On Lagrangian submanifolds in complex hyperquadrics and Hamiltonian volume variational problem

> Hui Ma (Joint work with Yoshihiro Ohnita)

Department of Mathematical Sciences Tsinghua University, Beijing, 100084, China

The 10th Pacific Rim Geometry Conference Osaka-Fukuoka, 2011

Contents

1 Backgrounds

2 Lagrangian submanifolds in complex hyperquadrics and hypersurfaces in spheres

- 3 Hamiltonian stability of the Gauss images of isoparametric hypersurfaces
- **4** Classification of Homogeneous Lagrangian submanifolds in complex hyperquadrics

5 Further questions

Hamiltonian minimality and Hamiltonian stability (Y.-G. Oh (1990))

 $(M, \omega, J, g): \, \text{K\"ahler manifold}, \quad \varphi: L \longrightarrow M \text{ Lagr. imm.}$

$$\begin{array}{ccc} \mathrm{H}: & \text{mean curvature vector field of } \varphi \\ & \uparrow \\ \alpha_{\mathrm{H}}:= \omega(\mathrm{H}, \cdot): & \text{``mean curvature form" of } \varphi \end{array}$$

dα_H = φ^{*}ρ_M where ρ_M : Ricci form of M. (Dazord)
If M is Einstein-Kähler, then dα_H = 0.

Suppose L: compact without boundary φ : "Hamiltonian minimal" (or "*H*-minimal") $\Leftrightarrow \qquad \forall \varphi_t : L \longrightarrow M$ Hamil. deform. with $\varphi_0 = \varphi$ d

$$\frac{d}{dt} \operatorname{Vol} \left(L, \varphi_t^* g \right) \big|_{t=0} = 0$$

 $\iff \delta \alpha_{\rm H} = 0$

 \blacksquare minimal \Longrightarrow H-minimal

Assume φ : *H*-minimal.

 $\begin{array}{l} \forall \left\{ \varphi_{t} \right\} : \text{Hamil. deform. of } \varphi_{0} = \varphi \\ \varphi : \text{"Hamiltonian stable "} & \underset{\text{def}}{\longleftrightarrow} & \frac{d^{2}}{dt^{2}} \text{Vol } (L, \varphi_{t}^{*}g)|_{t=0} \geq 0 \end{array}$

The Second Variational Formula

$$\frac{d^2}{dt^2} \operatorname{Vol}\left(L, \varphi_t^* g\right)|_{t=0} = \int_L \left(\langle \triangle_L^1 \alpha, \alpha \rangle - \langle \overline{R}(\alpha), \alpha \rangle - 2 \langle \alpha \otimes \alpha \otimes \alpha_{\mathrm{H}}, S \rangle + \langle \alpha_{\mathrm{H}}, \alpha \rangle^2 \right) dv$$

where

$$\begin{aligned} \bullet & \alpha := \alpha \left. \frac{\partial \varphi_t}{\partial t} \right|_{t=0} \in B^1(L) \\ \bullet & \langle \overline{R}(\alpha), \alpha \rangle := \sum_{i,j=1}^n \operatorname{Ric}^M(e_i, e_j) \alpha(e_i) \alpha(e_j) \quad \{e_i\} : \text{ o.n.b. of } T_pL \\ \bullet & S(X, Y, Z) := \omega(h(X, Y), Z) \quad \text{ sym. 3-tensor field on } L \end{aligned}$$

Corollary

M : Einstein-Kähler manifold with Einstein constant $\kappa.$

 $L \hookrightarrow M$: compact minimal Lagr. submfd. (i.e. $\alpha_{\rm H} \equiv 0$)

Then

L is Hamiltonian stable $\iff \lambda_1 \ge \kappa$.

Here

 λ_1 : the first (positive) eigenvalue of the Laplacian of L on $\mathcal{C}^{\infty}(L)$.

(B. Y. Chen - P. F. Leung - T. Nagano, Y. G. Oh)

Backgrounds

Fact (H. Ono, Amarzaya-Ohnita)

Assume M: compact homogeneous Einstein - Kähler mfd. with $\kappa > 0$. $L \hookrightarrow M$: compact minimal Lagr. submfd. Then

 $\lambda_1 \leq \kappa.$

 $\lambda_1 = \kappa \iff L$ is Hamiltonian stable.

Trivial Hamiltonian deformations

 $\begin{array}{ll} X : \text{holomorphic Killing vector field of } M \\ \Longrightarrow & \alpha_X = \omega(X, \cdot) \text{ is closed} \\ \implies & \alpha_X = \omega(X, \cdot) \text{ is exact if } H^1(M, \mathbb{R}) = \{0\}. \end{array}$

If M is simply connected, more generally $H^1(M, \mathbb{R}) = \{0\}$, each holomorphic Killing vector field of M generates a volume-preserving Hamiltonian deformation of φ .

Def. Such a Hamiltonian deformation of φ is called trivial.

Strictly Hamiltonian stability

```
Assume \varphi : L \to (M, \omega, J, g) : H-minimal.

\varphi : "strictly Hamiltonian stable "

\overleftarrow{\det}

(1) \varphi is Hamiltonian stable

(2) The null space of the second variation on Hamiltonian deformations

coincides with the vector subspace induced by trivial Hamiltonian

deformations of \varphi, i.e., n(\varphi) = n_{hk}(\varphi).
```

Here, $n(\varphi) := \dim[$ the null space] and $n_{hk}(\varphi) := \dim\{\varphi^* \alpha_X | X \text{ is a holomorphic Killing vector field of } M \}.$

If L is strictly Hamiltonian stable, then L has local minimum volume under each Hamiltonian deformation.

Backgrounds

Elementary examples

Circles on a plane

$$S^1 \subset \mathbb{R}^2 \cong \mathbb{C},$$

great circles and small circles on a sphere

$$S^1 \subset S^2 \cong \mathbb{C}P^1,$$

are compact Hamiltonian stable H-minimal Lagrangian submanifolds.

Backgrounds

(Oh)

The real projective space totally geodesic embedded in the complex projective space

$$\mathbb{R}P^n \subset \mathbb{C}P^n$$

is strictly Hamiltonian stable.

• It is Hamiltonian volume minimizing (Kleiner-Oh).

(Oh)

The (n+1)-torus

$$T^{n+1}_{r_0,\cdots,r_n} = S^1(r_0) \times \cdots \times S^1(r_n) \subset \mathbb{C}^{n+1}$$

is strictly Hamiltonian stable H-minimal Lagrangian submanifold in \mathbb{C}^{n+1} .

■ T_{r_0,\dots,r_n}^{n+1} is not minimal in \mathbb{C}^{n+1} (\nexists closed minimal submanifolds in \mathbb{C}^{n+1}).

 \Rightarrow It is not stable under arbitrary deformation of T_{r_0,\cdots,r_n}^{n+1} .

