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Hamiltonian minimality and Hamiltonian stability (Y.-G. Oh (1990))

(M,w, J,g) : Kédhler manifold, ¢:L — M Lagr. imm.

H: mean curvature vector field of ¢
!
am :=w(H,): “mean curvature form”of ¢

m day = ¢ pym where par : Ricci form of M. (Dazord)
m If M is Einstein-Kahler, then dan = 0.

Suppose L : compact without boundary

¢ : “Hamiltonian minimal” (or “H-minimal )

ﬁ) Vi : L — M Hamil. deform. with @o = ¢
€

d c
7 Vol (L, ¢t 9)l,g = 0

< dag =0

® minimal =— H-minimal



an submanifolds in Qpn (C)

ounds

Assume ¢ : H-minimal.
Y {@:} : Hamil. deform. of ¢ = ¢
¢ : “Hamiltonian stable ”ﬁ pe
—5 Vol (L, i g)l,—g > 0

The Second Variational Formula

2

d o
@Vf)l (L, ot g)'t:O =

/L ((Aia,a) — (R(a),a) — 2(a® a ® au, S) + (aH,a>2) dv

where
€ BY(L)

o=« M’
5t |y—o
m (R(a),a) = Z RicY (ei, ej)a(ei)ale;) {ei} : omb. of T,L
i,j=1

m S(X,)Y,Z):=w(h(X,Y),Z) sym. 3-tensor field on L



an submanifolds in Qp (C)

ounds

M : Einstein-Kéahler manifold with Einstein constant .
L — M: compact minimal Lagr. submfd. (i.e. ag = 0)
Then

L is Hamiltonian stable <= \; > k.

Here
A1 : the first (positive) eigenvalue of the Laplacian of L
on C*(L).

(B.Y. Chen - P. F. Leung - T. Nagano , Y. G. Oh)



Fact (H. Ono, Amarzaya-Ohnita)

Assume M : compact homogeneous Einstein - Kahler mfd. with x > 0.
L — M: compact minimal Lagr. submfd.
Then
)\1 S K.

A1 = k <= L is Hamiltonian stable.



Trivial Hamiltonian deformations

X : holomorphic Killing vector field of M
= ax =w(X,") is closed
= ax = w(X,") is exact if H'(M,R) = {0}.

If M is simply connected, more generally H'(M,R) = {0}, each
holomorphic Killing vector field of M generates a volume-preserving
Hamiltonian deformation of .

Def. Such a Hamiltonian deformation of ¢ is called trivial. )




Strictly Hamiltonian stability

Assume ¢ : L — (M,w, J,g) : H-minimal.
@ : “strictly Hamiltonian stable ”

g
def

(1) ¢ is Hamiltonian stable

(2) The null space of the second variation on Hamiltonian deformations
coincides with the vector subspace induced by trivial Hamiltonian
deformations of ¢, i.e., n(¢) = nrr(p).

Here, n(y) := dim[ the null space | and
nni(p) = dim{p*ax|X is a holomorphic Killing vector field of M}.

If L is strictly Hamiltonian stable, then L has local minimum volume under
each Hamiltonian deformation. J




Elementary examples

Circles on a plane
S'cR*=C,
great circles and small circles on a sphere

St c §? ~CP,

are compact Hamiltonian stable H-minimal Lagrangian submanifolds.




n submanifolds in Qp, (C)

rounds

The real projective space totally geodesic embedded in the complex
projective space

RP™ Cc CP"

is strictly Hamiltonian stable.

m It is Hamiltonian volume minimizing (Kleiner-Oh).
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The (n + 1)-torus

Tn+1

70, yTn

= S"(ro) x -+ x S*(r,) c C™*!

is strictly Hamiltonian stable H-minimal Lagrangian submanifold in C**!.

