Integral transforms and the twistor theory for indefinite metrics

Fuminori NAKATA
Tokyo University of Science

Dec. 5, 2011,
The 10th Pacific Rim Geometry Conference

Introduction

Twistor correspondence is a correspondence between

- complex manifolds with a family of $\mathbb{C P}^{1}$ or holomorphic disks, and
- manifolds equipped with a certain integrable structure.

	self-dual conformal 4-mfd	Einstein-Weyl 3-mfd
complex	Penrose (1976)	Hitchin (1982)
Riemannian	Atiyah-Hitchin-Singer (1978)	Hitchin (1982)
Pedersen-Tod (1993)		
indefinite	LeBrun-Mason (2007)	LeBrun-Mason (2009)

Introduction

Twistor correspondence is a correspondence between

- complex manifolds with a family of $\mathbb{C P}^{1}$ or holomorphic disks, and
- manifolds equipped with a certain integrable structure.

	self-dual conformal 4-mfd	Einstein-Weyl 3-mfd
complex	Penrose (1976)	Hitchin (1982)
Riemannian	Atiyah-Hitchin-Singer (1978)	Hitchin (1982) Pedersen-Tod (1993)
indefinite	LeBrun-Mason (2007)	LeBrun-Mason (2009)

Introduction

Twistor correspondence is a correspondence between

- complex manifolds with a family of $\mathbb{C P}^{1}$ or holomorphic disks, and
- manifolds equipped with a certain integrable structure.

	self-dual conformal 4-mfd	Einstein-Weyl 3-mfd
complex	Penrose (1976)	Hitchin (1982)
Riemannian	Atiyah-Hitchin-Singer (1978)	Hitchin (1982) Pedersen-Tod (1993)
indefinite	LeBrun-Mason (2007)	LeBrun-Mason (2009)

Results in hyperbolic PDE and integral transforms are obtained in the way of constructing explicit examples of twistor correspondences.
(1) Integral transforms on 2-sphere
(2) Integral transforms on a cylinder
(3) Minitwistor theory

4 LeBrun-Mason twistor theory

- general theory
- S^{1}-invariant case
- \mathbb{R}-invariant case

1. Integral transforms on 2-sphere

Small circles

Let us define

$$
\begin{aligned}
M & =\left\{\text { oriented small circles on } S^{2}\right\} \\
& \cong\left\{\begin{array}{l}
\text { domain on } S^{2} \\
\text { bouded by a small circle }
\end{array}\right\}
\end{aligned}
$$

Small circles

Let us define
$M=\left\{\right.$ oriented small circles on $\left.S^{2}\right\}$ $\cong\left\{\begin{array}{l}\text { domain on } S^{2} \\ \text { bouded by a small circle }\end{array}\right\}$

Each domain is described as
$\Omega_{(t, y)}=\left\{u \in S^{2} \mid u \cdot y>\tanh t\right\}$ by using $(t, y) \in \mathbb{R} \times S^{2}$.

Small circles

Let us define
$M=\left\{\right.$ oriented small circles on $\left.S^{2}\right\}$ $\cong\left\{\begin{array}{l}\text { domain on } S^{2} \\ \text { bouded by a small circle }\end{array}\right\}$

Each domain is described as
$\Omega_{(t, y)}=\left\{u \in S^{2} \mid u \cdot y>\tanh t\right\}$ by using $(t, y) \in \mathbb{R} \times S^{2}$.

Hence $M \cong \mathbb{R} \times S^{2}$.

Small circles

$M=\left\{(t, y) \in \mathbb{R} \times S^{2}\right\}$
Let us introduce an indefinite metric on M by

$$
g=-d t^{2}+\cosh ^{2} t \cdot g_{S^{2}} .
$$

Small circles

$M=\left\{(t, y) \in \mathbb{R} \times S^{2}\right\}$
Let us introduce an indefinite metric on M by

$$
g=-d t^{2}+\cosh ^{2} t \cdot g_{S^{2}} .
$$

(M, g) is identified with the de Sitter 3-space $\left(S_{1}^{3}, g_{S_{1}^{3}}\right)$

Small circles

$$
M=\left\{(t, y) \in \mathbb{R} \times S^{2}\right\}
$$

Let us introduce an indefinite metric on M by

$$
g=-d t^{2}+\cosh ^{2} t \cdot g_{S^{2}}
$$

(M, g) is identified with the de Sitter 3 -space $\left(S_{1}^{3}, g_{S_{1}^{3}}\right)$

This identification $M \cong S_{1}^{3}$ arises
 from minitwistor correspondence.

Geodesics

There are subfamilies of small circles known as "Apollonian circles".

space-like geodesic

null geodesic

time-like geodesic

Geodesics

There are subfamilies of small circles known as "Apollonian circles". These families corresponde to geodesics on $\left(S_{1}^{3}, g_{S_{1}^{3}}\right)$.

Integral transforms

For given function $h \in C^{\infty}\left(S^{2}\right)$, we define functions $R h, Q h \in C^{\infty}\left(S_{1}^{3}\right)$ by

Integral transforms

For given function $h \in C^{\infty}\left(S^{2}\right)$, we define functions $R h, Q h \in C^{\infty}\left(S_{1}^{3}\right)$ by
[mean value]

$$
\begin{aligned}
& R h(t, y)=\frac{1}{2 \pi} \int_{\partial \Omega_{(t, y)}} h d S^{1} \\
& Q h(t, y)=\frac{1}{2 \pi} \int_{\Omega_{(t, y)}} h d S^{2}
\end{aligned}
$$

where $d S^{1}$ is the standard measure on $\partial \Omega_{(t, y)}$ of total length 2π, and $d S^{2}$ is the standard measure on S^{2}.

Wave equation on de Sitter 3-space

$$
\text { Wave equation on }\left(S_{1}^{3}, g_{S_{1}^{3}}\right): \quad \square V:=* d * d V=0
$$

Conversely, if $V \in C^{\infty}\left(S_{1}^{3}\right)$ satisfies (i) and (ii), then there exists unique $h \in C_{*}^{\infty}\left(S^{2}\right)$ such that $V=Q h$.

Remark A similar type theorem for the transform R is also obtained

Wave equation on de Sitter 3-space

Wave equation on $\left(S_{1}^{3}, g_{S_{1}^{3}}\right): \quad \square V:=* d * d V=0$.