- It is H-minimal in \mathbb{C}^{n+1} .
- It is strictly Hamiltonian stable.
- Is it Hamiltonian volume minimizing? (Oh's conjecture, still open)

(Oh, H. Ono)

The quotient space by S^1 -action

$$T^{n+1}_{r_0,\cdots,r_n}/S^1 \subset \mathbb{C}P^n$$

is strictly Hamiltonian stable H-minimal Lagrangian submanifold in $\mathbb{C}P^n.$

- If $r_0 = \cdots = r_n = \frac{1}{\sqrt{n+1}}$, then it is minimal ("Clifford torus "), otherwise, not minimal but H-minimal.
- It is strictly Hamiltonian stable for any (r_0, \cdots, r_n)
- Is the Clifford torus Hamiltonian volume minimizing? (Oh's conjecture, still open)

(Amarzaya-Ohnita)

Compact irreducible minimal Lagrangian submanifolds

$$SU(p)/SO(p) \cdot \mathbf{Z}_{p} \subset \mathbb{C}P^{\frac{(p-1)(p+2)}{2}}$$
$$SU(p)/\mathbf{Z}_{p} \subset \mathbb{C}P^{p^{2}-1}$$
$$SU(2p)/Sp(p) \cdot \mathbf{Z}_{2p} \subset \mathbb{C}P^{(p-1)(2p+1)}$$
$$E_{6}/F_{4} \cdot \mathbf{Z}_{3} \subset \mathbb{C}P^{26}$$

embedded in complex projective spaces are strictly Hamiltonian stable.

• They are not totally geodesic but their second fundamental forms are parallel.

Backgrounds

(R. Chiang, Bedulli-Gori, Ohnita)

The minimal Lagrangian orbit

$$\rho_3(SU(2))[z_0^3 + z_1^3] \subset \mathbb{C}P^3$$

is a compact embedded Hamiltonian stable submanifold with non-parallel second fundamental form.

L

(M. Takeuchi, Oh, Amarzaya-Ohnita)

M : cpt. irred. Herm. sym. sp.

L: cpt. totally geodesic Lagr. submfd embedded in M.

$$\substack{(L,M)\\\text{tot. geod.}\\\text{agr. submfd.}} = \begin{cases} (Q_{p,q}(\mathbb{R}) = (S^{p-1} \times S^{q-1})/\mathbb{Z}_2, \\ Q_{p+q-2}(\mathbb{C}))(p \ge 2, q-p \ge 3)\\ (U(2p)/Sp(p), SO(4p)/U(2p))(p \ge 3), \\ (T \cdot E_6/F_4, E_7/T \cdot E_6). \end{cases}$$

 $\iff L$ is NOT Hamiltonian stable.

Takeuchi:

All cpt. totally geodesic Lagr. submfds in cpt. irred. Herm. sym. sp. are real forms,

i.e., the fixed point subset of involutive anti-holomorphic isometries.

• Let (M, ω, J, g) be an Einstein-Kähler manifold with an involutive anti-holomorphic isometry τ and $L := Fix(\tau)$, Einstein, positive Ricci curvature. Is L Hamiltonian volume minimizing? (Oh's conjecture, still open)

(Iriyeh-H. Ono-Sakai)

$$S^{1}(1) \times S^{1}(1) \xrightarrow[\text{totally geodesic}]{\text{Lagr.}} S^{2}(1) \times S^{2}(1)$$

is Hamiltonian volume minimizing.

Complex Hyperquadrics

$$Q_n(\mathbb{C}) \cong \widetilde{Gr_2}(\mathbb{R}^{n+2}) \cong SO(n+2)/SO(2) \times SO(n)$$

a compact Hermitian symmetric space of rank 2

$$Q_n(\mathbb{C}) := \{ [\mathbf{z}] \in \mathbb{C}P^{n+1} \mid z_0^2 + z_1^2 + \dots + z_{n+1}^2 = 0 \}$$

 $\widetilde{Gr_2}(\mathbb{R}^{n+2}) := \{ W \mid \text{oriented 2-dimensional vector subspace of } \mathbb{R}^{n+2} \}$

$$Q_n(\mathbb{C}) \ni [\mathbf{a} + \sqrt{-1}\mathbf{b}] \longleftrightarrow \mathbf{a} \wedge \mathbf{b} \in \widetilde{Gr_2}(\mathbb{R}^{n+2})$$

Here $\{a, b\}$ is an orthonormal basis of W compatible with its orientation.

- $(Q_n(\mathbb{C}) \cong \widetilde{Gr_2}(\mathbb{R}^{n+2}), g_{Q_n(\mathbb{C})}^{\text{std}})$ is Einstein-Kähler with Einstein constant $\kappa = n$.
- $Q_1(\mathbb{C}) \cong S^2$
- $Q_2(\mathbb{C}) \cong S^2 \times S^2$
- $n \geq 3, Q_n(\mathbb{C})$ is irreducible.

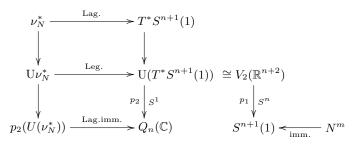
On Lagrangian submanifolds in $Q_n(\mathbb{C})$

Lagrangian submanifolds in complex hyperquadrics and hypersurfaces in spheres

Conormal bundle construction

Given an oriented submanifold $N^m \subset S^{n+1}(1)$

$$p_1: V_2(\mathbb{R}^{n+2}) \ni (\mathbf{a}, \mathbf{b}) \mapsto \mathbf{a} \in S^{n+1}(1)$$
$$p_2: V_2(\mathbb{R}^{n+2}) \ni (\mathbf{a}, \mathbf{b}) \mapsto \mathbf{a} \wedge \mathbf{b} \in Q_n(\mathbb{C})$$



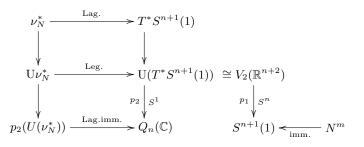
 $N^n \subset S^{n+1}$ hypersurface \Rightarrow This construction is nothing but the following Gauss map. On Lagrangian submanifolds in $Q_n(\mathbb{C})$

Lagrangian submanifolds in complex hyperquadrics and hypersurfaces in spheres

Conormal bundle construction

Given an oriented submanifold $N^m \subset S^{n+1}(1)$

$$p_1: V_2(\mathbb{R}^{n+2}) \ni (\mathbf{a}, \mathbf{b}) \mapsto \mathbf{a} \in S^{n+1}(1)$$
$$p_2: V_2(\mathbb{R}^{n+2}) \ni (\mathbf{a}, \mathbf{b}) \mapsto \mathbf{a} \wedge \mathbf{b} \in Q_n(\mathbb{C})$$



 $N^n \subset S^{n+1}$ hypersurface \Rightarrow This construction is nothing but the following Gauss map.