T,Tf;rl r, 1s not minimal in C"** (# closed minimal submanifolds in
(Cn+1)

= It is not stable under arbitrary deformation of T%ﬂ.

m It is H-minimal in C"*"'.
m It is strictly Hamiltonian stable.

m [s it Hamiltonian volume minimizing? (Oh’s conjecture, still open)



The quotient space by S'-action

et . /St ccp”

T,

is strictly Hamiltonian stable H-minimal Lagrangian submanifold in CP™.

mlfro=--=r,= ﬁ, then it is minimal (“Clifford torus ”),

otherwise, not minimal but H-minimal.
m It is strictly Hamiltonian stable for any (ro,--- ,75)

m Is the Clifford torus Hamiltonian volume minimizing?
(Oh’s conjecture, still open)



(Amarzaya-Ohnita)

Compact irreducible minimal Lagrangian submanifolds

(p—1)(p+2)
2

SU(p)/SO(p) - Zp, C CP
SU(p)/Z, C CP?" ™!
SU(2p)/Sp(p) - Z2, C CPE~DEPHD
Es/Fy-Z3 C CP*®

embedded in complex projective spaces are strictly Hamiltonian stable.

m They are not totally geodesic but their second fundamental forms are
parallel.



(R. Chiang,Bedulli-Gori, Ohnita)

The minimal Lagrangian orbit
ps(SU(2))[25 + 23] C CP?

is a compact embedded Hamiltonian stable submanifold with non-parallel
second fundamental form.




(M. Takeuchi, Oh, Amarzaya-Ohnita)

M :
L

<= L is NOT Hamiltonian stable.

cpt. totally geodesic Lagr. submfd embedded in M.

cpt. irred. Herm. sym. sp.

(Qp.a(R) = (S"7! x 8971) /s,
(L M) _ QP‘HI—Q((C))(p > 2,(] —Dp > 3)
-k (U(2p)/Sp(p), SO(4p)/U(2p))(p = 3),
Lagr. submfd. (T . E‘G/F‘47 E7/T . E6)

Takeuchi:

All cpt. totally geodesic Lagr. submfds in cpt. irred. Herm. sym. sp.
are real forms,

i.e., the fixed point subset of involutive anti-holomorphic isometries.

m Let (M,w, J,g) be an Einstein-Kéhler manifold with an involutive

anti-holomorphic isometry 7 and L := Fix(7), Einstein, positive Ricci
curvature. Is L Hamiltonian volume minimizing? (Oh’s conjecture, still
open)



ngian submanifolds in Qp (C)
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(Iriyeh-H. Ono-Sakai)

SH(1) x ST(1) —=2B-, §2(1) x S%(1)

totally geodesic

is Hamiltonian volume minimizing.
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submanifolds in complex hyperquadrics and hypersurfaces in spheres

Complex Hyperquadrics

Qn(C) = Gra(R™*?) 2 SO(n + 2)/SO(2) x SO(n)

a compact Hermitian symmetric space of rank 2

Qn(C) :={[z] eCP™" | 25 + 27 +-- -+ 221, =0}

Gra(R"?) := {W | oriented 2-dimensional vector subspace of R"2}

Qn(C)> [a++v=1b] — aAb € Gra(R™*?)
Here {a, b} is an orthonormal basis of W compatible with its orientation.
B (Qn(C) é\/m(R"+2), QSS(C)) is Einstein-K&hler with Einstein constant
K =n.
m Q:(C)=§?
m Q2(C) = 5% x 2
m n >3, Qn(C) is irreducible.



20 (C)

folds in complex hyperquadrics and hypersurfaces in spheres

Conormal bundle construction

Given an oriented submanifold N™ C S™ (1)

p1: Va(R™?) 5 (a,b) —a e S"TH(1)
p2: Va(R"?) 3 (a,b) — aAb € Q,(C)

Lag.
VKT % T*Sn+l(1)

| |

Ung ———— U(T" S (1)) = Va(R™?)

Lag.imm.

p2(U(v)) — = Qn(C) ST < N



20 (C)

folds in complex hyperquadrics and hypersurfaces in spheres

Conormal bundle construction

Given an oriented submanifold N™ C S™ (1)

p1: Va(R™?) 5 (a,b) —a e S"TH(1)
p2: Va(R"?) 3 (a,b) — aAb € Q,(C)

Lag.
VKT % T*Sn+l(1)

| |

Ung ———— U(T" S (1)) = Va(R™?)

