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Backgrounds

Hamiltonian minimality and Hamiltonian stability (Y.-G. Oh (1990))

(M, ω, J, g) : Kähler manifold, ϕ : L −→M Lagr. imm.

H : mean curvature vector field of ϕ
l

αH := ω(H, ·) : “mean curvature form”of ϕ

dαH = ϕ∗ρM where ρM : Ricci form of M . (Dazord)

If M is Einstein-Kähler, then dαH = 0.

Suppose L : compact without boundary
ϕ : “Hamiltonian minimal” (or “H-minimal ”)
⇐⇒
def

∀ϕt : L −→M Hamil. deform. with ϕ0 = ϕ

d

dt
Vol (L, ϕ∗t g)|t=0 = 0

⇐⇒ δαH = 0

minimal =⇒ H-minimal
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Assume ϕ : H-minimal.

ϕ : “Hamiltonian stable ”⇐⇒
def

∀ {ϕt} : Hamil. deform. of ϕ0 = ϕ

d2

dt2
Vol (L, ϕ∗t g)|t=0 ≥ 0

The Second Variational Formula

d2

dt2
Vol (L, ϕ∗t g)|t=0 =∫

L

(
〈41

Lα, α〉 − 〈R(α), α〉 − 2〈α⊗ α⊗ αH, S〉+ 〈αH, α〉2
)
dv

where

α := α ∂ϕt
∂t

∣∣∣
t=0

∈ B1(L)

〈R(α), α〉 :=

n∑
i,j=1

RicM (ei, ej)α(ei)α(ej) {ei} : o.n.b. of TpL

S(X, Y, Z) := ω(h(X, Y ), Z) sym. 3-tensor field on L
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Corollary

M : Einstein-Kähler manifold with Einstein constant κ.

L ↪→M : compact minimal Lagr. submfd. (i.e. αH ≡ 0)

Then

L is Hamiltonian stable ⇐⇒ λ1 ≥ κ.

Here
λ1 : the first (positive) eigenvalue of the Laplacian of L
on C∞(L).

(B. Y. Chen - P. F. Leung - T. Nagano , Y. G. Oh)
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Fact (H. Ono, Amarzaya-Ohnita)

Assume M : compact homogeneous Einstein - Kähler mfd. with κ > 0.
L ↪→M : compact minimal Lagr. submfd.

Then
λ1 ≤ κ.

λ1 = κ⇐⇒ L is Hamiltonian stable.
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Trivial Hamiltonian deformations

X : holomorphic Killing vector field of M
=⇒ αX = ω(X, ·) is closed
=⇒ αX = ω(X, ·) is exact if H1(M, R) = {0}.

If M is simply connected, more generally H1(M, R) = {0}, each
holomorphic Killing vector field of M generates a volume-preserving
Hamiltonian deformation of ϕ.

Def. Such a Hamiltonian deformation of ϕ is called trivial.
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Strictly Hamiltonian stability

Assume ϕ : L→ (M, ω, J, g) : H-minimal.
ϕ : “strictly Hamiltonian stable ”
⇐⇒
def

(1) ϕ is Hamiltonian stable
(2) The null space of the second variation on Hamiltonian deformations
coincides with the vector subspace induced by trivial Hamiltonian
deformations of ϕ, i.e., n(ϕ) = nhk(ϕ).

Here, n(ϕ) := dim[ the null space ] and
nhk(ϕ) := dim{ϕ∗αX |X is a holomorphic Killing vector field of M}.

If L is strictly Hamiltonian stable, then L has local minimum volume under
each Hamiltonian deformation.
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Elementary examples

Circles on a plane

S1 ⊂ R2 ∼= C,

great circles and small circles on a sphere

S1 ⊂ S2 ∼= CP 1,

are compact Hamiltonian stable H-minimal Lagrangian submanifolds.
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(Oh)

The real projective space totally geodesic embedded in the complex
projective space

RP n ⊂ CP n

is strictly Hamiltonian stable.

It is Hamiltonian volume minimizing (Kleiner-Oh).
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(Oh)

The (n + 1)-torus

T n+1
r0,··· ,rn

= S1(r0)× · · · × S1(rn) ⊂ Cn+1

is strictly Hamiltonian stable H-minimal Lagrangian submanifold in Cn+1.