Oriented hypersurface in a sphere

 $N^n \hookrightarrow S^{n+1}(1) \subset \mathbb{R}^{n+2}$

 \mathbf{x} : the position vector of points of N^n

 \mathbf{n} : the unit normal vector field of N^n in $S^{n+1}(1)$

"Gauss map"

$$\mathcal{G}: N^n \ni p \longmapsto [\mathbf{x}(p) + \sqrt{-1}\mathbf{n}(p)] = \mathbf{x}(p) \land \mathbf{n}(p) \in Q_n(\mathbb{C})$$

is a Lagrangian immersion.

- Oriented hypersurfaces N_1, N_2 are parallel to each other in $S^{n+1}(1)$ $\iff \mathcal{G}(N_1) = \mathcal{G}(N_2).$
- Choose an orthonormal frame $\{e_i\}$ of N w.r.t. the induced metric from $S^{n+1}(1)$ s.t. $h(e_i, e_j) = \kappa_i \delta_{ij}$ and let θ_i be the dual frame. Then the induced metric on N by the Gauss map \mathcal{G} is

$$\mathcal{G}^* g_{Q_n(\mathbb{C})}^{\mathrm{std}} = \sum (1 + \kappa_i^2) \theta_i \otimes \theta_i.$$

The Mean Curvature Formula (B. Palmer, 1997)

$$\alpha_{\rm H} = d\left(\operatorname{Im}\left(\log\prod_{i=1}^{n}(1+\sqrt{-1}\kappa_i)\right)\right),$$

where H denotes the mean curvature vector field of \mathcal{G} and κ_i $(i = 1, \dots, n)$ denote the principal curvatures of $N^n \subset S^{n+1}(1)$.

() When n = 2, if $N^2 \subset S^3(1)$ is a minimal surface, then

$$(1 + \sqrt{-1}\kappa_1)(1 + \sqrt{-1}\kappa_2) = 1 - K_N + \sqrt{-1}H_N,$$

 $\mathcal{G}: N^2 \longrightarrow \widetilde{\mathrm{Gr}}_2(\mathbb{R}^4) \cong Q_2(\mathbb{C}) \cong S^2 \times S^2$ is a minimal Lagrangian immersion.

If Nⁿ ⊂ Sⁿ⁺¹(1) ia an oriented austere hypersurface in Sⁿ⁺¹(1) (Harvey-Lawson, 1982), then G : Nⁿ → Q_n(C) is a minimal Lagrangian immersion.

◎ If $N^n \to S^{n+1}(1)$ is an isoparametric hypersurface (i.e., κ_i are constant), then $\mathcal{G}: N^n \longrightarrow Q_n(\mathbb{C})$ is a minimal Lagrangian immersion.

The Mean Curvature Formula (B. Palmer, 1997)

$$\alpha_{\rm H} = d\left(\operatorname{Im}\left(\log\prod_{i=1}^n (1+\sqrt{-1}\kappa_i)\right)\right),$$

where H denotes the mean curvature vector field of \mathcal{G} and κ_i $(i = 1, \dots, n)$ denote the principal curvatures of $N^n \subset S^{n+1}(1)$.

() When n = 2, if $N^2 \subset S^3(1)$ is a minimal surface, then

$$(1 + \sqrt{-1}\kappa_1)(1 + \sqrt{-1}\kappa_2) = 1 - K_N + \sqrt{-1}H_N,$$

 $\mathcal{G}: N^2 \longrightarrow \widetilde{\mathrm{Gr}}_2(\mathbb{R}^4) \cong Q_2(\mathbb{C}) \cong S^2 \times S^2$ is a minimal Lagrangian immersion.

② If Nⁿ ⊂ Sⁿ⁺¹(1) ia an oriented austere hypersurface in Sⁿ⁺¹(1) (Harvey-Lawson, 1982), then G : Nⁿ → Q_n(C) is a minimal Lagrangian immersion.

3 If $N^n \to S^{n+1}(1)$ is an isoparametric hypersurface (i.e., κ_i are constant), then $\mathcal{G}: N^n \longrightarrow Q_n(\mathbb{C})$ is a minimal Lagrangian immersion.

Definition of austere submanifold (Harvey-Lawson)

 $N \subset M$: **austere submanifold** in a Riem. mfd. M $\stackrel{\text{def}}{\longleftrightarrow}$ for all $\eta \in T_x^{\perp}N$, the set of eigenvalues with their multiplicities of the shape operator A_η of N are invariant under the multiplication by -1.

- A minimal surface is an austere submanifold.
- An austere submanifold is a minimal submanifold.

Oriented hypersurface in a sphere

 $N^n \hookrightarrow S^{n+1}(1) \subset \mathbb{R}^{n+2}$ with constant principal curvatures ("isoparametric hypersurface")

"Gauss map"

$$\mathcal{G}: N^n \ni p \underset{\text{Larg. imm.}}{\longmapsto} \mathbf{x}(p) \wedge \mathbf{n}(p) \in \widetilde{Gr}_2(\mathbb{R}^{n+2}) \cong Q_n(\mathbb{C})$$

Here $g := \# \{ \text{distinct principal curvatures of } N^n \}$ $m_1, \cdots, m_g :$ multiplicities of the principal curvatures.

(Münzner, 1980, 1981):

- $m_i = m_{i+2}$ for each i;
- \blacksquare g must be 1, 2, 3, 4 or 6;
- N is defined by a certain real homogeneous polynomial of degree g, called "Cartan-Münzner polynomial".

On Lagrangian submanifolds in $Q_n(\mathbb{C})$

Lagrangian submanifolds in complex hyperquadrics and hypersurfaces in spheres

$$N^n \hookrightarrow S^{n+1}(1) \subset \mathbb{R}^{n+2}$$
 isoparametric hypersurface
 $\mathcal{G}: N^n \ni p \underset{\text{Lag. imm.}}{\longrightarrow} \mathbf{x}(p) \wedge \mathbf{n}(p) \in \widetilde{Gr}_2(\mathbb{R}^{n+2}) \cong Q_n(\mathbb{C})$

At $p \in N^n$, a normal geodesic γ defined by $\mathbf{x}_{\theta(p)} = \cos \theta \mathbf{x}(p) + \sin \theta \mathbf{n}(p)$ has intersection with N^n at 2g points as

$$\gamma \cap N = \{\mathbf{x}_{\theta}(p) | \theta = \frac{2\pi(\alpha - 1)}{g} \text{ or } 2\theta_1 + \frac{2\pi(\alpha - 1)}{g} \text{ for some } \alpha = 1, \cdots, g\}$$

For each $\mathbf{x}_{\theta}(p) \in \gamma \cap N^n$, let $p_{\theta} \in N$ be a point with $\mathbf{x}_{\theta}(p) = \mathbf{x}(p_{\theta})$. $\mathcal{G}(p) = \mathcal{G}(q)$ for $p, q \in N^n \Leftrightarrow q = p_{\theta}$ for some $\theta = \frac{2\pi(\alpha - 1)}{g}$ $(\alpha = 1, 2, \cdots, g)$.