Lag.imm.

p2(U(v)) — = Qn(C) ST < N

N™ C 8™ hypersurface
= This construction is nothing but the following Gauss map.
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submanifolds in complex hyperquadrics and hypersurfaces in spheres

Oriented hypersurface in a sphere

N™ — §"F1(1) c R™+?
X : the position vector of points of N™
n : the unit normal vector field of N™ in $™**(1)

“Gauss map”

G:N"2pr— [x(p) + V—1In(p)] = x(p) An(p) € Qun(C)

is a Lagrangian immersion.

m Oriented hypersurfaces N1, N2 are parallel to each other in S™*1(1)

m Choose an orthonormal frame {e;} of N w.r.t. the induced metric from
S™TH(1) s.t. h(ei,ej) = kidi; and let 0; be the dual frame. Then the
induced metric on N by the Gauss map G is

G gonc) =Y (1+k)0:® 0.
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The Mean Curvature Formula (B. Palmer, 1997)

ag =d | Im logH(lJr\/*l/’w‘) )

=1

where H denotes the mean curvature vector field of G and x; (: =1,--- ,n)
denote the principal curvatures of N™ C S™T!(1).




The Mean Curvature Formula (B. Palmer, 1997)

og=d (Im <log ﬁ(l + v/ —1k;)

i=1 ) >
where H denotes the mean curvature vector field of G and x; (: =1,--- ,n)
denote the principal curvatures of N™ C S™T!(1).

© When n =2, if N? C $3(1) is a minimal surface, then
(1+vV-1k1)(14+vV—=1k2) =1— Ky + v—1Hup,

G:N?>— Gry (R*) =2 Q2(C) = §% x §? is a minimal Lagrangian
immersion.

@ If N™ C S"*(1) ia an oriented austere hypersurface in S™**(1)
(Harvey-Lawson, 1982), then G : N* — Q,(C) is a minimal
Lagrangian immersion.

@ If N — S™"(1) is an isoparametric hypersurface (i.e., k; are
constant), then G : N* — Q,(C) is a minimal Lagrangian immersion.



submanifolds in Qp,(

1 submanifolds in complex hyperquadrics and hypersurfaces in spheres

Definition of austere submanifold (Harvey-Lawson)

N Cd]\fJ : austere submanifold in a Riem. mfd. M
ES forally € T;- N, the set of eigenvalues with their
multiplicities of the shape operator A, of N are invariant
under the multiplication by —1.

® A minimal surface is an austere submanifold.

m An austere submanifold is a minimal submanifold.



s in complex hyperquadr 1d hypersurf; n spheres

Oriented hypersurface in a sphere

N™ — S™(1) ¢ R™"? with constant principal curvatures
(“isoparametric hypersurface”)

“Gauss map”

G:N"3p +—— x(p) An(p) € Gra(R™™?) = Q,(C)

Larg. imm.

Here g := # {distinct principal curvatures of N"}
mi,- -+ ,mg : multiplicities of the principal curvatures.
(Miinzner, 1980,1981):
B My = Mi42 for each i;
m g must be 1,2,3,4 or 6;

m N is defined by a certain real homogeneous polynomial of degree g,
called “Cartan-Miinzner polynomial ”.




N™ — S""1(1) c R™"? isoparametric hypersurface

G:N"3p +— x(p)An(p) € Gr2(R""?) = Q. (C)

Lag. imm.

At p € N, a normal geodesic y defined by xg(,) = cos 6x(p) + sin én(p) has
intersection with N™ at 2g points as

a—1)

’yﬂN:{xe(p)w:w or 291+%f0r50mea:17--- .9}

For each x¢(p) € YN N", let pg € N be a point with x¢(p) = x(ps).

G(p) = G(q) for p,qg € N < q = pg for some 0 = w (a=1,2,---,9).
Then 9 9

v:N 3 pr cos ?ﬂx(p) + sin ?ﬂ-n(p) EN
is a diffeomorphism of N onto itself of order ¢ and {Id, v, - - ,l/gfl} is a

cyclic group of order g acting freely on N.