Let us put $\quad C_{*}^{\infty}\left(S^{2}\right)=\left\{h \in C^{\infty}\left(S^{2}\right) \mid \int_{S^{2}} h d S^{2}=0\right\}$.
Theorem (N. '09)
For each function $h \in C_{*}^{\infty}\left(S^{2}\right)$, the function $V:=Q h \in C^{\infty}\left(S_{1}^{3}\right)$ satisfies

$$
\text { (i) } \square V=0, \quad \text { (ii) } \lim _{t \rightarrow \infty} V(t, y)=\lim _{t \rightarrow \infty} V_{t}(t, y)=0 \text {. }
$$

Wave equation on de Sitter 3-space

Wave equation on $\left(S_{1}^{3}, g_{S_{1}^{3}}\right): \quad \square V:=* d * d V=0$.

Let us put $\quad C_{*}^{\infty}\left(S^{2}\right)=\left\{h \in C^{\infty}\left(S^{2}\right) \mid \int_{S^{2}} h d S^{2}=0\right\}$.

Theorem (N. '09)

For each function $h \in C_{*}^{\infty}\left(S^{2}\right)$, the function $V:=Q h \in C^{\infty}\left(S_{1}^{3}\right)$ satisfies

$$
\text { (i) } \square V=0, \quad \text { (ii) } \lim _{t \rightarrow \infty} V(t, y)=\lim _{t \rightarrow \infty} V_{t}(t, y)=0 \text {. }
$$

Conversely, if $V \in C^{\infty}\left(S_{1}^{3}\right)$ satisfies (i) and (ii), then there exists unique $h \in C_{*}^{\infty}\left(S^{2}\right)$ such that $V=Q h$.

Wave equation on de Sitter 3-space

Wave equation on $\left(S_{1}^{3}, g_{S_{1}^{3}}\right): \quad \square V:=* d * d V=0$.

Let us put $\quad C_{*}^{\infty}\left(S^{2}\right)=\left\{h \in C^{\infty}\left(S^{2}\right) \mid \int_{S^{2}} h d S^{2}=0\right\}$.

Theorem (N. '09)

For each function $h \in C_{*}^{\infty}\left(S^{2}\right)$, the function $V:=Q h \in C^{\infty}\left(S_{1}^{3}\right)$ satisfies

$$
\text { (i) } \square V=0, \quad \text { (ii) } \lim _{t \rightarrow \infty} V(t, y)=\lim _{t \rightarrow \infty} V_{t}(t, y)=0 \text {. }
$$

Conversely, if $V \in C^{\infty}\left(S_{1}^{3}\right)$ satisfies (i) and (ii), then there exists unique $h \in C_{*}^{\infty}\left(S^{2}\right)$ such that $V=Q h$.

Remark A similar type theorem for the transform R is also obtained.

2. Integral transforms on a cylinder

Planar circles

Let $\mathscr{C}=\left\{(\theta, v) \in S^{1} \times \mathbb{R}\right\}$ be the 2-dimensional cylinder.

Planar circles

Let $\mathscr{C}=\left\{(\theta, v) \in S^{1} \times \mathbb{R}\right\}$ be the 2-dimensional cylinder.

Let us define

$$
M^{\prime}=\{\text { planar circles on } \mathscr{C}\}
$$

Planar circles

Let $\mathscr{C}=\left\{(\theta, v) \in S^{1} \times \mathbb{R}\right\}$ be the 2-dimensional cylinder.

Let us define

$$
M^{\prime}=\{\text { planar circles on } \mathscr{C}\}
$$

Each planar circle is described as
$C_{(t, x)}=\left\{(\theta, v) \mid v=t+x_{1} \cos \theta+x_{2} \sin \theta\right\}$ using $(t, x) \in \mathbb{R} \times \mathbb{R}^{2}$.

Planar circles

Let $\mathscr{C}=\left\{(\theta, v) \in S^{1} \times \mathbb{R}\right\}$ be the 2-dimensional cylinder.

Let us define

$$
M^{\prime}=\{\text { planar circles on } \mathscr{C}\}
$$

Each planar circle is described as
$C_{(t, x)}=\left\{(\theta, v) \mid v=t+x_{1} \cos \theta+x_{2} \sin \theta\right\}$ using $(t, x) \in \mathbb{R} \times \mathbb{R}^{2}$.

Hence $M^{\prime} \cong \mathbb{R}^{3}$

Planar circles

$$
\begin{aligned}
M^{\prime} & =\left\{\text { planar circles on } S^{2}\right\} \\
& =\left\{C_{(t, x)} \mid(t, x) \in \mathbb{R} \times \mathbb{R}^{2}\right\}
\end{aligned}
$$

Let us introduce an indefinite metric on M^{\prime} by

$$
g=-d t^{2}+|d x|^{2}
$$

Planar circles

$$
\begin{aligned}
M^{\prime} & =\left\{\text { planar circles on } S^{2}\right\} \\
& =\left\{C_{(t, x)} \mid(t, x) \in \mathbb{R} \times \mathbb{R}^{2}\right\}
\end{aligned}
$$

Let us introduce an indefinite metric on M^{\prime} by

$$
g=-d t^{2}+|d x|^{2}
$$

$\left(M^{\prime}, g\right)$ is identified with the flat Lorentz 3-space \mathbb{R}_{1}^{3}.

Geodesics

There are three types of subfamilies of planar circles.

Geodesics

There are three types of subfamilies of planar circles. These families corresponde to geodesics on \mathbb{R}_{1}^{3}.

space-like geodesic

null geodesic

time-like geodesic

Integral transform

For given function $h \in C^{\infty}(\mathscr{C})$, we define a function $R^{\prime} h \in \mathbb{C}^{\infty}\left(\mathbb{R}_{1}^{3}\right)$ by

For each function $h \in C^{\infty}(\mathscr{C})$, the function $V=R^{\prime} h \in C^{\infty}\left(\mathbb{R}_{1}^{3}\right)$ satisfies

the wave equation

Integral transform

For given function $h \in C^{\infty}(\mathscr{C})$, we define a function $R^{\prime} h \in \mathbb{C}^{\infty}\left(\mathbb{R}_{1}^{3}\right)$ by

$$
\begin{aligned}
R^{\prime} h(t, x) & =\frac{1}{2 \pi} \int_{C_{(t, x)}} h d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} h\left(\theta, t+x_{1} \cos \theta+x_{2} \sin \theta\right) d \theta
\end{aligned}
$$