Then

$$\nu: N \ni p \mapsto \cos \frac{2\pi}{g} \mathbf{x}(p) + \sin \frac{2\pi}{g} \mathbf{n}(p) \in N$$

is a diffeomorphism of N onto itself of order g and $\{ \mathrm{Id}, \nu, \cdots, \nu^{\mathrm{g}-1} \}$ is a cyclic group of order g acting freely on N.

$$\mathcal{G}(N^n) \cong N^n / \mathbb{Z}_g$$

H. Ono's integral formula of Maslov index

Let L be a Lagrangian submanifold in a Kähler manifold (M, ω, J, g) . For each smooth map of pairs $w : (D^2, \partial D^2) \to (M, L)$, it holds

$$I_{\mu,L}([w]) = \frac{1}{\pi} \int_{D^2} w^* \rho_M + \frac{1}{\pi} \int_{\partial D^2} w^* |_{\partial D^2} \alpha_H.$$

Proposition (H. Ono)

Suppose that (M, ω, J, g) is Einstein-Kähler with positive Einstein constant and L is a compact Lagrangian embedded submanifold in M. Then L is monotone $\Leftrightarrow [\alpha_{\rm H}] = 0$ in $H^1(L, \mathbb{R})$.

Proposition (H. Ono)

Let (M, ω, J, g) be a simply connected Einstein-Kähler manifold with positive Einstein constant. If L is a compact monotone Lagrangian embedded submanifold in M, then L is cyclic and

$$n_L \Sigma_L = 2\gamma_{c_1}.$$

•
$$\gamma_{c_1}(Q_n(\mathbb{C})) = n \text{ for } n \ge 2.$$

Proposition (M.-Ohnita)

The Gauss image of an isoparametric hypersurface $N^n \subset S^{n+1}(1)$

$$L^n = \mathcal{G}(N^n) \xrightarrow{\text{cpt. min. Lag.}} Q_n(\mathbb{C})$$

embedd.

is a compact monotone and cyclic embedded Lagrangian submanifold and its minimal Maslov number Σ_L is given by

$$\Sigma_L = 2n/g = \begin{cases} m_1 + m_2, & \text{if } g \text{ is even;} \\ 2m_1, & \text{if } g \text{ is odd.} \end{cases}$$

g	1	2	3	4	6
Σ_L	2n	n	$\frac{2n}{3}$	$\frac{n}{2}$	$\frac{n}{3}$

Isoparametric hypersurfaces in $S^{n+1}(1)$ I

All isoparametric hypersurfaces in $S^{n+1}(1)$ are classified into

• Homogeneous ones (Hsiang-Lawson, R. Takagi-T. Takahashi) can be obtained as principal orbits of the linear isotropy representations of Riemannian symmetric pairs (U, K) of rank 2.

$$g = 1: N^n = S^n$$
, a great or small sphere;

■ $g = 2, N^n = S^{m_1} \times S^{m_2}$, $(n = m_1 + m_2, 1 \le m_1 \le m_2)$, the Clifford hypersurfaces;

g = 3,
$$N^n$$
 is homog., $N^n = \frac{SO(3)}{\mathbb{Z}_2 + \mathbb{Z}_2}, \frac{SU(3)}{T^2}, \frac{Sp(3)}{Sp(1)^3}, \frac{F_4}{Spin(8)};$

- g = 6: homogenous
 - $g = 6, m_1 = m_2 = 1$: homog. (Dorfmeister-Neher, R. Miyaoka)

$$g = 6, m_1 = m_2 = 2$$
: homog. (R. Miyaoka)

 Non-homogenous ones exist (H.Ozeki- M.Takeuchi) and are almost classified (Ferus-Karcher-Münzner, Cecil-Chi-Jensen, Immervoll, Chi).

• g = 4: except for $(m_1, m_2) = (7, 8)$, either homog. or OT-FKM type.

On Lagrangian submanifolds in $Q_n(\mathbb{C})$

Lagrangian submanifolds in complex hyperquadrics and hypersurfaces in spheres

Isoparametric hypersurfaces in $S^{n+1}(1)$ II

There exists only one minimal isoparametric hypersurface N^n in each isoparametric family of $S^{n+1}(1)$. Its principal curvatures are

If
$$g = 1$$
, then $k_1 = 0$
If $g = 2$, then $k_1 = \sqrt{\frac{m_2}{m_1}}$, $k_2 = -\sqrt{\frac{m_1}{m_2}}$
If $g = 3$, then $k_1 = \sqrt{3}$, $k_2 = 0$, $k_3 = -\sqrt{3}$
If $g = 4$, then
$$k_1 = \frac{\sqrt{m_1 + m_2} + \sqrt{m_2}}{\sqrt{m_2}}, \quad k_2 = \frac{\sqrt{m_1 + m_2} - \sqrt{m_2}}{\sqrt{m_1}},$$

$$k_3 = -\frac{\sqrt{m_1 + m_2} - \sqrt{m_2}}{\sqrt{m_1}}, \quad k_4 = -\frac{\sqrt{m_1 + m_2} + \sqrt{m_1}}{\sqrt{m_2}}$$

• If g = 6, then $m_1 = m_2 = 1$ or 2,

$$k_1 = 2 + \sqrt{3},$$
 $k_2 = 1,$ $k_3 = 2 - \sqrt{3},$
 $k_4 = -(2 - \sqrt{3}),$ $k_5 = -1,$ $k_6 = -(2 + \sqrt{3}).$

Oriented hypersurface in a sphere

 $N^n \hookrightarrow S^{n+1}(1) \subset \mathbb{R}^{n+2}$ with constant principal curvatures ("isoparametric hypersurface")

"Gauss map" and Gauss image

$$\mathcal{G}: N^n \ni p \xrightarrow[\min. \text{ Larg. imm.}]{} x(p) \wedge n(p) \in Q_n(\mathbb{C})$$
$$N^n \xrightarrow[\mathbb{Z}_g]{} L^n = \mathcal{G}(N^n) \cong N^n / \mathbb{Z}_g \hookrightarrow Q_n(\mathbb{C})$$
cpt. embedded minimal Lagr. submfd

Proposition 2.1.

An isoparametric hypersurface $N^n \subset S^{n+1}(1)$ is homogeneous \iff $L^n = \mathcal{G}(N^n)$ is a compact homogeneous Lagrangian submanifold in $Q_n(\mathbb{C})$. $N^n \hookrightarrow S^{n+1}(1)$: compact embedded isoparametric hypersurface

H-stability of the Gauss map. (Palmer)

Its Gauss map $\mathcal{G}: N \to Q_n(\mathbb{C})$ is H-stable $\iff N^n = S^n \subset S^{n+1}$ (g=1).

Question

Hamiltonian stability of its Gauss image $\mathcal{G}(N^n) \subset Q_n(\mathbb{C})$?