]g(N") ~ N"/Z, \




Let L be a Lagrangian submanifold in a Ké&hler manifold (M,w, J, g). For
each smooth map of pairs w : (D?,D?) — (M, L), it holds

o
Proposition (H. Ono)

Suppose that (M,w, J, g) is Einstein-Kahler with positive Einstein constant
and L is a compact Lagrangian embedded submanifold in M. Then L is
monotone < [an] =0 in H'(L,R).

Proposition (H. Ono)

Let (M, w, J,g) be a simply connected Einstein-Kéahler manifold with
positive Einstein constant. If L is a compact monotone Lagrangian
embedded submanifold in M, then L is cyclic and

V’LLZL = 2’761 o

m e, (Qn(C)) =n for n > 2.
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1 (M.-Ohnita

The Gauss image of an isoparametric hypersurface N™ c S™*(1)

cpt. min. Lag.
e e e

L= g(Nn) embedd.

@n(C)
is a compact monotone and cyclic embedded Lagrangian submanifold and
its minimal Maslov number Yy, is given by

mi1 + ma, if g is even;

SL=2n/g = { 2ma, if g is odd.

!
=
o
S
3
N
w[3
|3




in complex hyperquadr nd hypersurfaces in spheres

Isoparametric hypersurfaces in S"*1(1) I

All isoparametric hypersurfaces in $"**(1) are classified into

m Homogeneous ones (Hsiang-Lawson, R. Takagi-T. Takahashi) can be
obtained as principal orbits of the linear isotropy representations of
Riemannian symmetric pairs (U, K) of rank 2.

mg=1:N"=S" agreat or small sphere;

mg=2N"=8" x S22 (n=mi+mz2,1<mi <ms), the Clifford
hypersurfaces;

m g =3, N" is homog., N" =

m g = 6: homogenous

SO(3) SU@B) _Sp(3) Fy .
Zo+Zy’ T2 ° Sp(1)3’ Spin(8)’

m g =6,m; = my = 1: homog. (Dorfmeister-Neher, R. Miyaoka)
B g =6,m; = mo = 2: homog. (R. Miyaoka)

m Non-homogenous ones exist (H.Ozeki- M.Takeuchi) and are almost
classified (Ferus-Karcher-Miinzner, Cecil-Chi-Jensen, Immervoll, Chi).
m g = 4: except for (m1,m2) = (7,8), either homog. or OT-FKM type.



20 (C)
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Isoparametric hypersurfaces in S™1(1) II

There exists only one minimal isoparametric hypersurface N™ in each
isoparametric family of S"*'(1). Its principal curvatures are

mlfg=1then ki =0
m If g =2, then k1 = %,kgz— oL

ma
lIfg:3,thenklz\/g,]m:(),kgz—\/?:
m If g =4, then

ki = vmi+mao+/m2

ko — Vmi 4+ ma — /M2
2 = )

Vma ’ /7777,1
fo — _ YmiEma s _ Vit me 4/
3 — 7\/”71 9 4 — \/m—Q

m If g =06, then mi =mo =1 or 2,

k1:2+\/§, ko =1, k3:2—\/§,
ka 2—(2—\/3)7 ks -1, kaz—(2+\/§).



hyperquadr n spheres

Oriented hypersurface in a sphere

N™ — §™"(1) c R™"? with constant principal curvatures
(“isoparametric hypersurface”)

“Gauss map”and Gauss image

g : Nn 2P min. I_E imm. SE(p) A n(p) < Qn((C)
N" — L™ = G(N") = N"/Zs — Qu(C)

cpt. embedded minimal Lagr. submfd

| \

Proposition 2.1.

An isoparametric hypersurface N™ C S™T1(1) is homogeneous <=
L™ = G(N™) is a compact homogeneous Lagrangian submanifold in Qn(C).
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n stability of the Ga mages of isoparametric hypersurfaces

N™ — §™"1(1): compact embedded isoparametric hypersurface

H-stability of the Gauss map. (Palmer)

Its Gauss map G : N — Q,(C) is H-stable <= N" = S" c S"™ (g =1).

Hamiltonian stability of its Gauss image G(N™) C @,(C) ?