Integral transform

For given function $h \in C^{\infty}(\mathscr{C})$, we define a function $R^{\prime} h \in \mathbb{C}^{\infty}\left(\mathbb{R}_{1}^{3}\right)$ by

$$
\begin{aligned}
R^{\prime} h(t, x) & =\frac{1}{2 \pi} \int_{C_{(t, x)}} h d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} h\left(\theta, t+x_{1} \cos \theta+x_{2} \sin \theta\right) d \theta
\end{aligned}
$$

Observation

For each function $h \in C^{\infty}(\mathscr{C})$, the function $V=R^{\prime} h \in C^{\infty}\left(\mathbb{R}_{1}^{3}\right)$ satisfies the wave equation

$$
\square V=* d * d V=-\frac{\partial^{2} V}{\partial t^{2}}+\frac{\partial^{2} V}{\partial x_{1}^{2}}+\frac{\partial^{2} V}{\partial x_{2}^{2}}=0
$$

3. Minitwistor theory

Minitwistor correspondence (Hitchin correspondence)

S : complex surface (called minitwistor space)
$Y \subset S:$ nonsingular rational curve ($=$ holomorphically embedded $\mathbb{C P}^{1}$)

- A small deformation of a minitwistor line Y in S is also a minitwistor line.
- Minitwistor lines are parametrized by a complex 3-manifold M
> M has a natural torsion-free complex Einstein-Weyl structure. Conversely, any complex 3-dimensional torsion-free Einstein-Weyl manifold is always obtained in this way locally.
- In dimension 3, Einstein-Weyl condition is an integrable condition.

Minitwistor correspondence (Hitchin correspondence)

S : complex surface (called minitwistor space)
$Y \subset S:$ nonsingular rational curve ($=$ holomorphically embedded $\mathbb{C P}^{1}$)

- Y is called a minitwistor line if the self-intersection number $Y^{2}=2$.
- A small deformation of a are parametrized Theorem (Hitchin' 82)
W has a natural torsion-free complex Einstein-Weyl structure. Conversely,
any complex 3-dimensional torsion-free Einstein-Weyl manifold is always
obtained in this way locally.
- In dimension 3, Einstein-Weyl condition is an integrable condition

Minitwistor correspondence (Hitchin correspondence)

S : complex surface (called minitwistor space)
$Y \subset S:$ nonsingular rational curve ($=$ holomorphically embedded $\mathbb{C P}^{1}$)

- Y is called a minitwistor line if the self-intersection number $Y^{2}=2$.
- A small deformation of a minitwistor line Y in S is also a minitwistor line.
> any complex 3-dimensional torsion-free Einstein-Weyl manifold is always obtained in this way locally.
- In dimension 3, Einstein-Weyl condition is an integrable condition

Minitwistor correspondence (Hitchin correspondence)

S : complex surface (called minitwistor space)
$Y \subset S:$ nonsingular rational curve ($=$ holomorphically embedded $\mathbb{C P}^{1}$)

- Y is called a minitwistor line if the self-intersection number $Y^{2}=2$.
- A small deformation of a minitwistor line Y in S is also a minitwistor line.
- Minitwistor lines are parametrized by a complex 3-manifold M.
\square
any complex 3-dimensional torsion-free Einstein-Weyl manifold is always obtained in this way locally.
- In dimension 3, Einstein-Weyl condition is an integrable condition

Minitwistor correspondence (Hitchin correspondence)

S : complex surface (called minitwistor space)
$Y \subset S:$ nonsingular rational curve ($=$ holomorphically embedded $\mathbb{C P}^{1}$)

- Y is called a minitwistor line if the self-intersection number $Y^{2}=2$.
- A small deformation of a minitwistor line Y in S is also a minitwistor line.
- Minitwistor lines are parametrized by a complex 3-manifold M.

Theorem (Hitchin '82)

M has a natural torsion-free complex Einstein-Weyl structure.

- In dimension 3, Einstein-Weyl condition is an integrable condition

Minitwistor correspondence (Hitchin correspondence)

S : complex surface (called minitwistor space)
$Y \subset S:$ nonsingular rational curve ($=$ holomorphically embedded $\mathbb{C P}^{1}$)

- Y is called a minitwistor line if the self-intersection number $Y^{2}=2$.
- A small deformation of a minitwistor line Y in S is also a minitwistor line.
- Minitwistor lines are parametrized by a complex 3-manifold M.

Theorem (Hitchin '82)

M has a natural torsion-free complex Einstein-Weyl structure. Conversely, any complex 3-dimensional torsion-free Einstein-Weyl manifold is always obtained in this way locally.

- In dimension 3, Einstein-Weyl condition is an integrable condition.

Minitwistor correspondence (Hitchin correspondence)

S : complex surface (called minitwistor space)
$Y \subset S:$ nonsingular rational curve ($=$ holomorphically embedded $\mathbb{C P}^{1}$)

- Y is called a minitwistor line if the self-intersection number $Y^{2}=2$.
- A small deformation of a minitwistor line Y in S is also a minitwistor line.
- Minitwistor lines are parametrized by a complex 3-manifold M.

Theorem (Hitchin '82)

M has a natural torsion-free complex Einstein-Weyl structure. Conversely, any complex 3-dimensional torsion-free Einstein-Weyl manifold is always obtained in this way locally.

- Einstein-Weyl structure is the conformal version of Einstein metric.

Minitwistor correspondence (Hitchin correspondence)

S : complex surface (called minitwistor space)
$Y \subset S:$ nonsingular rational curve ($=$ holomorphically embedded $\mathbb{C P}^{1}$)

- Y is called a minitwistor line if the self-intersection number $Y^{2}=2$.
- A small deformation of a minitwistor line Y in S is also a minitwistor line.
- Minitwistor lines are parametrized by a complex 3-manifold M.

Theorem (Hitchin '82)

M has a natural torsion-free complex Einstein-Weyl structure. Conversely, any complex 3-dimensional torsion-free Einstein-Weyl manifold is always obtained in this way locally.

- Einstein-Weyl structure is the conformal version of Einstein metric.
- In dimension 3, Einstein-Weyl condition is an integrable condition.

Characterization of Einstein-Weyl 3-space

$S:$ minitwistor space
$\left\{Y_{x}\right\}_{x \in M}$: family of minitwistor lines
The Einstein-Weyl structure $([g], \nabla)$ on M is determined so that

- for distinct two points $p, q \in S$, $\left\{x \in M \mid p, q \in Y_{x}\right\}$ is a geodesic,
- for a point $p \in S$ and a direction $0 \neq v \in T_{p} S$,
$\left\{x \in M \mid p \in Y_{x}, v \in T_{p} Y_{x}\right\}$ is a null geodesic.