T n+1
r0,··· ,rn

is not minimal in Cn+1 (@ closed minimal submanifolds in
Cn+1).
⇒ It is not stable under arbitrary deformation of T n+1

r0,··· ,rn
.

It is H-minimal in Cn+1.

It is strictly Hamiltonian stable.

Is it Hamiltonian volume minimizing? (Oh’s conjecture, still open)
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(Oh, H. Ono)

The quotient space by S1-action

T n+1
r0,··· ,rn

/S1 ⊂ CP n

is strictly Hamiltonian stable H-minimal Lagrangian submanifold in CP n.

If r0 = · · · = rn = 1√
n+1

, then it is minimal (“Clifford torus ”),
otherwise, not minimal but H-minimal.

It is strictly Hamiltonian stable for any (r0, · · · , rn)

Is the Clifford torus Hamiltonian volume minimizing?
(Oh’s conjecture, still open)



On Lagrangian submanifolds in Qn(C)

Backgrounds

(Amarzaya-Ohnita)

Compact irreducible minimal Lagrangian submanifolds

SU(p)/SO(p) · Zp ⊂ CP
(p−1)(p+2)

2

SU(p)/Zp ⊂ CP p2−1

SU(2p)/Sp(p) · Z2p ⊂ CP (p−1)(2p+1)

E6/F4 · Z3 ⊂ CP 26

embedded in complex projective spaces are strictly Hamiltonian stable.

They are not totally geodesic but their second fundamental forms are
parallel.
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(R. Chiang,Bedulli-Gori, Ohnita)

The minimal Lagrangian orbit

ρ3(SU(2))[z3
0 + z3

1 ] ⊂ CP 3

is a compact embedded Hamiltonian stable submanifold with non-parallel
second fundamental form.
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(M. Takeuchi, Oh, Amarzaya-Ohnita)

M : cpt. irred. Herm. sym. sp.
L : cpt. totally geodesic Lagr. submfd embedded in M .

(L, M)
tot. geod.

Lagr. submfd.

=


(Qp,q(R) = (Sp−1 × Sq−1)/Z2,

Qp+q−2(C))(p ≥ 2, q − p ≥ 3)
(U(2p)/Sp(p), SO(4p)/U(2p))(p ≥ 3),
(T · E6/F4, E7/T · E6).

⇐⇒ L is NOT Hamiltonian stable.

Takeuchi:

All cpt. totally geodesic Lagr. submfds in cpt. irred. Herm. sym. sp.
are real forms,

i.e., the fixed point subset of involutive anti-holomorphic isometries.

Let (M, ω, J, g) be an Einstein-Kähler manifold with an involutive
anti-holomorphic isometry τ and L := Fix(τ), Einstein, positive Ricci
curvature. Is L Hamiltonian volume minimizing? (Oh’s conjecture, still
open)
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(Iriyeh-H. Ono-Sakai)

S1(1)× S1(1)
Lagr.−−−−−−−−−→

totally geodesic
S2(1)× S2(1)

is Hamiltonian volume minimizing.
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Lagrangian submanifolds in complex hyperquadrics and hypersurfaces in spheres

Complex Hyperquadrics

Qn(C) ∼= G̃r2(Rn+2) ∼= SO(n + 2)/SO(2)× SO(n)

a compact Hermitian symmetric space of rank 2

Qn(C) := {[z] ∈ CP n+1 | z2
0 + z2

1 + · · ·+ z2
n+1 = 0}

G̃r2(Rn+2) := {W | oriented 2-dimensional vector subspace of Rn+2}

Qn(C) 3 [a +
√
−1b]←→ a ∧ b ∈ G̃r2(Rn+2)

Here {a,b} is an orthonormal basis of W compatible with its orientation.

(Qn(C) ∼= G̃r2(Rn+2), gstd
Qn(C)) is Einstein-Kähler with Einstein constant

κ = n.