We determine the Hamiltonian stability of Gauss images of ALL
homogeneous isoparametric hypersurfaces. J




nifolds in Qp

- Hamiltonian stability of the G images of isoparametric hypersurfaces

N™ = S™ a great or small sphere
L=G(N") = Q1n+1(R) =2 S" is strictly H-stable

N™ =8 (r1) x 8™ (r2), (1 <my <mg,rf +135 =1)
L=G(N") = Qmi+1,ma+1(R) = (S™! x S™2)/Z, is H-stable
= me2—m1 <3

m If mg —my > 3, then the spherical harmonics of degree 2 on
S™1 C R™*1 of smaller dimension give volume-decreasing Hamiltonian
deformations of G(N™).

m If m; — mg = 2, then it is H-stable but not strictly H-stable.

m If m; —mo =0 or 1, then it is strictly H-stable.

Remark: G(N™) = Qp,4(R) totally geodesic for g = 1, 2.



nifolds in Qp

- Hamiltonian stability of the G images of isoparametric hypersurfaces

g=1 N"=.5" a great or small sphere
L=G(N") = Q1,n+1(R) = S™ is strictly H-stable
EL =2n

g=2 N"=8"(r)) x S™(rz), (1 <m1 < ma,ri +7135=1)

L=G(N") = Qmi+1,ma+1(R) 2 (S™! x S™2)/Zy is H-stable
= me—m1 <3

m If mg —my > 3, then the spherical harmonics of degree 2 on

S™m1 C R™*1 of smaller dimension give volume-decreasing Hamiltonian
deformations of G(N™).

m If m; —mg = 2, then it is H-stable but not strictly H-stable.

m If m; —mo =0 or 1, then it is strictly H-stable.

ELITL

Remark: G(N™) = Qp,q(R) totally geodesic for g = 1,2.
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L Hamiltonian stability of the Gauss images of isoparametric hypersurfaces

Theorem 3.1 (M.-Ohnita).

SU(3)/T2~Z3 (m1:m2:2)

Sp(3)/Sp(1)* - Zz  (m1 =ma = 4)

F4/Spin(8) 0 Zg (m1 = mg = 8)
—> L is strictly H-stable.

Theorem 3.2 (M.-Ohnita).

g==6: ng(Nn)I 50(4)/(Z2+ZQ)ZG (m1=m2:1)
G2/T2'Zs (m1:m2:2)
— L is strictly H-stable.




an submanifolds in Qpn (C)

L Hamiltonian stability of the Gauss images of isoparametric hypersurfaces

Theorem 3.1 (M.-Ohnita).

SU3)/T? - Z3 (m1=ms =2, 2 =4)

Sp(3)/5p(1)3 - 23 (m1 = M2 = 4, YL = 8)

F4/Spin(8) . Zg (m1 =ma = 8, ZL = 16)
—> L is strictly H-stable.

Theorem 3.2 (M.-Ohnita).

g==6: ng(Nn)I 50(4)/(Z2+ZQ)ZG (m1=m2:1, ZLIQ)
GQ/TQ'ZG (777,1:7712:2, EL:4)
— L is strictly H-stable.




s images of isoparametric hypersurfaces

Theorem 3.3 (M.-Ohnita).

g =4, N"™ homogeneous, L = G(N") :
@ L=2S50(5)/T? Zs (m1 = ma = 2) is strictly H-stable.

QL= (SU(2)XS[L]]E;§XU(I))'Z4 (m1 = 4,ma = 5) is strictly H-stable.
@ L — S0@2)x50(m)

(ZgxSO(m—2))-Z4
(m1=1,me=m—2,m > 3)
L is NOT H-stable <= mgs — my > 3, i.e., m > 6.
_ SU(2)xU(m))
@ L= S(U(1)><U(1)><U(77272))~Z4
mi =2,ma=2m—3,m>2)
L is NOT H-stable <= my — my > 3, i.e., m > 4.
_ Sp(2) X Sp(m)
L= (Sp(1)xSp(1)X Sp(m—2))-Zs
(m1=4,m2 =4m —5,m > 2)
L is NOT H-stable <= ms — m; > 3, i.e., m > 3.

QL= %, (m1 = 6, m2 = 9) is strictly H-stable.




s images of isoparametric hypersurfaces

Theorem 3.3 (M.-Ohnita).

g =4, N"™ homogeneous, L = G(N") :
@ L =S0(5)/T? Zs (m1 = ma =2, B1, = 4) is strictly H-stable.

