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Introduction

Twistor correspondence is a correspondence between

complex manifolds with a family of CP
1 or holomorphic disks, and

manifolds equipped with a certain integrable structure.

self-dual conformal 4-mfd Einstein-Weyl 3-mfd

complex Penrose (1976) Hitchin (1982)

Riemannian Atiyah-Hitchin-Singer (1978)
Hitchin (1982)

Pedersen-Tod (1993)

indefinite LeBrun-Mason (2007) LeBrun-Mason (2009)

Results in hyperbolic PDE and integral transforms are obtained in the way
of constructing explicit examples of twistor correspondences.
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1. Integral transforms on 2-sphere

F.Nakata (TUS) Integral transforms and the twistor theory. PRGC, Dec. 2011 4 / 36



Small circles

Let us define

M = {oriented small circles on S2}

∼=

{

domain on S2

bouded by a small circle

}

Each domain is described as

Ω(t,y) = {u ∈ S2 | u · y > tanh t}

by using (t, y) ∈ R × S2.

Hence M ∼= R × S2.

S2

y

tanh t

Ω(t,y)

C (t,y)
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Small circles

M = {(t, y) ∈ R × S2}

Let us introduce an indefinite metric
on M by

g = −dt2 + cosh2 t · gS2 .

(M,g) is identified with the
de Sitter 3-space (S3

1 , gS3
1
)

This identification M ∼= S3
1 arises

from minitwistor correspondence.

S2

y

tanh t

Ω(t,y)

C (t,y)
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Geodesics

There are subfamilies of small circles known as “Apollonian circles”.
These families corresponde to geodesics on (S3

1 , gS3
1
).

space-like geodesic null geodesic time-like geodesic
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Integral transforms

For given function h ∈ C∞(S2), we define functions Rh,Qh ∈ C∞(S3
1) by

[mean value] Rh(t, y) =
1

2π

∫

∂Ω(t,y)

hdS1

[area integral] Qh(t, y) =
1

2π

∫

Ω(t,y)

hdS2

where dS1 is the standard measure on ∂Ω(t,y) of total length 2π,
and dS2 is the standard measure on S2.
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Wave equation on de Sitter 3-space

Wave equation on (S3
1 , gS3

1
) : �V := ∗d ∗ dV = 0.

Let us put C∞

∗
(S2) =

{

h ∈ C∞(S2)

∣

∣

∣

∣

∫

S2

hdS2 = 0

}

.

Theorem (N. ’09)

For each function h ∈ C∞

∗
(S2), the function V := Qh ∈ C∞(S3

1) satisfies

(i) �V = 0, (ii) lim
t→∞

V (t, y) = lim
t→∞

Vt(t, y) = 0.

Conversely, if V ∈ C∞(S3
1) satisfies (i) and (ii), then there exists unique

h ∈ C∞

∗
(S2) such that V = Qh.

Remark A similar type theorem for the transform R is also obtained.
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2. Integral transforms on a cylinder
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Planar circles

Let C = {(θ, v) ∈ S1 × R} be the
2-dimensional cylinder.

Let us define

M ′ = {planar circles on C }

Each planar circle is described as

C(t,x) = {(θ, v) | v = t + x1 cos θ + x2 sin θ}

using (t, x) ∈ R × R
2.

Hence M ′ ∼= R
3

C

C (t,x)
v

θ
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Planar circles

M ′ = {planar circles on S2}

= {C(t,x) | (t, x) ∈ R × R
2}

Let us introduce an indefinite metric
on M ′ by

g = −dt2 + |dx|2

(M ′, g) is identified with the flat
Lorentz 3-space R

3
1.

C

C (t,x)
v

θ
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Geodesics

There are three types of subfamilies of planar circles.
These families corresponde to geodesics on R

3
1.

space-like geodesic null geodesic time-like geodesic
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Integral transform

For given function h ∈ C∞(C ), we define a function R′h ∈ C
∞(R3

1) by

R′h(t, x) =
1

2π

∫

C(t,x)

hdθ

=
1

2π

∫ 2π

0
h(θ, t + x1 cos θ + x2 sin θ) dθ.

Observation

For each function h ∈ C∞(C ), the function V = R′h ∈ C∞(R3
1) satisfies

the wave equation

�V = ∗d ∗ dV = −
∂2V

∂t2
+

∂2V

∂x2
1

+
∂2V

∂x2
2

= 0.
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3. Minitwistor theory
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Minitwistor correspondence (Hitchin correspondence)

S : complex surface (called minitwistor space)
Y ⊂ S : nonsingular rational curve (= holomorphically embedded CP

1)

Y is called a minitwistor line if the self-intersection number Y 2 = 2.