Q1(C) ∼= S2

Q2(C) ∼= S2 × S2

n ≥ 3, Qn(C) is irreducible.
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Lagrangian submanifolds in complex hyperquadrics and hypersurfaces in spheres

Conormal bundle construction

Given an oriented submanifold Nm ⊂ Sn+1(1)

p1 : V2(Rn+2) 3 (a,b) 7→ a ∈ Sn+1(1)

p2 : V2(Rn+2) 3 (a,b) 7→ a ∧ b ∈ Qn(C)

ν∗N
Lag. //

��

T ∗Sn+1(1)

��
Uν∗N

Leg. //

��

U(T ∗Sn+1(1))

S1p2

��

∼= V2(Rn+2)

Snp1

��
p2(U(ν∗N ))

Lag.imm. // Qn(C) Sn+1(1) Nm

imm.
oo

Nn ⊂ Sn+1 hypersurface
⇒ This construction is nothing but the following Gauss map.
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Lagrangian submanifolds in complex hyperquadrics and hypersurfaces in spheres

Conormal bundle construction

Given an oriented submanifold Nm ⊂ Sn+1(1)

p1 : V2(Rn+2) 3 (a,b) 7→ a ∈ Sn+1(1)

p2 : V2(Rn+2) 3 (a,b) 7→ a ∧ b ∈ Qn(C)

ν∗N
Lag. //

��

T ∗Sn+1(1)

��
Uν∗N

Leg. //

��

U(T ∗Sn+1(1))

S1p2

��

∼= V2(Rn+2)

Snp1

��
p2(U(ν∗N ))

Lag.imm. // Qn(C) Sn+1(1) Nm

imm.
oo

Nn ⊂ Sn+1 hypersurface
⇒ This construction is nothing but the following Gauss map.
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Lagrangian submanifolds in complex hyperquadrics and hypersurfaces in spheres

Oriented hypersurface in a sphere

Nn ↪→ Sn+1(1) ⊂ Rn+2

x : the position vector of points of Nn

n : the unit normal vector field of Nn in Sn+1(1)

“Gauss map”

G : Nn 3 p 7−→ [x(p) +
√
−1n(p)] = x(p) ∧ n(p) ∈ Qn(C)

is a Lagrangian immersion.

Oriented hypersurfaces N1, N2 are parallel to each other in Sn+1(1)
⇐⇒ G(N1) = G(N2).

Choose an orthonormal frame {ei} of N w.r.t. the induced metric from
Sn+1(1) s.t. h(ei, ej) = κiδij and let θi be the dual frame. Then the
induced metric on N by the Gauss map G is

G∗gstd
Qn(C) =

∑
(1 + κ2

i )θi ⊗ θi.
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Lagrangian submanifolds in complex hyperquadrics and hypersurfaces in spheres

The Mean Curvature Formula (B. Palmer, 1997)

αH = d

(
Im

(
log

n∏
i=1

(1 +
√
−1κi)

))
,

where H denotes the mean curvature vector field of G and κi (i = 1, · · · , n)
denote the principal curvatures of Nn ⊂ Sn+1(1).

1 When n = 2, if N2 ⊂ S3(1) is a minimal surface, then

(1 +
√
−1κ1)(1 +

√
−1κ2) = 1−KN +

√
−1HN ,

G : N2 −→ G̃r2(R4) ∼= Q2(C) ∼= S2 × S2 is a minimal Lagrangian
immersion.

2 If Nn ⊂ Sn+1(1) ia an oriented austere hypersurface in Sn+1(1)
(Harvey-Lawson, 1982), then G : Nn −→ Qn(C) is a minimal
Lagrangian immersion.

3 If Nn → Sn+1(1) is an isoparametric hypersurface (i.e., κi are
constant), then G : Nn −→ Qn(C) is a minimal Lagrangian immersion.
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Lagrangian submanifolds in complex hyperquadrics and hypersurfaces in spheres

The Mean Curvature Formula (B. Palmer, 1997)

αH = d

(
Im

(
log

n∏
i=1

(1 +
√
−1κi)

))
,

where H denotes the mean curvature vector field of G and κi (i = 1, · · · , n)
denote the principal curvatures of Nn ⊂ Sn+1(1).

1 When n = 2, if N2 ⊂ S3(1) is a minimal surface, then

(1 +
√
−1κ1)(1 +

√
−1κ2) = 1−KN +

√
−1HN ,

G : N2 −→ G̃r2(R4) ∼= Q2(C) ∼= S2 × S2 is a minimal Lagrangian
immersion.

2 If Nn ⊂ Sn+1(1) ia an oriented austere hypersurface in Sn+1(1)
(Harvey-Lawson, 1982), then G : Nn −→ Qn(C) is a minimal
Lagrangian immersion.