_ U(5) _ _ _ R b
0 L = momystaxoanyz (M =4me =5, = 9) is strictly

H-stable.
_ SO(2)xS0(m)
QL= (Z2xSO(m—2))-Za
(mi=1me=m—-—2m>3, X =m-—1)
L is NOT H-stable <= ms — m; > 3, i.e., m > 6.
_ SU(2)xU(m))
Q@ L= SO xUQ)xU(m—2))Za
(m1 :2,777,2 :2771—3,77122, YL :2m—l)
L is NOT H-stable <= ms — my > 3, i.e., m > 4.
_ Sp(2)xSp(m)
© L = tspmyxsp(l)xsp(m—2)7%1
(mi1=4,me=4m —5m > 2, 3 =4m — 1)
L is NOT H-stable <= ms — m; > 3, i.e., m > 3.

QL= %, (m1 =6, m2 =9, X = 15) is strictly H-stable.




f isoparametric hypersurfaces

Summarize,

Theorem 3.4 (M.- Ohnita).

Suppose that (U, K) is not of type EIII,
then L = G(NN) is not Hamiltonian stable if and only if ma —m1 > 3.

Moreover, if (U, K) is of type EIII, that is, (U, K) = (Ee, U(1) - Spin(10)),
then (mi,m2) = (6,9) but L = G(N) is strictly Hamiltonian stable.




arametric hypersurfaces

Sketch of our proof

N™ C §""%(1) cpt. homog. isop. hypersurface
L=G(N") =2 K/Ky) — (Qn((C),gg:(C)) cpt min. Lagr.
(Qn((C),gZZtS(C)) cpt sym sp, E-K, k =n

In order to determine the Hamiltonian stability of L = G(N™),

we need to determine A1 of the Laplacian of L

w.r.t. the induced metric from (Q.(C), g5¢ ¢))

based on the spherical function theory of compact homogeneous spaces
and fibrations on homogeneous isoparametric hypersurfaces.



arametric hypersurfaces

Homogeneous isoparametric hypersurfaces in S"+1(1)

(U, K): cpt. Riem. sym. pair of rank 2

u==t+4p, a Cp: a maximal abelian subspace

(, Yu: AdU-inv. inner product of u defined by the Killing-Cartan form
of u

m For each regular element H of a N S™!(1), we have a homog. isop.
hyp. in the unit sphere

N™ = (Ady K)H C S""(1) CR™ = (p, (, Julp).
m Its Gauss image is

G(N") = [(Ad, K)a] C Gra(p) = Qu(C).



f isoparametric hypersurfaces

Homogeneous spaces expressions:

N" = K/K,
L" = G(N") = K/Kpy

where
Ko :={k € K|Ad,(k)H = H},
K, :={k € K|Ady(k)a = a},
Ky = {k € Kq|Ady (k) : a — apreserves the orientation ofa}.

The deck transformation group of the covering map G : N* — G(N) equals
to
K/ Ko =W(U,K)/Zs = Zq,

where W (U, K) = K. /Ko is the Weyl group of (U, K).



bility of the Gauss i of i rametric hypersurfa

Fibrations on homogenous isoparametric hypersurfaces by homogeneous
isoparametric hypersurfaces

For g = 4,6, (U, K) are of ba, bca or g2 type.
In the case when (U, K) is of ba or g2, we have one fibration as follows:

N"™ = K/K
llﬁ/KU
K/Kq

When (U, K) is of type bca, we have the following two fibrations:
N" = K/Ky —— K/Kp

iKl/KU iKz/Ko

K/K, K/K>

K2 /K1



In case g = 6 and (U, K) = (G2,S0(4)), (m1,ma) = (1,1)

NS = K/Ko=50(4)/Zs+Z> C S”
ikl/Ko—sow)/szch‘l
K/K; = S0(4)/S0(3) = §*
U/K = G2/SO(4) D Ui/K1 = SU(3)/50(3)

K/Ko = SO(4)/(ZQ +ZQ) 1g=6,m =mo =1,
K1/K0 :SO(S)/(Z2+Z2) rg=3,mi =mo=1.



