕
j=0

gσj , [gσj , g
σ
l ] ⊂ gσj+l ,

where gσj denotes the ej 2πi
k -eigenspace of σ.

We have the reductive splitting

g = t⊕ p

with

pC =
k−1⊕
j=1

gσj , tC = gσ0 ,

and if ϕ is a g-valued form we may decompose it as
ϕ = ϕt + ϕp.
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A smooth map f of a surface into a symmetric space (G/K , σ)
is harmonic if and only if for a smooth lift F : U → G of
f : U → G/K , the form ϕ = F−1dF has the property that for
each λ ∈ S1

ϕλ = λϕ′p + ϕk + λ−1ϕ′′p

satisfies the Maurer-Cartan equation

dϕλ +
1
2

[ϕλ ∧ ϕλ] = 0.

Moreover given a family of flat connections as above, we can
recover a harmonic map f : U → G/K on any simply connected
U.
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When k > 2, the condition that

ϕλ = λϕ′p + ϕk + λ−1ϕ′′p

satisfies the Maurer-Cartan equation

dϕλ +
1
2

[ϕλ ∧ ϕλ] = 0.

characterises (not merely harmonic but) primitive maps ψ of a
surface into the k -symmetric space G/K .

ψ is primitive if for a smooth lift F : U → G of ψ : U → G/K ,
ϕ′ = F−1∂F takes values in gσ0 ⊕ gσ1 . We say that F is a
primitive frame.

Primitive maps ψ are in particular harmonic.
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For studying maps into G/T it is helpful to consider the twisted
loop group

ΩσG = {γ : S1 → G : γ(e
2πi
k λ)} = σ(γ(λ))}

and corresponding twisted loop algebra Ωσg. The (possibly
doubly infinite) Laurent expansion

ξ(λ) =
∑

j

ξjλ
j , ξj ∈ gσj ⊂ gC, Φ−j = Φ̄j

allows us to filtrate ΩσgC by finite-dimensional subspaces

Ωσ
d = {ξ ∈ Ωg | ξj = 0 whenever |j | > d}.
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Suppose ξ : R2 → Ωσ
d satisfies the Lax equation

∂ξ

∂z
= [ξ, λξd +

1
2
ξd−1].

Then

ϕλ(z) =
(
λξd (z) +

1
2
ξd−1(z)

)
dz +

(
λ−1ξ−d (z) +

1
2
ξd−1(z)

)
dz̄

satisfies the Maurer-Cartan equation and so defines a primitive
map f : R2 → G/T .

Maps f obtained in this simple way are said to be of finite type.
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The equation

1
2

(X (ξ)− iY (ξ)) =
(
λξd +

1
2
ξd−1

)
defines vector fields X ,Y on Ωσ

d .

Assume the vector fields X ,Y are complete (e.g. G is
compact). The vector fields X ,Y commute and so define an
action

(x , y) · ξ(λ) = X x ◦ Y y (ξ(λ))

of R2 on Ωd . Define ξ(z, λ) := (x , y) · ξ0(λ) for any initial
ξ0(λ) ∈ Ωd , where z = x + iy . Then

ϕλ(z) =
(
λξd (z) +

1
2
ξd−1(z)

)
dz +

(
λ−1ξ−d (z) +

1
2
ξd−1(z)

)
dz̄

satisfies the Maurer-Cartan equation and so defines a primitive
map f : R2 → G/T .
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For the Coxeter automorphism on G/T , gσ0 = t and gσ1 is the
sum of the simple and lowest root spaces.

We say that a primitive map ψ / frame F is in addition cyclic if
the image of F−1∂F contains a cyclic element.

An element of gσr
0 ⊕ gσr

1 is cyclic if its projection to each of the
root spaces Gα1 , . . . ,Gαn ,Gα0 is non-zero.

I will now describe the relationship between cyclic primitive
maps into G/T and the Toda equations.
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Toda equation
The classical 1-dimensional affine Toda integrable system
describes the motion of finitely many particles of equal mass
arranged in a circle, joined by “exponential springs".