A small deformation of a minitwistor line Y in S is also a minitwistor
line.

Minitwistor lines are parametrized by a complex 3-manifold M .

Theorem (Hitchin ’82)

M has a natural torsion-free complex Einstein-Weyl structure. Conversely,
any complex 3-dimensional torsion-free Einstein-Weyl manifold is always
obtained in this way locally.

Einstein-Weyl structure is the conformal version of Einstein metric.

In dimension 3, Einstein-Weyl condition is an integrable condition.
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Characterization of Einstein-Weyl 3-space

S : minitwistor space
{Yx}x∈M : family of minitwistor lines

The Einstein-Weyl structure ([g],∇) on M is determined so that

for distinct two points p, q ∈ S,

{x ∈ M | p, q ∈ Yx} is a geodesic,

for a point p ∈ S and a direction 0 6= v ∈ TpS,

{x ∈ M | p ∈ Yx, v ∈ TpYx} is a null geodesic.
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Standard examples

There are two standard examples of minitwistor spaces:

S1 =
{

[z0 : z1 : z2 : z3] ∈ CP
3

∣

∣ z0z1 = z2z3

}

nonsingular quadric

S2 =
{

[z0 : z1 : z2 : z3] ∈ CP
3

∣

∣ z2
1 = z0z2

}

degenerated quadric

In both cases, the minitwistor lines are nonsingular plane sections.

The corresponding complex Einstein-Weyl spaces are

S1 −→ M1 = CP
3 \ Q with an EWstr. of const. curv.

S2 −→ M2 = C
3 with a flat EWstr.

where Q is a nonsingular quadric.
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[z0 : z1 : z2 : z3] ∈ CP
3

∣

∣ z2
1 = z0z2

}

degenerated quadric

In both cases, the minitwistor lines are nonsingular plane sections.

The corresponding complex Einstein-Weyl spaces are

S1 −→ M1 = CP
3 \ Q with an EWstr. of const. curv.

S2 −→ M2 = C
3 with a flat EWstr.

where Q is a nonsingular quadric.
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Real slices

Standard examples of real minitwistor correspondences are obtained as the
real slices of Si.
Let us define anti-holomorphic involutions σi by

σ1([z0 : z1 : z2 : z3]) = [z̄1 : z̄0 : z̄2 : z̄3] on S1,

σ2([z0 : z1 : z2 : z3]) = [z̄2 : z̄1 : z̄0 : z̄3] on S2.

Then σi induces an involution on the Einstein-Weyl space Mi.
The fixed point set Mσi

i corresponde with σi-invariant minitwistor lines.

The real 3-folds Mσi

i have real indefinite Einstein-Weyl structures:

Mσ1
1

∼= S3
1/Z2 Z2-quotient of de Sitter 3-space

Mσ2
2

∼= R
3
1 Lorentz 3-space
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de Sitter 3-space as small circles

S1 : nonsingular quadric equipped with an involution σ1

M1 = CP
3 \ Q : the space of minitwistor lines on S1

S3
1/Z2 = Mσ1

1 Z2-quotient of de Sitter 3-space

= {σ1-invariant minitwistor line on S1}

S3
1 = {holomorphic disks on (S1,S

σ1
1 )},

= {oriented small circles on S2}

σ

S
σ1
1 =

{

[s : s̄ : 1 : |s|2] ∈ CP
3 | s ∈ C ∪ {∞}

}

= S2 : 2 sphere
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Lorentz 3-space as planar circles

S2 : degenerated quadric equipped with an involution σ2

M2 = C
3 : the space of minitwistor lines on S2

R
3
1 = Mσ2

2 Lorentz 3-space

= {σ2-invariant minitwistor line on S2}

= {holomorphic disks on (S2,S
σ2
2 )},

= {planner circles on C }

σ

S
σ2
2 =

{

[e−iθ : 1 : eiθ : v] ∈ CP
3

∣

∣ θ ∈ S1, v ∈ R ∪ {∞}
}

= C ∪ {∞} : 1 point compactification of the cylinder C
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4. LeBrun-Mason twistor theory

general theory
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LM correspondence for self-dual 4-fold

Theorem (LeBrun-Mason ’07)

There is a natural one-to-one correspondence between

self-dual Zollfrei conformal structures [g] on S2 × S2 of signature
(−− ++), and

pairs (CP
3, P ) where P is an embedded RP

3,

on the neighborhoods of the standard objects.