Characterization of Einstein-Weyl 3-space

$S:$ minitwistor space
$\left\{Y_{x}\right\}_{x \in M}$: family of minitwistor lines
The Einstein-Weyl structure $([g], \nabla)$ on M is determined so that

- for distinct two points $p, q \in S$,
$\left\{x \in M \mid p, q \in Y_{x}\right\}$ is a geodesic,
- for a point $p \in S$ and a direction $0 \neq v \in T_{p} S$,

$$
\left\{x \in M \mid p \in Y_{x}, v \in T_{p} Y_{x}\right\} \text { is a null geodesic. }
$$

Standard examples

There are two standard examples of minitwistor spaces:

In both cases, the minitwistor lines are nonsingular plane sections

The corresponding complex Einstein-Weyl spaces are

with a flat EWstr.

Standard examples

There are two standard examples of minitwistor spaces:

$$
\begin{array}{lll}
\mathscr{S}_{1}=\left\{\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \in \mathbb{C P}^{3} \mid z_{0} z_{1}=z_{2} z_{3}\right\} & \text { nonsingular quadric } \\
\mathscr{S}_{2}=\left\{\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \in \mathbb{C P}^{3} \mid z_{1}^{2}=z_{0} z_{2}\right\} & \text { degenerated quadric }
\end{array}
$$

In both cases, the minitwistor lines are nonsingular plane sections.
The corresponding complex Einstein-Weyl spaces are with a flat EWstr.

Standard examples

There are two standard examples of minitwistor spaces:

$$
\begin{array}{lll}
\mathscr{S}_{1}=\left\{\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \in \mathbb{C P}^{3} \mid z_{0} z_{1}=z_{2} z_{3}\right\} & \text { nonsingular quadric } \\
\mathscr{S}_{2}=\left\{\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \in \mathbb{C P}^{3} \mid\right. & \left.z_{1}^{2}=z_{0} z_{2}\right\} & \text { degenerated quadric }
\end{array}
$$

In both cases, the minitwistor lines are nonsingular plane sections.
The corresponding complex Einstein-Weyl spaces are

$$
\begin{array}{lll}
\mathscr{S}_{1} & \longrightarrow & M_{1}=\mathbb{C P}^{3} \backslash Q
\end{array} \quad \text { with an EWstr. of const. curv. }
$$

where Q is a nonsingular quadric.

Real slices

Standard examples of real minitwistor correspondences are obtained as the real slices of \mathscr{S}_{i}.

Then σ_{i} induces an involution on the Einstein-Weyl space M The fixed point set $M_{i}^{\sigma_{i}}$ corresponde with σ_{i}-invariant minitwistor lines.

Real slices

Standard examples of real minitwistor correspondences are obtained as the real slices of \mathscr{S}_{i}.
Let us define anti-holomorphic involutions σ_{i} by

$$
\begin{array}{lll}
\sigma_{1}\left(\left[z_{0}: z_{1}: z_{2}: z_{3}\right]\right)=\left[\bar{z}_{1}: \bar{z}_{0}: \bar{z}_{2}: \bar{z}_{3}\right] & \text { on } & \mathscr{S}_{1}, \\
\sigma_{2}\left(\left[z_{0}: z_{1}: z_{2}: z_{3}\right]\right)=\left[\bar{z}_{2}: \bar{z}_{1}: \bar{z}_{0}: \bar{z}_{3}\right] & \text { on } & \mathscr{S}_{2} .
\end{array}
$$

Then σ_{i} induces an involution on the Einstein-Weyl space M_{i}. The fixed point set $M_{i}^{\sigma_{i}}$ corresponde with σ_{i}-invariant minitwistor lines. The real 3-folds M_{T}^{*} have real indefinite Einstein-Wey| structures: $M_{1}^{\sigma_{1}} \cong S_{1}^{3} / \mathbb{Z}_{2} \quad \mathbb{Z}_{2}$-quotient of de Sitter 3-space

Real slices

Standard examples of real minitwistor correspondences are obtained as the real slices of \mathscr{S}_{i}.
Let us define anti-holomorphic involutions σ_{i} by

$$
\begin{array}{lll}
\sigma_{1}\left(\left[z_{0}: z_{1}: z_{2}: z_{3}\right]\right)=\left[\bar{z}_{1}: \bar{z}_{0}: \bar{z}_{2}: \bar{z}_{3}\right] & \text { on } & \mathscr{S}_{1}, \\
\sigma_{2}\left(\left[z_{0}: z_{1}: z_{2}: z_{3}\right]\right)=\left[\bar{z}_{2}: \bar{z}_{1}: \bar{z}_{0}: \bar{z}_{3}\right] & \text { on } & \mathscr{S}_{2} .
\end{array}
$$

Then σ_{i} induces an involution on the Einstein-Weyl space M_{i}. The fixed point set $M_{i}^{\sigma_{i}}$ corresponde with σ_{i}-invariant minitwistor lines.

The real 3-folds $M_{i}^{\sigma_{i}}$ have real indefinite Einstein-Weyl structures:

Real slices

Standard examples of real minitwistor correspondences are obtained as the real slices of \mathscr{S}_{i}.
Let us define anti-holomorphic involutions σ_{i} by

$$
\begin{array}{lll}
\sigma_{1}\left(\left[z_{0}: z_{1}: z_{2}: z_{3}\right]\right)=\left[\bar{z}_{1}: \bar{z}_{0}: \bar{z}_{2}: \bar{z}_{3}\right] & \text { on } & \mathscr{S}_{1}, \\
\sigma_{2}\left(\left[z_{0}: z_{1}: z_{2}: z_{3}\right]\right)=\left[\bar{z}_{2}: \bar{z}_{1}: \bar{z}_{0}: \bar{z}_{3}\right] & \text { on } & \mathscr{S}_{2} .
\end{array}
$$

Then σ_{i} induces an involution on the Einstein-Weyl space M_{i}. The fixed point set $M_{i}^{\sigma_{i}}$ corresponde with σ_{i}-invariant minitwistor lines.