In case g = 6 and (U, K) = (Gy x Ga,G3), (m1,ms) = (2,2)

N2 = K/Ky=Ga/T? C §**
\LKl/KO—SU(?’)/TZCSJ
K/K1 = G2/SU(3) = S°
U/K = (G2 x G2)/G2 D Ui /K1 = (SU(3) x SU(3))/S0O(3)

K/K() :GQ/T2 :g:6,m1 =ma :2,
K1/Ky=SU(3)/T?: g =3,m1 =ma =2.



of the Gauss images of isoparametric hypersurfaces

In case g =4 and (U, K) = (SO(10),U(5)), (m1,m2) = (4,

18 _ U = U 19
N© = SU[R)xSU(2)xU (1) K/Ko = U@ <SUD <T@ < )
_ U@)xU(2)xU(1 U(4)xU(1
iKl/Ko—su<2§§sz§<)2§xé<)1)C53 lK2/K0_SU(2)>(<S)‘E(2()><)U(1)CSH
Koy Ky = — U0 xU1)
_ U(5) U2)xU(2)xU(1) _ U(5)
K/Ky = UR)xU(2)xU(1) K/K> = U(4) xU(1)

U 50(10) U, SO(8) x SO(2)
K~ U6) ™K  U@)x001)
4

~ Gry(R®) (DIII(4) = BDI)

U _ SO(4) x SO(4) x SO(2) 2 0 G (RA
Dnot max K, U2) x U(2) x U(1) ~ 5% xS Gr 2(R7).
S0W o g

U(2)



ss images of isoparametric hypersurfaces

For cpt. homog. hyp. N(= K/Ky) C S"*(1) given by (U, K) and

L=

G(N) = K/Kia),
Restricted root systems (U, K) are of az, b2, bco and go types when
g=3,4o0r6.

* _std

The Casimir op. on L w.r.t. §"g4" () can be split into 1, 2 or 3
Casimir operators on certain cpt. homog. spaces w.r.t. the
corresponding invariant metrics.

Compute the eigenvalues of Casimir op. (thus the Laplacian) by
Freudanthal’s formula and branching laws of irreducible
representations of compact Lie groups.

Compute & := {A € D(K, K[g))| — c(A) < n}.
L =G(N") — Qn(C) is H-stable <= min& = n.
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Classification of Homogeneous Lagr. submfds. in CP"
(Bedulli and Gori

16 examples of minimal Lagr. orbits in CP"
= [5 examples with V.S = 0] +[11 examples with VS # 0]

K C SU(n+1) : cpt. simple subgroup

L=K:[v] CCP" Lagr. submfd.
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Classification of Homogeneous Lagr. submfds. in CP"
(Bedulli and Gori

16 examples of minimal Lagr. orbits in CP"
= [5 examples with V.S = 0] +[11 examples with VS # 0]

K C SU(n+1) : cpt. simple subgroup

L=K:[v] CCP" Lagr. submfd.

)

complexified orbit (Zariski open)

K€ [v] c CP™ is Stein
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Classification of Homogeneous Lagr. submfds. in CP"
(Bedulli and Gori)

16 examples of minimal Lagr. orbits in CP"
= [5 examples with V.S = 0] +[11 examples with VS # 0]

K C SU(n+1) : cpt. simple subgroup
L=K-[v]CCP" Lagr. submfd. )

)

complexified orbit (Zariski open)

K€ [v] c CP™ is Stein

)

Classification Theory of “Prehomogeneous vector spaces” (Mikio Sato and
Tatsuo Kimura)
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Classification of Homogeneous Lagrangian submanifolds in complex
hyperquadrics @»(C) (M. and Ohnita)

Suppose
G C SO(n+2) : cpt. subgroup ,

L=G-[W]CQn(C) Lagr. submfd.
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Classification of Homogeneous Lagrangian submanifolds in complex
hyperquadrics @»(C) (M. and Ohnita)

Suppose
G C SO(n+2) : cpt. subgroup ,

L=G-[W]CQn(C) Lagr. submfd.