(M, [g]) is Zollfrei ⇐⇒ every maximal null geodesic is closed.

standard SD metric on S2 × S2 is the product g0 = (−gS2) ⊕ gS2,

standard embedding RP
3 ⊂ CP

3 is the fixed point set of the complex
conjugation.
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LM correspondence (Rough sketch)

(CP
3, P ) ⇒ (S2 × S2, [g]) SD

P : small deformation of RP
3 in CP

3,

⇒ There exist S2 ×S2-family of holomorphic disks in CP
3 with boundaries

lying on P representing the generator of H2(CP
3, P ; Z) ≃ Z.

⇒ The self-dual conformal structure [g] on S2 × S2 is recovered so that

Sq = {x ∈ S2 × S2 | q ∈ ∂Dx} (Dx : holomorphic disk)

is a null-surface for each q ∈ P .

(S2 × S2, [g]) SD ⇒ (CP
3, P ) : omitted (Key is the Zollfrei condition)
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4. LeBrun-Mason twistor theory

S1-invariant case
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Standard model

RP
3 =

{

[z0 : z1 : z2 : z3] ∈ CP
3

∣

∣ z3 = z̄0, z2 = z̄1

}

We notice to a (C∗, U(1))-action on (CP
3, RP

3) defined by

µ · [z0 : z1 : z2 : z3] = [µ
1
2 z0 : µ

1
2 z1 : µ−

1
2 z2 : µ−

1
2 z3] µ ∈ C

∗.

Its free quotient is the minitwistor space (S1, S
2).

(S2 × S2, [g0])
LM corr.

free quot. s∈S1

S1

(CP3, RP3)

free quot.

(C∗,U(1))

de Sitter sp (S3
1 , gS3

1
) minitwistor corr.

(S1, S
2) quadric

Correspondingly, an S1-action on the standard SD Zollfrei space S2 × S2

is induced, and its free quotient is the de Sitter 3-space S3
1 .
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S1-invariant deformation

The (C∗, U(1))-invariant deformations of (CP
3, RP

3) fixing the quotient is
written as

Ph =
{

[zi] ∈ CP
3

∣

∣

∣
z3 = eh(z1/z0)z̄0, z2 = eh(z1/z0)z̄1

}

.

by using the parameter h is contained in the function space

C∞

∗
(S2) :=

{

h ∈ C∞(S2)

∣

∣

∣

∣

∫

S2

hdS2 = 0

}

(S2 × S2, [g(V,A)])
LM corr.

free quot. s∈S1

S1

(CP3, Ph)

free quot.

(C∗,U(1))

de Sitter sp (S3
1 , gS3

1
) minitwistor corr.

(S1, S
2) quadric
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S1-invariant deformation

The corresponding SD Zollfrei metric on S2 × S2 is written as

g(V,A) ∼ −V −1(ds + A)2 + V gS3
1

conformally

where (V,A) ∈ C∞(S3
1) × Ω1(S3

1) is defined by

V = 1 − Q∆S2h, A = −∗̌ďRh

by using the integral transforms R and Q.

Here ∆S2 is the Laplacian on S2, ∗̌ and ď are the Hodge-∗ and exterior
differential on the S2-direction of S3

1 ≃ R × S2.
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Monopole equation & Wave equation

g(V,A) ∼ −V −1(ds + A)2 + V gS3
1

conformally

The self-duality of g(V,A) is equivalent to the monopole equation :

∗dV = dA.

Hence we obtain solutions of monopole equation written as

V = 1 − Q∆S2h, A = −∗̌ďRh.

In particular, V satisfies the wave equation : �V = ∗d ∗ dV = 0.

=⇒ �Qh̃ = 0 for h̃ ∈ C∞

∗
(S2) = ∆S2C∞(S2).
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Monopole equation & Wave equation

Theorem (N. ’09) revisit

For each function h ∈ C∞

∗
(S2), the function V := Qh ∈ C∞(S3

1) satisfies

(i) �V = 0, (ii) lim
t→∞

V (t, y) = lim
t→∞

Vt(t, y) = 0.