The real 3-folds $M_{i}^{\sigma_{i}}$ have real indefinite Einstein-Weyl structures:

$$
\begin{array}{ll}
M_{1}^{\sigma_{1}} \cong S_{1}^{3} / \mathbb{Z}_{2} & \mathbb{Z}_{2} \text {-quotient of de Sitter 3-space } \\
M_{2}^{\sigma_{2}} \cong \mathbb{R}_{1}^{3} & \text { Lorentz } 3 \text {-space }
\end{array}
$$

de Sitter 3-space as small circles

\mathscr{S}_{1} : nonsingular quadric equipped with an involution σ_{1} $M_{1}=\mathbb{C P}^{3} \backslash Q:$ the space of minitwistor lines on \mathscr{S}_{1}
$S_{1}^{3} / \mathbb{Z}_{2}=M_{1}^{\sigma_{1}} \quad \mathbb{Z}_{2}$-quotient of de Sitter 3-space $=\left\{\sigma_{1}\right.$-invariant minitwistor line on $\left.\mathscr{S}_{1}\right\}$

de Sitter 3-space as small circles

\mathscr{S}_{1} : nonsingular quadric equipped with an involution σ_{1} $M_{1}=\mathbb{C P}^{3} \backslash Q:$ the space of minitwistor lines on \mathscr{S}_{1}
$S_{1}^{3} / \mathbb{Z}_{2}=M_{1}^{\sigma_{1}} \quad \mathbb{Z}_{2}$-quotient of de Sitter 3-space $=\left\{\sigma_{1}\right.$-invariant minitwistor line on $\left.\mathscr{S}_{1}\right\}$ $S_{1}^{3}=\left\{\right.$ holomorphic disks on $\left.\left(\mathscr{S}_{1}, \mathscr{S}_{1}^{\sigma_{1}}\right)\right\}$, $=\left\{\right.$ oriented small circles on $\left.S^{2}\right\}$

$$
\begin{aligned}
\mathscr{S}_{1}^{\sigma_{1}} & =\left\{\left[s: \bar{s}: 1:|s|^{2}\right] \in \mathbb{C P}^{3} \mid s \in \mathbb{C} \cup\{\infty\}\right\} \\
& =S^{2}: 2 \text { sphere }
\end{aligned}
$$

Lorentz 3-space as planar circles

\mathscr{S}_{2} : degenerated quadric equipped with an involution σ_{2} $M_{2}=\mathbb{C}^{3}$: the space of minitwistor lines on \mathscr{S}_{2}

$$
\begin{aligned}
\mathbb{R}_{1}^{3} & =M_{2}^{\sigma_{2}} \quad \text { Lorentz } 3 \text {-space } \\
& =\left\{\sigma_{2} \text {-invariant minitwistor line on } \mathscr{S}_{2}\right\}
\end{aligned}
$$

Lorentz 3-space as planar circles

\mathscr{S}_{2} : degenerated quadric equipped with an involution σ_{2} $M_{2}=\mathbb{C}^{3}$: the space of minitwistor lines on \mathscr{S}_{2}

$$
\begin{aligned}
& \mathbb{R}_{1}^{3}= M_{2}^{\sigma_{2}} \quad \text { Lorentz 3-space } \\
&=\left\{\sigma_{2} \text {-invariant minitwistor line on } \mathscr{S}_{2}\right\} \\
&=\left\{\text { holomorphic disks on }\left(\mathscr{S}_{2}, \mathscr{S}_{2}^{\sigma_{2}}\right)\right\}, \\
&=\{\text { planner circles on } \mathscr{C}\} \\
& \mathscr{S}_{2}^{\sigma_{2}}=\left\{\left[e^{-i \theta}: 1: e^{i \theta}: v\right] \in \mathbb{C P}^{3} \mid \theta \in S^{1}, v \in \mathbb{R} \cup\{\infty\}\right\} \\
&=\mathscr{C} \cup\{\infty\}: 1 \text { point compactification of the cylinder } \mathscr{C}
\end{aligned}
$$

4. LeBrun-Mason twistor theory

general theory

LM correspondence for self-dual 4-fold

Theorem (LeBrun-Mason '07)
There is a natural one-to-one correspondence between

\square
standard SD metric on S

- standard em'sedaing Tmem conjugation

LM correspondence for self-dual 4-fold

Theorem (LeBrun-Mason '07)

There is a natural one-to-one correspondence between

- self-dual Zollfrei conformal structures $[g]$ on $S^{2} \times S^{2}$ of signature (--++), and
- pairs $\left(\mathbb{C P}^{3}, P\right)$ where P is an embedded $\mathbb{R} \mathbb{P}^{3}$, on the neighborhoods of the standard objects.
$(M,[g])$ is Zollfrei \Longleftrightarrow every maximal null geodesic is closed.

LM correspondence for self-dual 4-fold

Theorem (LeBrun-Mason '07)

There is a natural one-to-one correspondence between

- self-dual Zollfrei conformal structures $[g]$ on $S^{2} \times S^{2}$ of signature (--++), and
- pairs $\left(\mathbb{C P}^{3}, P\right)$ where P is an embedded $\mathbb{R} \mathbb{P}^{3}$, on the neighborhoods of the standard objects.
$(M,[g])$ is Zollfrei \Longleftrightarrow every maximal null geodesic is closed.
- standard SD metric on $S^{2} \times S^{2}$ is the product $g_{0}=\left(-g_{S^{2}}\right) \oplus g_{S^{2}}$,
- standard embedding $\mathbb{R P}^{3} \subset \mathbb{C P}^{3}$ is the fixed point set of the complex conjugation.

LM correspondence (Rough sketch)

$$
\left(\mathbb{C P}^{3}, P\right) \Rightarrow\left(S^{2} \times S^{2},[g]\right) \mathrm{SD}
$$

P : small deformation of $\mathbb{R} \mathbb{P}^{3}$ in $\mathbb{C P} \mathbb{P}^{3}$,
\Rightarrow There exist $S^{2} \times S^{2}$-family of holomorphic disks in $\mathbb{C P}^{3}$ with boundaries lying on P representing the generator of $H_{2}\left(\mathbb{C P}^{3}, P ; \mathbb{Z}\right) \simeq \mathbb{Z}$. \Rightarrow The self-dual conformal structure $\lceil q\rceil$ on $S^{2} \times S^{2}$ is recovered so that

LM correspondence (Rough sketch)

$$
\left(\mathbb{C P}^{3}, P\right) \Rightarrow\left(S^{2} \times S^{2},[g]\right) \mathrm{SD}
$$

P : small deformation of $\mathbb{R} \mathbb{P}^{3}$ in $\mathbb{C P} \mathbb{P}^{3}$,
\Rightarrow There exist $S^{2} \times S^{2}$-family of holomorphic disks in $\mathbb{C P}^{3}$ with boundaries lying on P representing the generator of $H_{2}\left(\mathbb{C P}^{3}, P ; \mathbb{Z}\right) \simeq \mathbb{Z}$.