4
There exists
N" c 8" (1) c R™™ : cpt. homog. isop. hypersurf.

such that
©® L =G(N) and L is a cpt. minimal Lagr. submfd., or
@ L is a Lagrangian deformation of G(IV).
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ion of Homogeneous Lagrangian submanifolds in complex hyperquadrics

W.Y .Hsiang-H.B.Lawson’s theorem (1971)

There is a compact Riemannian symmetric pair (U, K) of rank 2 such that
N = Ad(K)v c S""'(1) c R*"? =p,

where u = £ + p is the canonical decomposition of (U, K).

The second case happens only when (U, K) is one of
Q@ (5" x S0(3),50(2)),
@ (S0(3) x S0(3), S0(2) x SO(2)),
@ (SO(3) x SO(n+1),50(2) x SO(n)) (n > 3),
Q@ (SO(m+2),S0(2) x SO(m)) (n=2m —2,m > 3).
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If (U, K) is (S* x SO(3),50(2)),

then L is a small or great circle in Q1 (C) = S2.

If (U, K) is (SO(3) x SO(3),SO(2) x SO(2)),

then L is a product of small or great circles of S? in Q2(C) = S? x S2.
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If (U K) is (SO(3) x SO(n+1),S0O(2) x SO(n)) (n >2),
then

L=K [W\] CQn(C) forsome\eS"\ {£v-1},

where K - [W3] (A € S*) is the S'-family of Lagr. or isotropic K-orbits
satisfying

QO K- [Wi]=K: [W_1]=G(N") is a tot. geod. Lagr. submfd. in Q,(C).

@ For each \ € S*\ {+/—1},
K- [Wa] = (S'x 8" ") /Zs = Qa,n(R)

is a Lagr. orbit in @, (C) with V.S = 0.
@ K - [W, ]| are isotropic orbits in @Q,(C) with dim K - [W, ,—] = 0.

V.
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sification of Homogeneous Lagrangian submanifolds in complex hyperquadrics

If (U, K) is (SO(m + 2),S0(2) x SO(m)) (n =2m — 2),
then

L=K-[W\ CQn(C) forsome e S'\ {£v—1},
where K - [W1] (A € S') is the S'-family of Lagr. or isotropic orbits
satisfying
Q@ K- -[Wi]=K - [W_1]=G(N") is a minimal (NOT tot. geod.) Lagr.
submfd. in Qn(C).
@ For each X € S*\ {+/—1},

is a Lagr. orbit in @, (C) with V.S # 0.
Q@ K- [W. =] = 50(m)/S(O(1) x O(m — 1)) 2RP™ " are isotropic
orbits in Q,(C) with dim K - [W, —] =m — 1.
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L Further questio

Further questions

O Investigate the Hamiltonian stability of the Gauss images of compact
non-homogenous isoparametric hypersurfaces (OT-FKM type,
embedded in spheres with g = 4).

@ Study other properties of the Gauss images in complex hyperquadrics.

© Investigate the relation between our Gauss image construction and
Karigiannis-Min-Oo’s results.

@ Investigate further relations between hypersurfaces in M and
Lagrangian submanifolds in Geod™ (M).
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N™ c R"*! submanifold

Lag.
*
VN > T* Rn+1

Leg.
Uvly — = U(T*R™)

/R
Lag. imm.

Geod ™ (R™)

vy C T*R™*! is Special Lagrangian with phase i < N™ C R™**!
austere.
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L Further qu

N™ C S™"(1) oriented hypersurface

min.Lag.

V]*V T*Sn+1(1)

| |

min.Leg.

N
Uvy

U(T*S" (1)) = Va(R™H?)

Geodt (5™ (1)) =2 Q.(C) c CP™'!

(Karigiannis-Min-Oo)

vy C (T*S"+17gsmnzcl) is Special Lagrangian < N™ C S™*! austere.
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- Further ques

m M: a complete Riemannian manifold which is a Hadamard mfd or a
mfd with closed geodesics with the same length

m U(T*(M)): the unit cotangent bundle of M
m Geod™ (M): the space of oriented geodesics of M
U(T*M)
/ \

M Geod™ (M)

m Geod™ (S"11(1)) 2 Gra(R™2) 22 Q,.(C).
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Thanks for your attention!
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