Conversely, if V ∈ C∞(M) satisfies (i) and (ii), then there exists unique
h ∈ C∞

∗
(S2) such that V = Qh.
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Tod-Kamada metric

g(V,A) ∼ −V −1(ds + A)2 + V gS3
1

conformally

(V,A) : monopole i.e. ∗ dV = dA

This indefinite self-dual meteric g(V,A) on S2 × S2 is constructed by
K. P. Tod (’95) and is also rediscovered by H. Kamada (’05) in more
general investigation.

Theorem (N. 2009)

The twistor correspondence for Tod-Kamada metric is explicitly
written down.

Tod-Kamada metric is Zollfrei.

Unless Q∆S2h < 1, the twistor correspondence fails.

F.Nakata (TUS) Integral transforms and the twistor theory. PRGC, Dec. 2011 31 / 36



Tod-Kamada metric

g(V,A) ∼ −V −1(ds + A)2 + V gS3
1

conformally

(V,A) : monopole i.e. ∗ dV = dA

This indefinite self-dual meteric g(V,A) on S2 × S2 is constructed by
K. P. Tod (’95) and is also rediscovered by H. Kamada (’05) in more
general investigation.

Theorem (N. 2009)

The twistor correspondence for Tod-Kamada metric is explicitly
written down.

Tod-Kamada metric is Zollfrei.

Unless Q∆S2h < 1, the twistor correspondence fails.

F.Nakata (TUS) Integral transforms and the twistor theory. PRGC, Dec. 2011 31 / 36



Tod-Kamada metric

g(V,A) ∼ −V −1(ds + A)2 + V gS3
1

conformally

(V,A) : monopole i.e. ∗ dV = dA

This indefinite self-dual meteric g(V,A) on S2 × S2 is constructed by
K. P. Tod (’95) and is also rediscovered by H. Kamada (’05) in more
general investigation.

Theorem (N. 2009)

The twistor correspondence for Tod-Kamada metric is explicitly
written down.

Tod-Kamada metric is Zollfrei.

Unless Q∆S2h < 1, the twistor correspondence fails.

F.Nakata (TUS) Integral transforms and the twistor theory. PRGC, Dec. 2011 31 / 36



Tod-Kamada metric

g(V,A) ∼ −V −1(ds + A)2 + V gS3
1

conformally

(V,A) : monopole i.e. ∗ dV = dA

This indefinite self-dual meteric g(V,A) on S2 × S2 is constructed by
K. P. Tod (’95) and is also rediscovered by H. Kamada (’05) in more
general investigation.

Theorem (N. 2009)

The twistor correspondence for Tod-Kamada metric is explicitly
written down.

Tod-Kamada metric is Zollfrei.

Unless Q∆S2h < 1, the twistor correspondence fails.

F.Nakata (TUS) Integral transforms and the twistor theory. PRGC, Dec. 2011 31 / 36



4. LeBrun-Mason twistor theory

R-invariant case
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Standard model

RP
3 =

{

[z0 : z1 : z2 : z3] ∈ CP
3

∣

∣ z3 = z̄0, z2 = z̄1

}

We notice to the (C, R)-action on (CP
3, RP

3)

µ · [z0 : z1 : z2 : z3] = [z0 : z1 : z2 + iµz0 : z3 + iµz1] µ ∈ C.

Its free quotient is the minitwistor space (S2,C ).

(S2 × S2, [g0])
LM corr.

free quot. s∈R

R

(CP
3, RP

3)

free quot.

(C,R)

Lorentz sp. (R3
1, gR3

1
) minitwistor corr.

(S2,C ) deg. quadric
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R-invariant deformation

The R-invariant deformations of (CP
3, RP

3) fixing the quotient is
parametrized by functions h ∈ C∞(C ), and the corresponding self-dual
metric on R

4 ⊂ S2 × S2 (one of the two free parts of R-action) is
explicitly written as

g(V,A) = −V −1(ds + A)2 + V g

V = 1 − ∂tR
′h, A = −∗̌ďR′h.

Here (V,A) gives a solution of the monopole equation ∗dV = dA.

=⇒ �R′h = 0 for h ∈ C∞(C ).
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Here (V,A) gives a solution of the monopole equation ∗dV = dA.

=⇒ �R′h = 0 for h ∈ C∞(C ).

F.Nakata (TUS) Integral transforms and the twistor theory. PRGC, Dec. 2011 34 / 36



Problems
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Problems

Deformed version of minitwistor correspondence,

Twistor correspondence for connections on vector bundles,

Higher dimensional version,

Holomorphic disks → Riemann surfaces with boundary,

Correspondences for low regularity. Geometry of “shock wave”.

Thank you!
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