LM correspondence (Rough sketch)

$$
\left(\mathbb{C P}^{3}, P\right) \Rightarrow\left(S^{2} \times S^{2},[g]\right) \mathrm{SD}
$$

P : small deformation of $\mathbb{R} \mathbb{P}^{3}$ in $\mathbb{C P}^{3}$,
\Rightarrow There exist $S^{2} \times S^{2}$-family of holomorphic disks in $\mathbb{C P}^{3}$ with boundaries lying on P representing the generator of $H_{2}\left(\mathbb{C P}^{3}, P ; \mathbb{Z}\right) \simeq \mathbb{Z}$.
\Rightarrow The self-dual conformal structure $[g]$ on $S^{2} \times S^{2}$ is recovered so that

$$
\mathfrak{S}_{q}=\left\{x \in S^{2} \times S^{2} \mid q \in \partial D_{x}\right\} \quad\left(D_{x}: \text { holomorphic disk }\right)
$$

is a null-surface for each $q \in P$.

LM correspondence (Rough sketch)

$\underline{\left(\mathbb{C P}^{3}, P\right) \Rightarrow\left(S^{2} \times S^{2},[g]\right) \mathrm{SD}}$
P : small deformation of $\mathbb{R P}^{3}$ in $\mathbb{C P}^{3}$,
\Rightarrow There exist $S^{2} \times S^{2}$-family of holomorphic disks in $\mathbb{C P}{ }^{3}$ with boundaries lying on P representing the generator of $H_{2}\left(\mathbb{C P}^{3}, P ; \mathbb{Z}\right) \simeq \mathbb{Z}$.
\Rightarrow The self-dual conformal structure $[g]$ on $S^{2} \times S^{2}$ is recovered so that

$$
\mathfrak{S}_{q}=\left\{x \in S^{2} \times S^{2} \mid q \in \partial D_{x}\right\} \quad\left(D_{x}: \text { holomorphic disk }\right)
$$

is a null-surface for each $q \in P$.
$\underline{\left(S^{2} \times S^{2},[g]\right) \mathrm{SD} \Rightarrow\left(\mathbb{C P}^{3}, P\right)}:$ omitted (Key is the Zollfrei condition) \square

4. LeBrun-Mason twistor theory

S^{1}-invariant case

Standard model

$$
\mathbb{R} \mathbb{P}^{3}=\left\{\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \in \mathbb{C P}^{3} \mid z_{3}=\bar{z}_{0}, z_{2}=\bar{z}_{1}\right\}
$$

Its free quotient is the minitwistor space $\left(\mathscr{S}_{1}, S^{2}\right)$

Standard model

$$
\mathbb{R P}^{3}=\left\{\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \in \mathbb{C P}^{3} \mid z_{3}=\bar{z}_{0}, z_{2}=\bar{z}_{1}\right\}
$$

We notice to a $\left(\mathbb{C}^{*}, U(1)\right)$-action on $\left(\mathbb{C P}^{3}, \mathbb{R P}^{3}\right)$ defined by

$$
\mu \cdot\left[z_{0}: z_{1}: z_{2}: z_{3}\right]=\left[\mu^{\frac{1}{2}} z_{0}: \mu^{\frac{1}{2}} z_{1}: \mu^{-\frac{1}{2}} z_{2}: \mu^{-\frac{1}{2}} z_{3}\right] \quad \mu \in \mathbb{C}^{*} .
$$

Its free quotient is the minitwistor space $\left(\mathscr{S}_{1}, S^{2}\right)$
\qquad

Standard model

$$
\mathbb{R} \mathbb{P}^{3}=\left\{\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \in \mathbb{C P}^{3} \mid z_{3}=\bar{z}_{0}, z_{2}=\bar{z}_{1}\right\}
$$

We notice to a $\left(\mathbb{C}^{*}, U(1)\right)$-action on $\left(\mathbb{C P}^{3}, \mathbb{R}^{3}\right)$ defined by

$$
\mu \cdot\left[z_{0}: z_{1}: z_{2}: z_{3}\right]=\left[\mu^{\frac{1}{2}} z_{0}: \mu^{\frac{1}{2}} z_{1}: \mu^{-\frac{1}{2}} z_{2}: \mu^{-\frac{1}{2}} z_{3}\right] \quad \mu \in \mathbb{C}^{*} .
$$

Its free quotient is the minitwistor space $\left(\mathscr{S}_{1}, S^{2}\right)$.

de Sitter sp $\quad\left(S_{1}^{3}, g_{S_{1}^{3}}\right) \stackrel{\text { minitwistor corr. }}{\longleftrightarrow}\left(\mathscr{S}_{1}, S^{2}\right) \quad$ quadric

Standard model

$$
\mathbb{R} \mathbb{P}^{3}=\left\{\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \in \mathbb{C P}^{3} \mid z_{3}=\bar{z}_{0}, z_{2}=\bar{z}_{1}\right\}
$$

We notice to a $\left(\mathbb{C}^{*}, U(1)\right)$-action on $\left(\mathbb{C P}^{3}, \mathbb{R}^{3}\right)$ defined by

$$
\mu \cdot\left[z_{0}: z_{1}: z_{2}: z_{3}\right]=\left[\mu^{\frac{1}{2}} z_{0}: \mu^{\frac{1}{2}} z_{1}: \mu^{-\frac{1}{2}} z_{2}: \mu^{-\frac{1}{2}} z_{3}\right] \quad \mu \in \mathbb{C}^{*} .
$$

Its free quotient is the minitwistor space $\left(\mathscr{S}_{1}, S^{2}\right)$.

$$
\left(C^{3}\right.
$$

de Sitter sp
quadric
Correspondingly, an S^{1}-action on the standard SD Zollfrei space $S^{2} \times S^{2}$ is induced, and its free quotient is the de Sitter 3 -space S_{1}^{3}.