3 If Nn → Sn+1(1) is an isoparametric hypersurface (i.e., κi are
constant), then G : Nn −→ Qn(C) is a minimal Lagrangian immersion.
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Lagrangian submanifolds in complex hyperquadrics and hypersurfaces in spheres

Definition of austere submanifold (Harvey-Lawson)

N ⊂M : austere submanifold in a Riem. mfd. M
def⇐⇒ for all η ∈ T⊥x N , the set of eigenvalues with their

multiplicities of the shape operator Aη of N are invariant
under the multiplication by −1.

A minimal surface is an austere submanifold.

An austere submanifold is a minimal submanifold.
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Lagrangian submanifolds in complex hyperquadrics and hypersurfaces in spheres

Oriented hypersurface in a sphere

Nn ↪→ Sn+1(1) ⊂ Rn+2 with constant principal curvatures
(“isoparametric hypersurface”)

“Gauss map”

G : Nn 3 p 7−→
Larg. imm.

x(p) ∧ n(p) ∈ G̃r2(Rn+2) ∼= Qn(C)

Here g := # {distinct principal curvatures of Nn}
m1, · · · , mg : multiplicities of the principal curvatures.

(Münzner, 1980,1981):

mi = mi+2 for each i;

g must be 1, 2, 3, 4 or 6;

N is defined by a certain real homogeneous polynomial of degree g,
called “Cartan-Münzner polynomial ”.
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Lagrangian submanifolds in complex hyperquadrics and hypersurfaces in spheres

Nn ↪→ Sn+1(1) ⊂ Rn+2 isoparametric hypersurface

G : Nn 3 p 7−→
Lag. imm.

x(p) ∧ n(p) ∈ G̃r2(Rn+2) ∼= Qn(C)

At p ∈ Nn, a normal geodesic γ defined by xθ(p) = cos θx(p) + sin θn(p) has
intersection with Nn at 2g points as

γ ∩N = {xθ(p)|θ =
2π(α− 1)

g
or 2θ1 +

2π(α− 1)

g
for some α = 1, · · · , g}

For each xθ(p) ∈ γ ∩Nn, let pθ ∈ N be a point with xθ(p) = x(pθ).

G(p) = G(q) for p, q ∈ Nn ⇔ q = pθ for some θ = 2π(α−1)
g

(α = 1, 2, · · · , g).

Then

ν : N 3 p 7→ cos
2π

g
x(p) + sin

2π

g
n(p) ∈ N

is a diffeomorphism of N onto itself of order g and {Id, ν, · · · , νg−1} is a
cyclic group of order g acting freely on N .

G(Nn) ∼= Nn/Zg
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Lagrangian submanifolds in complex hyperquadrics and hypersurfaces in spheres

H. Ono’s integral formula of Maslov index

Let L be a Lagrangian submanifold in a Kähler manifold (M, ω, J, g). For
each smooth map of pairs w : (D2, ∂D2)→ (M, L), it holds

Iµ,L([w]) =
1

π

∫
D2

w∗ρM +
1

π

∫
∂D2

w∗|∂D2αH .

Proposition (H. Ono)

Suppose that (M, ω, J, g) is Einstein-Kähler with positive Einstein constant
and L is a compact Lagrangian embedded submanifold in M . Then L is
monotone ⇔ [αH] = 0 in H1(L, R).

Proposition (H. Ono)

Let (M, ω, J, g) be a simply connected Einstein-Kähler manifold with
positive Einstein constant. If L is a compact monotone Lagrangian
embedded submanifold in M , then L is cyclic and

nLΣL = 2γc1 .

γc1(Qn(C)) = n for n ≥ 2.
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Lagrangian submanifolds in complex hyperquadrics and hypersurfaces in spheres

Proposition (M.-Ohnita)

The Gauss image of an isoparametric hypersurface Nn ⊂ Sn+1(1)

Ln = G(Nn)
cpt. min. Lag.−−−−−−−−−→

embedd.
Qn(C)

is a compact monotone and cyclic embedded Lagrangian submanifold and
its minimal Maslov number ΣL is given by

ΣL = 2n/g =

{
m1 + m2, if g is even;
2m1, if g is odd.