We determine the Hamiltonian stability of Gauss images of ALL homogeneous isoparametric hypersurfaces.

$$\begin{array}{ll} g=1 & N^n=S^n \mbox{ a great or small sphere} \\ L=\mathcal{G}(N^n)=Q_{1,n+1}(\mathbb{R})\cong S^n \mbox{ is strictly H-stable} \end{array}$$

$$g = 2: \qquad N^n = S^{m_1}(r_1) \times S^{m_2}(r_2), \ (1 \le m_1 \le m_2, r_1^2 + r_2^2 = 1) \\ L = \mathcal{G}(N^n) = Q_{m_1+1,m_2+1}(\mathbb{R}) \cong (S^{m_1} \times S^{m_2})/\mathbb{Z}_2 \text{ is H-stable} \\ \iff m_2 - m_1 < 3$$

- If $m_2 m_1 \geq 3$, then the spherical harmonics of degree 2 on $S^{m_1} \subset \mathbb{R}^{m_1+1}$ of smaller dimension give volume-decreasing Hamiltonian deformations of $\mathcal{G}(N^n)$.
- If $m_1 m_2 = 2$, then it is H-stable but not strictly H-stable.
- If $m_1 m_2 = 0$ or 1, then it is strictly H-stable.

Remark: $\mathcal{G}(N^n) = Q_{p,q}(\mathbb{R})$ totally geodesic for g = 1, 2.

$$g = 1: \qquad N^n = S^n \text{ a great or small sphere} \\ L = \mathcal{G}(N^n) = Q_{1,n+1}(\mathbb{R}) \cong S^n \text{ is strictly H-stable} \\ \Sigma_L = 2n$$

$$g = 2: \qquad N^n = S^{m_1}(r_1) \times S^{m_2}(r_2), \ (1 \le m_1 \le m_2, r_1^2 + r_2^2 = 1) \\ L = \mathcal{G}(N^n) = Q_{m_1+1,m_2+1}(\mathbb{R}) \cong (S^{m_1} \times S^{m_2})/\mathbb{Z}_2 \text{ is H-stable} \\ \iff m_2 - m_1 < 3$$

- If $m_2 m_1 \geq 3$, then the spherical harmonics of degree 2 on $S^{m_1} \subset \mathbb{R}^{m_1+1}$ of smaller dimension give volume-decreasing Hamiltonian deformations of $\mathcal{G}(N^n)$.
- If $m_1 m_2 = 2$, then it is H-stable but not strictly H-stable.
- If $m_1 m_2 = 0$ or 1, then it is strictly H-stable.

$$\Sigma_L = n$$

Remark: $\mathcal{G}(N^n) = Q_{p,q}(\mathbb{R})$ totally geodesic for g = 1, 2.

Theorem 3.1 (M.-Ohnita).

$$g = 3: \quad L = \mathcal{G}(N^n) = SO(3)/(\mathbb{Z}_2 + \mathbb{Z}_2) \cdot \mathbb{Z}_3 \quad (m_1 = m_2 = 1)$$

$$SU(3)/T^2 \cdot \mathbb{Z}_3 \quad (m_1 = m_2 = 2)$$

$$Sp(3)/Sp(1)^3 \cdot \mathbb{Z}_3 \quad (m_1 = m_2 = 4)$$

$$F_4/Spin(8) \cdot \mathbb{Z}_3 \quad (m_1 = m_2 = 8)$$

 $\implies L$ is strictly H-stable.

Theorem 3.2 (M.-Ohnita).

$$g = 6: \quad L = \mathcal{G}(N^n) = \quad SO(4)/(\mathbb{Z}_2 + \mathbb{Z}_2) \cdot \mathbb{Z}_6 \quad (m_1 = m_2 = 1) \\ G_2/T^2 \cdot \mathbb{Z}_6 \quad (m_1 = m_2 = 2)$$

 $\implies L$ is strictly H-stable.

Theorem 3.1 (M.-Ohnita).

$$g = 3: \quad L = \mathcal{G}(N^n) = SO(3)/(\mathbb{Z}_2 + \mathbb{Z}_2) \cdot \mathbb{Z}_3 \quad (m_1 = m_2 = 1, \Sigma_L = 2)$$

$$SU(3)/T^2 \cdot \mathbb{Z}_3 \quad (m_1 = m_2 = 2, \Sigma_L = 4)$$

$$Sp(3)/Sp(1)^3 \cdot \mathbb{Z}_3 \quad (m_1 = m_2 = 4, \Sigma_L = 8)$$

$$F_4/Spin(8) \cdot \mathbb{Z}_3 \quad (m_1 = m_2 = 8, \Sigma_L = 16)$$

 $\implies L$ is strictly H-stable.

Theorem 3.2 (M.-Ohnita).

$$g = 6: \quad L = \mathcal{G}(N^n) = \quad SO(4) / (\mathbb{Z}_2 + \mathbb{Z}_2) \cdot \mathbb{Z}_6 \quad (m_1 = m_2 = 1, \, \Sigma_L = 2)$$

$$G_2 / T^2 \cdot \mathbb{Z}_6 \quad (m_1 = m_2 = 2, \, \Sigma_L = 4)$$

$$\implies L \text{ is strictly H stable}$$

Theorem 3.3 (M.-Ohnita).

 $q = 4, N^n$ homogeneous, $L = \mathcal{G}(N^n)$: • $L = SO(5)/T^2 \cdot \mathbb{Z}_4$ $(m_1 = m_2 = 2)$ is strictly H-stable. 2 $L = \frac{U(5)}{(SU(2) \times SU(2) \times U(1)) \cdot \mathbb{Z}_4}$ $(m_1 = 4, m_2 = 5)$ is strictly H-stable. $l = \frac{SO(2) \times SO(m)}{(\mathbb{Z}_2 \times SO(m-2)) \cdot \mathbb{Z}_4}$ $(m_1 = 1, m_2 = m - 2, m > 3)$ L is NOT H-stable $\iff m_2 - m_1 > 3$, i.e., m > 6. $L = \frac{S(U(2) \times U(m))}{S(U(1) \times U(1) \times U(m-2)) \cdot \mathbb{Z}_4}$ $(m_1 = 2, m_2 = 2m - 3, m > 2)$ L is NOT H-stable $\iff m_2 - m_1 \ge 3$, i.e., m > 4. $\bullet L = \frac{Sp(2) \times Sp(m)}{(Sp(1) \times Sp(1) \times Sp(m-2)) \cdot \mathbb{Z}_4}$ $(m_1 = 4, m_2 = 4m - 5, m > 2)$ L is NOT H-stable $\iff m_2 - m_1 > 3$, i.e., m > 3. **6** $L = \frac{U(1) \cdot Spin(10)}{(S^1 \cdot Spin(6)) \cdot \mathbb{Z}_4}$, $(m_1 = 6, m_2 = 9)$ is strictly H-stable.