0

1 n

2 n − 1

. . . . .
.

m
d2xj

dt2 = e(xj−1−xj ) − e(xj−xj+1).
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We may generalise this to any simple Lie algebra as

2
d2Ω

dt2 =
n∑

j=0

mje2αj (Ω)[Rαj ,R−αj ]

or for a 2-dimensional domain

2Ωzz̄ =
N∑

j=0

mje2αj (Ω)[Rαj ,R−αj ] (1)

where Ω : C→ it is a smooth map, mj ∈ R+ satisfies mπ(j) = mj

and Rαj are root vectors satisfying Rαj = R−απ(j) .
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To recover the classical Toda equation:

1 Take the standard simple roots for su(n + 1).
2 Set m0 = 1 and let

α0 = −
N∑

j=1

mjαj

be the expression for the lowest root α0.
3 Choose root vectors Rαj so that [Rαj ,R−αj ] is the dual of αj

with respect to the Killing form.

Notice that the extended Dynkin diagram for su(n + 1) looks like

. . .

α1 αN

αN−1α2

α0
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Given a cyclic element W =
∑N

j=0 rjRαj of gσ1 , we say that a lift
F : C→ G of ψ : C→ G/T is a Toda frame with respect to W if
there exists a smooth map Ω : C→ it such that

F−1Fz = Ωz + Adexp ΩW .

We call Ω an affine Toda field with respect to W .

Lemma

The affine Toda field equation (1) is the integrability condition
for the existence of a Toda frame with respect to W.

Here W =
∑N

j=0 rjRαj is a cyclic element of gσ1 such that
mπ(j) = mj and Rαj = R−απ(j) and we take mj = rj rj for
j = 0, . . . ,N.
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Toda frame and cyclic primitive

Theorem

A map ψ : C→ G/T possesses a Toda frame if and only if it
has a cyclic primitive frame F for which c0

∏N
j=1 cmj

j is constant,
where

F−1Fz |gσ1 =
N∑

j=0

cjRαj .

The Toda frame is then cyclic primitive with respect to any
W =

∑N
j=0 rjRαj for which

r0

N∏
j=1

rmj
j = c0

N∏
j=1

cmj
j .
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Finite-type

Theorem

Let G be a simple real Lie group, T a Cartan subgroup and
assume that the Coxeter automorphism preserves G. Suppose
ψ : C/Λ→ G/T has a Toda frame F : C/Λ→ G. Then ψ is of
finite type.
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Harmonic maps into S2n
1

The isotropy order of a harmonic map f of a surface into S2n
1 is

the maximal integer r ≥ 0 such that the derivatives
∂zF , ∂2

z F , . . . , ∂r
z f span an isotropic subspace at each point.

If f has the maximal isotropy order r = n we say it is isotropic.

Isotropic surfaces in S2n
1 include all harmonic maps of S2, and

can be expressed holomorphically in terms of a
Weierstrass-type representation (Bryant 84, Ejiri 88)

Harmonic maps f : M2 → S2n
1 with the penultimate isotropy

order r = n − 1 are said to be superconformal.
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Applying Gram-Schmidt, we define the harmonic sequence
{f0, f1, . . . , fr} of a non-constant harmonic map f : M2 → S2n

1 by

f0 = f , fj+1 = ∂z fj −
〈∂z fj , fj〉
‖fj‖2

fj wherever ‖fj‖2 6= 0

and extend by continuity wherever fj = 0. Then

∂z̄ fj+1 = −
‖fj+1‖2

‖fj‖2
fj for 0 ≤ j ≤ r

〈fj , fk 〉 = 0 unless j = k

and the zeros of the fj are isolated whenever fj does not vanish
identically (Hulett 05).
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Theorem

A harmonic map f : C→ S2n
1 has a cyclic primitive lift

ψ : C→ Fl(S2n
1 ) if and only if it is superconformal and the

entries {f1, . . . , fn−1} of its harmonic sequence are defined
everywhere.

We have for each 1 ≤ j ≤ r

fj = 2j−1c1 . . . cjF (e2j + ie2j+1) for each 1 ≤ j ≤ n − 1

where the cj are root vector coefficients with respect to
particular choices of the root vectors appearing in gσr

1 .