S^{1}-invariant deformation

The $\left(\mathbb{C}^{*}, U(1)\right)$-invariant deformations of $\left(\mathbb{C P}^{3}, \mathbb{R}^{3}\right)$ fixing the quotient
by using the parameter h is contained in the function space

S^{1}-invariant deformation

The $\left(\mathbb{C}^{*}, U(1)\right)$-invariant deformations of $\left(\mathbb{C P}^{3}, \mathbb{R}^{3}\right)$ fixing the quotient is written as

$$
P_{h}=\left\{\left[z_{i}\right] \in \mathbb{C P}^{3} \mid z_{3}=e^{h\left(z_{1} / z_{0}\right)} \bar{z}_{0}, z_{2}=e^{h\left(z_{1} / z_{0}\right)} \bar{z}_{1}\right\} .
$$

by using the parameter h is contained in the function space

$$
\begin{aligned}
& C_{*}^{\infty}\left(S^{2}\right):=\left\{h \in C^{\infty}\left(S^{2}\right) \mid \int_{S^{2}} h d S^{2}=0\right\} \\
& (S^{2} \times \overbrace{\left.S^{2},\left[g_{(V, A)}\right]\right)}^{S^{1}} \stackrel{\text { LM corr. }}{\longleftrightarrow}(\overbrace{\left.\mathbb{C P}^{3}, P_{h}\right)}^{\left(\mathbb{C}^{*}, U(1)\right)} \\
& \text { free quot. } \mid \text { s }{ }^{1} \text { 施 } \quad \downarrow \text { free quot. }
\end{aligned}
$$

S^{1}-invariant deformation

The corresponding SD Zollfrei metric on $S^{2} \times S^{2}$ is written as

$$
g_{(V, A)} \sim-V^{-1}(d s+A)^{2}+V g_{S_{1}^{3}} \quad \text { conformally }
$$

where $(V, A) \in C^{\infty}\left(S_{1}^{3}\right) \times \Omega^{1}\left(S_{1}^{3}\right)$ is defined by

$$
V=1-Q \Delta_{S^{2}} h, \quad A=-\check{*} \check{d} R h
$$

by using the integral transforms R and Q.

S^{1}-invariant deformation

The corresponding SD Zollfrei metric on $S^{2} \times S^{2}$ is written as

$$
g_{(V, A)} \sim-V^{-1}(d s+A)^{2}+V g_{S_{1}^{3}} \quad \text { conformally }
$$

where $(V, A) \in C^{\infty}\left(S_{1}^{3}\right) \times \Omega^{1}\left(S_{1}^{3}\right)$ is defined by

$$
V=1-Q \Delta_{S^{2}} h, \quad A=-\check{*} \check{d} R h
$$

by using the integral transforms R and Q.
Here $\Delta_{S^{2}}$ is the Laplacian on S^{2}, \check{x} and \check{d} are the Hodge-* and exterior differential on the S^{2}-direction of $S_{1}^{3} \simeq \mathbb{R} \times S^{2}$.

Monopole equation \& Wave equation

$$
g_{(V, A)} \sim-V^{-1}(d s+A)^{2}+V g_{S_{1}^{3}} \quad \text { conformally }
$$

The self-duality of $g_{(V, A)}$ is equivalent to the monopole equation:

$$
* d V=d A .
$$

Hence we obtain solutions of monopole equation written as

Monopole equation \& Wave equation

$$
g_{(V, A)} \sim-V^{-1}(d s+A)^{2}+V g_{S_{1}^{3}} \quad \text { conformally }
$$

The self-duality of $g_{(V, A)}$ is equivalent to the monopole equation:

$$
* d V=d A .
$$

Hence we obtain solutions of monopole equation written as

$$
V=1-Q \Delta_{S^{2}} h, \quad A=-\check{*} \check{d} R h .
$$

Monopole equation \& Wave equation

$$
g_{(V, A)} \sim-V^{-1}(d s+A)^{2}+V g_{S_{1}^{3}} \quad \text { conformally }
$$

The self-duality of $g_{(V, A)}$ is equivalent to the monopole equation :

$$
* d V=d A
$$

Hence we obtain solutions of monopole equation written as

$$
V=1-Q \Delta_{S^{2}} h, \quad A=-\check{*} \check{d} R h .
$$

In particular, V satisfies the wave equation: $\square V=* d * d V=0$.

Monopole equation \& Wave equation

$$
g_{(V, A)} \sim-V^{-1}(d s+A)^{2}+V g_{S_{1}^{3}} \quad \text { conformally }
$$

The self-duality of $g_{(V, A)}$ is equivalent to the monopole equation:

$$
* d V=d A
$$

Hence we obtain solutions of monopole equation written as

$$
V=1-Q \Delta_{S^{2}} h, \quad A=-\check{*} \check{d} R h .
$$

In particular, V satisfies the wave equation: $\square V=* d * d V=0$.

$$
\Longrightarrow \quad \square Q \tilde{h}=0 \quad \text { for } \quad \tilde{h} \in C_{*}^{\infty}\left(S^{2}\right)=\Delta_{S^{2}} C^{\infty}\left(S^{2}\right)
$$

Monopole equation \& Wave equation

Theorem (N. '09) revisit
For each function $h \in C_{*}^{\infty}\left(S^{2}\right)$, the function $V:=Q h \in C^{\infty}\left(S_{1}^{3}\right)$ satisfies

$$
\text { (i) } \square V=0, \quad \text { (ii) } \lim _{t \rightarrow \infty} V(t, y)=\lim _{t \rightarrow \infty} V_{t}(t, y)=0 \text {. }
$$

Conversely, if $V \in C^{\infty}(M)$ satisfies (i) and (ii), then there exists unique $h \in C_{*}^{\infty}\left(S^{2}\right)$ such that $V=Q h$.

Tod-Kamada metric

$$
\begin{gathered}
g_{(V, A)} \sim-V^{-1}(d s+A)^{2}+V g_{S_{1}^{3}} \quad \text { conformally } \\
(V, A) \text { : monopole } \quad \text { i.e. } \quad * d V=d A
\end{gathered}
$$

This indefinite self-dual meteric $g_{(V, A)}$ on $S^{2} \times S^{2}$ is constructed by K. P. Tod ('95) and is also rediscovered by H. Kamada ('05) in more general investigation.
> - Tod-Kamada metric is Zollfrei.
> - Unless $Q \Delta_{S^{2}} h<1$, the twistor correspondence fails.

Tod-Kamada metric

$$
\begin{gathered}
g_{(V, A)} \sim-V^{-1}(d s+A)^{2}+V g_{S_{1}^{3}} \quad \text { conformally } \\
(V, A) \text { : monopole } \quad \text { i.e. } \quad * d V=d A
\end{gathered}
$$

This indefinite self-dual meteric $g_{(V, A)}$ on $S^{2} \times S^{2}$ is constructed by K. P. Tod ('95) and is also rediscovered by H. Kamada ('05) in more general investigation.

Theorem (N. 2009)

- The twistor correspondence for Tod-Kamada metric is explicitly written down.