Theorem 3.3 (M.-Ohnita).

$$\begin{array}{l} g=4, \ N^n \ \text{homogeneous}, \ L=\mathcal{G}(N^n):\\ \bullet \ L=SO(5)/T^2 \cdot \mathbb{Z}_4 \ (m_1=m_2=2, \ \Sigma_L=4) \ \text{is strictly H-stable.} \\ \bullet \ L=\frac{U(5)}{(SU(2)\times SU(2)\times U(1))\cdot \mathbb{Z}_4} \ (m_1=4, m_2=5, \ \Sigma_L=9) \ \text{is strictly H-stable.} \\ \bullet \ L=\frac{SO(2)\times SO(m)}{(\mathbb{Z}_2\times SO(m-2))\cdot \mathbb{Z}_4} \\ (m_1=1, m_2=m-2, m\geq 3, \ \Sigma_L=m-1) \\ L \ \text{is NOT H-stable} \Longleftrightarrow m_2-m_1\geq 3, \ \text{i.e.}, \ m\geq 6. \\ \bullet \ L=\frac{S(U(2)\times U(m))}{(SU(1)\times U(1)\times U(m-2))\cdot \mathbb{Z}_4} \\ (m_1=2, m_2=2m-3, m\geq 2, \ \Sigma_L=2m-1) \\ L \ \text{is NOT H-stable} \Longleftrightarrow m_2-m_1\geq 3, \ \text{i.e.}, \ m\geq 4. \\ \bullet \ L=\frac{Sp(2)\times Sp(m)}{(Sp(1)\times Sp(1)\times Sp(m-2))\cdot \mathbb{Z}_4} \\ (m_1=4, m_2=4m-5, m\geq 2, \ \Sigma_L=4m-1) \\ L \ \text{is NOT H-stable} \Longleftrightarrow m_2-m_1\geq 3, \ \text{i.e.}, \ m\geq 3. \\ \bullet \ L=\frac{U(1)\cdot Spin(10)}{(S^1, Spin(6))\cdot \mathbb{Z}_4}, \ (m_1=6, m_2=9, \ \Sigma_L=15) \ \text{is strictly H-stable.} \end{array}$$

Summarize,

Theorem 3.4 (M.- Ohnita).

Suppose that (U, K) is not of type EIII, then $L = \mathcal{G}(N)$ is not Hamiltonian stable if and only if $m_2 - m_1 \ge 3$.

Moreover, if (U, K) is of type EIII, that is, $(U, K) = (E_6, U(1) \cdot Spin(10))$, then $(m_1, m_2) = (6, 9)$ but $L = \mathcal{G}(N)$ is strictly Hamiltonian stable.

Sketch of our proof

- $N^n \subset S^{n+1}(1)$ cpt. homog. isop. hypersurface
- $L = \mathcal{G}(N^n) \cong K/K_{[\mathfrak{a}]} \longrightarrow (Q_n(\mathbb{C}), g_{Q_n(\mathbb{C})}^{\mathrm{std}})$ cpt min. Lagr.

•
$$(Q_n(\mathbb{C}), g_{Q_n(\mathbb{C})}^{\mathrm{std}})$$
 cpt sym sp, E-K, $\kappa = n$

• In order to determine the Hamiltonian stability of $L = \mathcal{G}(N^n)$, we need to determine λ_1 of the Laplacian of Lw.r.t. the induced metric from $(Q_n(\mathbb{C}), g_{Q_n(\mathbb{C})}^{\text{std}})$ based on the spherical function theory of compact homogeneous spaces and fibrations on homogeneous isoparametric hypersurfaces.

Homogeneous isoparametric hypersurfaces in $S^{n+1}(1)$

- \blacksquare (U, K): cpt. Riem. sym. pair of rank 2
- $\blacksquare \mathfrak{u} = \mathfrak{k} + \mathfrak{p}, \mathfrak{a} \subset \mathfrak{p}$: a maximal abelian subspace
- \blacksquare $\langle\,,\,\rangle_{\mathfrak{u}}\colon$ AdU-inv. inner product of \mathfrak{u} defined by the Killing-Cartan form of \mathfrak{u}
- For each regular element H of $\mathfrak{a} \cap S^{n+1}(1)$, we have a homog. isop. hyp. in the unit sphere

$$N^{n} := (\mathrm{A}d_{\mathfrak{p}}K)H \subset S^{n+1}(1) \subset \mathbb{R}^{n+2} \cong (\mathfrak{p}, \langle , \rangle_{\mathfrak{u}}|_{\mathfrak{p}}).$$

Its Gauss image is

$$\mathcal{G}(N^n) = [(\mathrm{A}d_{\mathfrak{p}}K)\mathfrak{a}] \subset \widetilde{\mathrm{G}r}_2(\mathfrak{p}) \cong Q_n(\mathbb{C}).$$

Homogeneous spaces expressions:

$$N^{n} \cong K/K_{0}$$

$$L^{n} = \mathcal{G}(N^{n}) \cong K/K_{[\mathfrak{a}]}$$

where

$$\begin{split} K_0 &:= \{k \in K | \mathrm{Ad}_{\mathfrak{p}}(k) H = H\}, \\ K_{\mathfrak{a}} &:= \{k \in K | \mathrm{Ad}_{\mathfrak{p}}(k) \mathfrak{a} = \mathfrak{a}\}, \\ K_{[\mathfrak{a}]} &:= \{k \in K_{\mathfrak{a}} | \mathrm{Ad}_{\mathfrak{p}}(k) : \mathfrak{a} \to \mathfrak{a} \text{ preserves the orientation of } \mathfrak{a}\}. \end{split}$$

The deck transformation group of the covering map $\mathcal{G}: N^n \to \mathcal{G}(N)$ equals to

$$K_{[\mathfrak{a}]}/K_0 = W(U,K)/\mathbb{Z}_2 \cong \mathbb{Z}_g$$

where $W(U, K) = K_{\mathfrak{a}}/K_0$ is the Weyl group of (U, K).