Corollary

Let f : C/Λ→ S2n
1 be a superconformal harmonic map with

globally defined harmonic sequence {f1, . . . , fn}. Then f has a
lift ψ : C/Λ→ SO(2n,1)/T of finite type.
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An immersed surface φ : M2 → R3 is Willmore if it is critical for
the Willmore functional

W =

∫
M2

H2 dA,

where H denotes the mean curvature of φ and dA the area
form.

Due to Gauss-Bonnet, it is equivalent to seek critical surfaces
for ∫

M2
(H2 − K ) dA,=

∫
M2

(k2 − k1)2 dA

where K is the Gauss curvature and k1, k2 are the principal
curvatures.

This latter functional is clearly conformally invariant and so we
instead consider immersions into S3.
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It is not hard to show thatW(M2) ≥ 4π, with equality if and only
if M2 is a (round) sphere.

The Willmore conjecture proposes thatW(C/Λ) ≥ 2π2 for any
immersed torus with equality if and only if the torus is
conformally equivalent to
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The conformal Gauss map of an immersion φ : M2 → S3

associates to each point on the surface M2 its central sphere,
that is the oriented 2-sphere in S3 with the same normal vector
and mean curvature.
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A 2-sphere in S3 is the intersection of S3 and a hyperplane in
R4;

S3 ∩ {x1, x2, x3, x4 : a1x1 + a2x2 + a3x3 + a4x4 − b = 0}.

For this hyperplane to intersect with S3 at more than one point
requires a2

1 + a2
2 + a2

3 + a2
4 − b2 > 0 and hence we can scale

(a1,a2,a3,a4,b) so that a2
1 + a2

2 + a2
3 + a2

4 − b2 = 1.

De Sitter space S2n
1 is the unit sphere in R2n+1 with respect to

the Minkowski metric

x1y1 + x2y2 + · · ·+ x2ny2n − x2n+1y2n+1.

Thus each 2-sphere in S3 can be identified with two antipodal
points ±(a1,a2,a3,a4,b) ∈ S4

1 .

Choosing an orientation for the 2-sphere gives a well-defined
element of S4

1 .
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Hence we see that the space of oriented 2-spheres in S3 is
naturally identified with S4

1 .

The conformal Gauss map f : M2 → S4
1 is given explicitly by

f (z) = H(z) · Φ(z) + N(z)

where Φ(z) = (φ(z),1), N = (n,0).
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The conformal Gauss map f is weakly conformal and an
immersion away from the umbilic points of φ.

The area form on M2 induced by f is given by (H2 − K )dA

Thus φ : M2 → S3 is a Willmore immersion without umbilic
points if and only if f : M2 → S4

1 is a minimal immersion, or
equivalently is conformal and harmonic.
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A minimal immersion f : M2 → S4
1 can only have isotropy order

r = 1 (superconformal) or r = 2 (isotropic).

Recall that the second fundamental form of f is
II(X ,Y ) = (∇X Y )⊥, where ⊥ denotes projection to the
orthogonal complement of TM2 in TS4

1 .

The curvature ellipse of f at p ∈ M2 is the image of the unit
circle in TpM2 under the second fundamental form.

It is a circle precisely when 〈fzz(p), fzz(p)〉 = 0. This quantity is
holomorphic, hence constant when M2 is compact.

The curvature ellipse of f is thus a circle precisely when f is
isotropic. All isotropic f have been constructed by Bryant using
holomorphic data.
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We have seen that the first ellipse of curvature being a
non-circular ellipse corresponds to f being superconformal.

For superconformal f : M2 → S4
1 the cyclic primitive frame F

constructed previously consists of

F = (f , fx , fy , v ,w)

where the last two columns of F are determined by the
principal directions of the curvature ellipse.

Corollary

A Willmore immersion φ : T 2 → S3 without umbilic points may
be constructed either

1 from holomorphic Weierstrass data
2 by integrating a pair of commuting vector fields on a

finite-dimensional space
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