=⇒

g 1 2 3 4 6

ΣL 2n n 2n
3

n
2

n
3
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Lagrangian submanifolds in complex hyperquadrics and hypersurfaces in spheres

Isoparametric hypersurfaces in Sn+1(1) I

All isoparametric hypersurfaces in Sn+1(1) are classified into

Homogeneous ones (Hsiang-Lawson, R. Takagi-T. Takahashi) can be
obtained as principal orbits of the linear isotropy representations of
Riemannian symmetric pairs (U, K) of rank 2.

g = 1 : Nn = Sn, a great or small sphere;
g = 2, Nn = Sm1 × Sm2 , (n = m1 + m2, 1 ≤ m1 ≤ m2), the Clifford
hypersurfaces;

g = 3, Nn is homog., Nn =
SO(3)
Z2+Z2

,
SU(3)

T2 ,
Sp(3)

Sp(1)3
, F4

Spin(8)
;

g = 6: homogenous
g = 6, m1 = m2 = 1: homog. (Dorfmeister-Neher, R. Miyaoka)
g = 6, m1 = m2 = 2: homog. (R. Miyaoka)

Non-homogenous ones exist (H.Ozeki- M.Takeuchi) and are almost
classified (Ferus-Karcher-Münzner, Cecil-Chi-Jensen, Immervoll, Chi).

g = 4: except for (m1, m2) = (7, 8), either homog. or OT-FKM type.
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Lagrangian submanifolds in complex hyperquadrics and hypersurfaces in spheres

Isoparametric hypersurfaces in Sn+1(1) II

There exists only one minimal isoparametric hypersurface Nn in each
isoparametric family of Sn+1(1). Its principal curvatures are

If g = 1, then k1 = 0

If g = 2, then k1 =
√

m2
m1

, k2 = −
√

m1
m2

If g = 3, then k1 =
√

3, k2 = 0, k3 = −
√

3

If g = 4, then

k1 =
√

m1+m2+
√

m2√
m2

, k2 =

√
m1 + m2 −

√
m2√

m1
,

k3 = −
√

m1+m2−
√

m2√
m1

, k4 = −
√

m1 + m2 +
√

m1√
m2

If g = 6, then m1 = m2 = 1 or 2,

k1 = 2 +
√

3, k2 = 1, k3 = 2−
√

3,

k4 = −(2−
√

3), k5 = −1, k6 = −(2 +
√

3).
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Oriented hypersurface in a sphere

Nn ↪→ Sn+1(1) ⊂ Rn+2 with constant principal curvatures
(“isoparametric hypersurface”)

“Gauss map”and Gauss image

G : Nn 3 p 7−→
min. Larg. imm.

x(p) ∧ n(p) ∈ Qn(C)

Nn −→
Zg

Ln = G(Nn) ∼= Nn/Zg ↪→ Qn(C)

cpt. embedded minimal Lagr. submfd

Proposition 2.1.

An isoparametric hypersurface Nn ⊂ Sn+1(1) is homogeneous ⇐⇒
Ln = G(Nn) is a compact homogeneous Lagrangian submanifold in Qn(C).
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Hamiltonian stability of the Gauss images of isoparametric hypersurfaces

Nn ↪→ Sn+1(1): compact embedded isoparametric hypersurface

H-stability of the Gauss map. (Palmer)

Its Gauss map G : N → Qn(C) is H-stable ⇐⇒ Nn = Sn ⊂ Sn+1 (g = 1).

Question

Hamiltonian stability of its Gauss image G(Nn) ⊂ Qn(C) ?

We determine the Hamiltonian stability of Gauss images of ALL
homogeneous isoparametric hypersurfaces.
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Hamiltonian stability of the Gauss images of isoparametric hypersurfaces

g = 1: Nn = Sn a great or small sphere
L = G(Nn) = Q1,n+1(R) ∼= Sn is strictly H-stable

g = 2: Nn = Sm1(r1)× Sm2(r2), (1 ≤ m1 ≤ m2, r
2
1 + r2

2 = 1)
L = G(Nn) = Qm1+1,m2+1(R) ∼= (Sm1 × Sm2)/Z2 is H-stable
⇐⇒ m2 −m1 < 3

If m2 −m1 ≥ 3, then the spherical harmonics of degree 2 on
Sm1 ⊂ Rm1+1 of smaller dimension give volume-decreasing Hamiltonian
deformations of G(Nn).
If m1 −m2 = 2, then it is H-stable but not strictly H-stable.
If m1 −m2 = 0 or 1, then it is strictly H-stable.