Fibrations on homogenous isoparametric hypersurfaces by homogeneous isoparametric hypersurfaces

For g = 4, 6, (U, K) are of \mathfrak{b}_2 , \mathfrak{bc}_2 or \mathfrak{g}_2 type. In the case when (U, K) is of \mathfrak{b}_2 or \mathfrak{g}_2 , we have one fibration as follows:

$$N^{n} = \frac{K/K_{0}}{\bigvee_{K_{1}/K_{0}}}$$
$$K/K_{1}$$

When (U, K) is of type \mathfrak{bc}_2 , we have the following two fibrations:

$$N^{n} = K/K_{0} \xrightarrow{=} K/K_{0}$$

$$\downarrow^{K_{1}/K_{0}} \qquad \qquad \downarrow^{K_{2}/K_{0}}$$

$$K/K_{1} \xrightarrow{K_{2}/K_{1}} K/K_{2}$$

In case g = 6 and $(U, K) = (G_2, SO(4)), (m_1, m_2) = (1, 1)$

$$N^{6} = K/K_{0} = SO(4)/\mathbf{Z}_{2} + \mathbf{Z}_{2} \subset S^{7}$$

$$\downarrow^{K_{1}/K_{0} = SO(3)/\mathbf{Z}_{2} + \mathbf{Z}_{2} \subset S^{4}}$$

$$K/K_{1} = SO(4)/SO(3) \cong S^{3}$$

$$U/K = G_2/SO(4) \supset U_1/K_1 = SU(3)/SO(3)$$

$$K/K_0 = SO(4)/(\mathbf{Z}_2 + \mathbf{Z}_2) : g = 6, m_1 = m_2 = 1,$$

$$K_1/K_0 = SO(3)/(\mathbf{Z}_2 + \mathbf{Z}_2) : g = 3, m_1 = m_2 = 1.$$

In case g = 6 and $(U, K) = (G_2 \times G_2, G_2), (m_1, m_2) = (2, 2)$

$$\begin{split} N^{12} &= K/K_0 = G_2/T^2 \subset S^{13} \\ & \bigvee_{K_1/K_0 = SU(3)/T^2 \subset S^7} \\ K/K_1 &= G_2/SU(3) \cong S^6 \end{split}$$

$$U/K = (G_2 \times G_2)/G_2 \supset U_1/K_1 = (SU(3) \times SU(3))/SO(3)$$

$$K/K_0 = G_2/T^2 : g = 6, m_1 = m_2 = 2,$$

$$K_1/K_0 = SU(3)/T^2 : g = 3, m_1 = m_2 = 2.$$

In case g = 4 and $(U, K) = (SO(10), U(5)), (m_1, m_2) = (4, 5)$

$$\begin{split} N^{18} &= \frac{U(5)}{SU(2) \times SU(2) \times U(1)} \xrightarrow{\qquad = \qquad} K/K_0 = \frac{U(5)}{SU(2) \times SU(2) \times U(1)} \subset S^{19} \\ & \sqrt{K_1/K_0 = \frac{U(2) \times U(2) \times U(1)}{SU(2) \times SU(2) \times U(1)} \subset S^3} & \sqrt{K_2/K_0 = \frac{U(4) \times U(1)}{SU(2) \times SU(2) \times U(1)} \subset S^{11}} \\ K/K_1 &= \frac{U(5)}{U(2) \times U(2) \times U(1)} \xrightarrow{K_2/K_1 = \frac{U(4) \times U(1)}{U(2) \times U(2) \times U(1)}} K/K_2 = \frac{U(5)}{U(4) \times U(1)} \end{split}$$

$$\frac{U}{K} = \frac{SO(10)}{U(5)} \supset_{\max} \frac{U_2}{K_2} = \frac{SO(8) \times SO(2)}{U(4) \times U(1)} \cong \widetilde{Gr}_2(\mathbf{R}^8) \quad (DIII(4) = BDI)$$
$$\supset_{\text{not max}} \frac{U_1}{K_1} = \frac{SO(4) \times SO(4) \times SO(2)}{U(2) \times U(2) \times U(1)} \cong S^2 \times S^2 \cong \widetilde{Gr}_2(\mathbf{R}^4).$$
$$(\frac{SO(4)}{U(2)} \cong S^2)$$

For cpt. homog. hyp. $N \cong K/K_0 \subset S^{n+1}(1)$ given by (U, K) and $L = \mathcal{G}(N) \cong K/K_{[\mathfrak{a}]},$

- **B** Restricted root systems $\Sigma(U, K)$ are of \mathfrak{a}_2 , \mathfrak{b}_2 , \mathfrak{b}_2 and \mathfrak{g}_2 types when g = 3, 4 or 6.
- The Casimir op. on L w.r.t. $\mathcal{G}^*g_{Q_n(\mathbb{C})}^{\mathrm{std}}$ can be split into 1, 2 or 3 Casimir operators on certain cpt. homog. spaces w.r.t. the corresponding invariant metrics.
- Compute the eigenvalues of Casimir op. (thus the Laplacian) by Freudanthal's formula and branching laws of irreducible representations of compact Lie groups.
- Compute $\mathcal{E} := \{\Lambda \in D(K, K_{[\mathfrak{a}]}) | c(\Lambda) \le n\}.$
- $L = \mathcal{G}(N^n) \to Q_n(\mathbb{C})$ is H-stable $\iff \min \mathcal{E} = n$.

Classification of Homogeneous Lagr. submfds. in $\mathbb{C}P^n$ (Bedulli and Gori

16 examples of minimal Lagr. orbits in $\mathbb{C}P^n$

= [5 examples with $\nabla S = 0$] +[11 examples with $\nabla S \neq 0$]

 $K \subset SU(n+1)$: cpt. simple subgroup

 $L = K \cdot [v] \subset \mathbb{C}P^n \quad \text{ Lagr. submfd.}$

1

complexified orbit (Zariski open)

 $K^{\mathbb{C}} \cdot [v] \subset \mathbb{C}P^n$ is Stein

Classification of Homogeneous Lagr. submfds. in $\mathbb{C}P^n$ (Bedulli and Gori

16 examples of minimal Lagr. orbits in $\mathbb{C}P^n$

= [5 examples with $\nabla S = 0$] +[11 examples with $\nabla S \neq 0$]

 $K \subset SU(n+1)$: cpt. simple subgroup

 $L = K \cdot [v] \subset \mathbb{C}P^n \quad \text{ Lagr. submfd.}$

complexified orbit (Zariski open)

 $K^{\mathbb{C}} \cdot [v] \subset \mathbb{C}P^n$ is Stein

Classification of Homogeneous Lagr. submfds. in $\mathbb{C}P^n$ (Bedulli and Gori)

16 examples of minimal Lagr. orbits in $\mathbb{C}P^n$

= [5 examples with $\nabla S = 0$] +[11 examples with $\nabla S \neq 0$]

 $K \subset SU(n+1)$: cpt. simple subgroup

 $L = K \cdot [v] \subset \mathbb{C}P^n \quad \text{ Lagr. submfd.}$

 \uparrow

complexified orbit (Zariski open)

$$K^{\mathbb{C}} \cdot [v] \subset \mathbb{C}P^n$$
 is Stein

↑ Classification Theory of "Prehomogeneous vector spaces" (Mikio Sato and Tatsuo Kimura)

Classification of Homogeneous Lagrangian submanifolds in complex hyperquadrics $Q_n(\mathbb{C})$ (M. and Ohnita)

Suppose

 $G \subset SO(n+2)$: cpt. subgroup,

 $L = G \cdot [W] \subset Q_n(\mathbb{C})$ Lagr. submfd.