Tod-Kamada metric

$$
\begin{gathered}
g_{(V, A)} \sim-V^{-1}(d s+A)^{2}+V g_{S_{1}^{3}} \quad \text { conformally } \\
(V, A) \text { : monopole } \quad \text { i.e. } \quad * d V=d A
\end{gathered}
$$

This indefinite self-dual meteric $g_{(V, A)}$ on $S^{2} \times S^{2}$ is constructed by K. P. Tod ('95) and is also rediscovered by H. Kamada ('05) in more general investigation.

Theorem (N. 2009)

- The twistor correspondence for Tod-Kamada metric is explicitly written down.
- Tod-Kamada metric is Zollfrei.

Tod-Kamada metric

$$
\begin{gathered}
g_{(V, A)} \sim-V^{-1}(d s+A)^{2}+V g_{S_{1}^{3}} \quad \text { conformally } \\
(V, A) \text { : monopole } \quad \text { i.e. } \quad * d V=d A
\end{gathered}
$$

This indefinite self-dual meteric $g_{(V, A)}$ on $S^{2} \times S^{2}$ is constructed by K. P. Tod ('95) and is also rediscovered by H. Kamada ('05) in more general investigation.

Theorem (N. 2009)

- The twistor correspondence for Tod-Kamada metric is explicitly written down.
- Tod-Kamada metric is Zollfrei.
- Unless $Q \Delta_{S^{2}} h<1$, the twistor correspondence fails.

4. LeBrun-Mason twistor theory

\mathbb{R}-invariant case

Standard model

$$
\mathbb{R P}^{3}=\left\{\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \in \mathbb{C P}^{3} \mid z_{3}=\bar{z}_{0}, z_{2}=\bar{z}_{1}\right\}
$$

We notice to the (\mathbb{C}, \mathbb{R})-action on $\left(\mathbb{C P}^{3}, \mathbb{R} \mathbb{P}^{3}\right)$

$$
\mu \cdot\left[z_{0}: z_{1}: z_{2}: z_{3}\right]=\left[z_{0}: z_{1}: z_{2}+i \mu z_{0}: z_{3}+i \mu z_{1}\right] \quad \mu \in \mathbb{C} .
$$

Standard model

$$
\mathbb{R P}^{3}=\left\{\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \in \mathbb{C P}^{3} \mid z_{3}=\bar{z}_{0}, z_{2}=\bar{z}_{1}\right\}
$$

We notice to the (\mathbb{C}, \mathbb{R})-action on $\left(\mathbb{C P}^{3}, \mathbb{R}^{3}\right)$

$$
\mu \cdot\left[z_{0}: z_{1}: z_{2}: z_{3}\right]=\left[z_{0}: z_{1}: z_{2}+i \mu z_{0}: z_{3}+i \mu z_{1}\right] \quad \mu \in \mathbb{C}
$$

Its free quotient is the minitwistor space $\left(\mathscr{S}_{2}, \mathscr{C}\right)$.

Lorentz sp. $\quad\left(\mathbb{R}_{1}^{3}, g_{\mathbb{R}_{1}^{3}}\right) \stackrel{\text { minitwistor corr. }}{\succ}\left(\mathscr{S}_{2}, \mathscr{C}\right) \quad$ deg. quadric

\mathbb{R}-invariant deformation

The \mathbb{R}-invariant deformations of $\left(\mathbb{C P}^{3}, \mathbb{R P}^{3}\right)$ fixing the quotient is parametrized by functions $h \in C^{\infty}(\mathscr{C})$,
explicitly written as

\mathbb{R}-invariant deformation

The \mathbb{R}-invariant deformations of $\left(\mathbb{C P}^{3}, \mathbb{R P}^{3}\right)$ fixing the quotient is parametrized by functions $h \in C^{\infty}(\mathscr{C})$, and the corresponding self-dual metric on $\mathbb{R}^{4} \subset S^{2} \times S^{2}$ (one of the two free parts of \mathbb{R}-action) is explicitly written as

$$
\begin{gathered}
g_{(V, A)}=-V^{-1}(d s+A)^{2}+V g \\
V=1-\partial_{t} R^{\prime} h, \quad A=-\check{*} \check{d} R^{\prime} h .
\end{gathered}
$$

\mathbb{R}-invariant deformation

The \mathbb{R}-invariant deformations of $\left(\mathbb{C P}^{3}, \mathbb{R P}^{3}\right)$ fixing the quotient is parametrized by functions $h \in C^{\infty}(\mathscr{C})$, and the corresponding self-dual metric on $\mathbb{R}^{4} \subset S^{2} \times S^{2}$ (one of the two free parts of \mathbb{R}-action) is explicitly written as

$$
\begin{gathered}
g_{(V, A)}=-V^{-1}(d s+A)^{2}+V g \\
V=1-\partial_{t} R^{\prime} h, \quad A=-\check{*} \check{d} R^{\prime} h .
\end{gathered}
$$

Here (V, A) gives a solution of the monopole equation $* d V=d A$.

$$
\Longrightarrow \quad \square R^{\prime} h=0 \quad \text { for } \quad h \in C^{\infty}(\mathscr{C}) \text {. }
$$

Problems

Problems

- Deformed version of minitwistor correspondence,
- Twistor correspondence for connections on vector bundles,
- Higher dimensional version,
- Holomorphic disks \rightarrow Riemanr surfaces with boundary
- Correspondences for low regularity. Geometry of "shock wave"

Problems

- Deformed version of minitwistor correspondence,
- Twistor correspondence for connections on vector bundles,
- Higher dimensional version,
- Holomorphic disks \rightarrow Riemann surfaces with boundary, - Correspondences for low regularity. Geometry of "shock w ve"

Problems

- Deformed version of minitwistor correspondence,
- Twistor correspondence for connections on vector bundles,
- Higher dimensional version,
- Holomorphic disks \rightarrow Riemann surfaces with boundary, - Correspondences for low regularity. Geometry of "shock wave"

Problems

- Deformed version of minitwistor correspondence,
- Twistor correspondence for connections on vector bundles,
- Higher dimensional version,
- Holomorphic disks \rightarrow Riemann surfaces with boundary,

Problems

- Deformed version of minitwistor correspondence,
- Twistor correspondence for connections on vector bundles,
- Higher dimensional version,
- Holomorphic disks \rightarrow Riemann surfaces with boundary,
- Correspondences for low regularity. Geometry of "shock wave".

Problems

- Deformed version of minitwistor correspondence,
- Twistor correspondence for connections on vector bundles,
- Higher dimensional version,
- Holomorphic disks \rightarrow Riemann surfaces with boundary,
- Correspondences for low regularity. Geometry of "shock wave".

Thank you!