\Downarrow

There exists

$$N^n \subset S^{n+1}(1) \subset \mathbb{R}^{n+2}$$
: cpt. homog. isop. hypersurf.

such that

- **(**) $L = \mathcal{G}(N)$ and L is a cpt. minimal Lagr. submfd., or
- 2 L is a Lagrangian deformation of $\mathcal{G}(N)$.

Classification of Homogeneous Lagrangian submanifolds in complex hyperquadrics $Q_n(\mathbb{C})$ (M. and Ohnita)

Suppose

 $G \subset SO(n+2)$: cpt. subgroup,

 $L = G \cdot [W] \subset Q_n(\mathbb{C})$ Lagr. submfd.

∜

There exists

 $N^n \subset S^{n+1}(1) \subset \mathbb{R}^{n+2}$: cpt. homog. isop. hypersurf.

such that

() $L = \mathcal{G}(N)$ and L is a cpt. minimal Lagr. submfd., or

2 L is a Lagrangian deformation of $\mathcal{G}(N)$.

W.Y.Hsiang-H.B.Lawson's theorem (1971)

There is a compact Riemannian symmetric pair (U, K) of rank 2 such that

$$N = \operatorname{Ad}(K)v \subset S^{n+1}(1) \subset \mathbb{R}^{n+2} = \mathfrak{p},$$

where $\mathfrak{u} = \mathfrak{k} + \mathfrak{p}$ is the canonical decomposition of (U, K).

The second case happens only when (U, K) is one of

- $(S^1 \times SO(3), SO(2)),$
- $(SO(3) \times SO(3), SO(2) \times SO(2)),$
- $(SO(3) \times SO(n+1), SO(2) \times SO(n)) \ (n \ge 3),$
- $(SO(m+2), SO(2) \times SO(m)) \ (n = 2m 2, m \ge 3).$

If (U, K) is $(S^1 \times SO(3), SO(2))$,

then L is a small or great circle in $Q_1(\mathbb{C}) \cong S^2$.

If (U, K) is $(SO(3) \times SO(3), SO(2) \times SO(2))$,

then L is a product of small or great circles of S^2 in $Q_2(\mathbb{C}) \cong S^2 \times S^2$.

If (U, K) is $(SO(3) \times SO(n+1), SO(2) \times SO(n))$ $(n \ge 2)$,

then

$$L = K \cdot [W_{\lambda}] \subset Q_n(\mathbb{C}) \quad \text{ for some } \lambda \in S^1 \setminus \{\pm \sqrt{-1}\},$$

where $K \cdot [W_{\lambda}]$ ($\lambda \in S^1$) is the S^1 -family of Lagr. or isotropic K-orbits satisfying

W₁] = K ⋅ [W₋₁] = G(Nⁿ) is a tot. geod. Lagr. submfd. in Q_n(C).
 For each λ ∈ S¹ \ {±√−1},

 $K \cdot [W_{\lambda}] \cong (S^1 \times S^{n-1}) / \mathbb{Z}_2 \cong Q_{2,n}(\mathbb{R})$

is a Lagr. orbit in $Q_n(\mathbb{C})$ with $\nabla S = 0$.

3 $K \cdot [W_{\pm \sqrt{-1}}]$ are isotropic orbits in $Q_n(\mathbb{C})$ with dim $K \cdot [W_{\pm \sqrt{-1}}] = 0$.

If (U, K) is $(SO(m+2), SO(2) \times SO(m))$ (n = 2m - 2),

then

$$L = K \cdot [W_{\lambda}] \subset Q_n(\mathbb{C}) \quad \text{ for some } \lambda \in S^1 \setminus \{\pm \sqrt{-1}\},$$

where $K \cdot [W_{\lambda}]$ ($\lambda \in S^1$) is the S^1 -family of Lagr. or isotropic orbits satisfying

• $K \cdot [W_1] = K \cdot [W_{-1}] = \mathcal{G}(N^n)$ is a minimal (NOT tot. geod.) Lagr. submfd. in $Q_n(\mathbb{C})$.

2 For each
$$\lambda \in S^1 \setminus \{\pm \sqrt{-1}\},\$$

 $K \cdot [W_{\lambda}] \cong (SO(2) \times SO(m)) / (\mathbb{Z}_2 \times \mathbb{Z}_4 \times SO(m-2))$

is a Lagr. orbit in $Q_n(\mathbb{C})$ with $\nabla S \neq 0$.

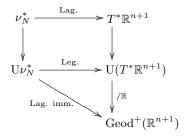
Further questions

Further questions

- Investigate the Hamiltonian stability of the Gauss images of compact non-homogenous isoparametric hypersurfaces (OT-FKM type, embedded in spheres with g = 4).
- 2 Study other properties of the Gauss images in complex hyperquadrics.
- Investigate the relation between our Gauss image construction and Karigiannis-Min-Oo's results.
- Investigate further relations between hypersurfaces in M and Lagrangian submanifolds in $\text{Geod}^+(M)$.

-Further questions

 $N^m \subset \mathbb{R}^{n+1}$ submanifold

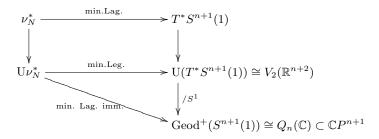


(Harvey-Lawson)

 $\nu_N^* \subset T^* \mathbb{R}^{n+1} \text{ is Special Lagrangian with phase } i^m \ \Leftrightarrow \ N^m \subset \mathbb{R}^{n+1} \text{ austere.}$

Further questions

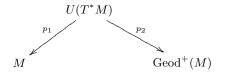
 $N^n \subset S^{n+1}(1)$ oriented hypersurface



(Karigiannis-Min-Oo)

 $\nu_N^* \subset (T^*S^{n+1}, g_{\text{Stenzel}})$ is Special Lagrangian $\Leftrightarrow N^m \subset S^{n+1}$ austere.

- \blacksquare M: a complete Riemannian manifold which is a Hadamard mfd or a mfd with closed geodesics with the same length
- $U(T^*(M))$: the unit cotangent bundle of M
- $\operatorname{Geod}^+(M)$: the space of oriented geodesics of M



• Geod⁺($S^{n+1}(1)$) $\cong \widetilde{Gr}_2(\mathbb{R}^{n+2}) \cong Q_n(\mathbb{C}).$

References I

- H. Ma and Y. Ohnita, On Lagrangian submanifolds in complex hyperquadrics and isoparametric hypersurfaces in spheres, Math. Z. 261 (2009), 749-785.
- [2] H. Ma and Y. Ohnita, Hamiltonian stability of the Gauss images of homogeneous isoparametric hypersurfaces, OCAMI Preprint Series no. 10-23.
- [3] H. Ma and Y. Ohnita, Differential geometry of Lagrangian submanifolds and Hamiltonian variational problems, in Harmonic Maps and Differential Geometry, Contemporary Mathematics, vol. 542, Amer. Math. Soc., Providence, RI, 2011, pp. 115-134.

On Lagrangian submanifolds in $Q_n(\mathbb{C})$

Thanks for your attention!