Remark: G(Nn) = Qp,q(R) totally geodesic for g = 1, 2.
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Hamiltonian stability of the Gauss images of isoparametric hypersurfaces

g = 1: Nn = Sn a great or small sphere
L = G(Nn) = Q1,n+1(R) ∼= Sn is strictly H-stable
ΣL = 2n

g = 2: Nn = Sm1(r1)× Sm2(r2), (1 ≤ m1 ≤ m2, r
2
1 + r2

2 = 1)
L = G(Nn) = Qm1+1,m2+1(R) ∼= (Sm1 × Sm2)/Z2 is H-stable
⇐⇒ m2 −m1 < 3

If m2 −m1 ≥ 3, then the spherical harmonics of degree 2 on
Sm1 ⊂ Rm1+1 of smaller dimension give volume-decreasing Hamiltonian
deformations of G(Nn).
If m1 −m2 = 2, then it is H-stable but not strictly H-stable.
If m1 −m2 = 0 or 1, then it is strictly H-stable.

ΣL = n

Remark: G(Nn) = Qp,q(R) totally geodesic for g = 1, 2.
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Hamiltonian stability of the Gauss images of isoparametric hypersurfaces

Theorem 3.1 (M.-Ohnita).

g = 3 : L = G(Nn) = SO(3)/(Z2 + Z2) · Z3 (m1 = m2 = 1)
SU(3)/T 2 · Z3 (m1 = m2 = 2)
Sp(3)/Sp(1)3 · Z3 (m1 = m2 = 4)
F4/Spin(8) · Z3 (m1 = m2 = 8)

=⇒ L is strictly H-stable.

Theorem 3.2 (M.-Ohnita).

g = 6 : L = G(Nn) = SO(4)/(Z2 + Z2) · Z6 (m1 = m2 = 1)
G2/T 2 · Z6 (m1 = m2 = 2)

=⇒ L is strictly H-stable.
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Hamiltonian stability of the Gauss images of isoparametric hypersurfaces

Theorem 3.1 (M.-Ohnita).

g = 3 : L = G(Nn) = SO(3)/(Z2 + Z2) · Z3 (m1 = m2 = 1, ΣL = 2)
SU(3)/T 2 · Z3 (m1 = m2 = 2, ΣL = 4)
Sp(3)/Sp(1)3 · Z3 (m1 = m2 = 4, ΣL = 8)
F4/Spin(8) · Z3 (m1 = m2 = 8, ΣL = 16)

=⇒ L is strictly H-stable.

Theorem 3.2 (M.-Ohnita).

g = 6 : L = G(Nn) = SO(4)/(Z2 + Z2) · Z6 (m1 = m2 = 1, ΣL = 2)
G2/T 2 · Z6 (m1 = m2 = 2, ΣL = 4)

=⇒ L is strictly H-stable.
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Hamiltonian stability of the Gauss images of isoparametric hypersurfaces

Theorem 3.3 (M.-Ohnita).

g = 4, Nn homogeneous, L = G(Nn) :

1 L = SO(5)/T 2 · Z4 (m1 = m2 = 2) is strictly H-stable.

2 L = U(5)
(SU(2)×SU(2)×U(1))·Z4

(m1 = 4, m2 = 5) is strictly H-stable.

3 L = SO(2)×SO(m)
(Z2×SO(m−2))·Z4

(m1 = 1, m2 = m− 2, m ≥ 3)
L is NOT H-stable ⇐⇒ m2 −m1 ≥ 3, i.e., m ≥ 6.

4 L = S(U(2)×U(m))
S(U(1)×U(1)×U(m−2))·Z4

(m1 = 2, m2 = 2m− 3, m ≥ 2)
L is NOT H-stable ⇐⇒ m2 −m1 ≥ 3, i.e., m ≥ 4.

5 L = Sp(2)×Sp(m)
(Sp(1)×Sp(1)×Sp(m−2))·Z4

(m1 = 4, m2 = 4m− 5, m ≥ 2)
L is NOT H-stable ⇐⇒ m2 −m1 ≥ 3, i.e., m ≥ 3.

6 L = U(1)·Spin(10)

(S1·Spin(6))·Z4
, (m1 = 6, m2 = 9) is strictly H-stable.
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Hamiltonian stability of the Gauss images of isoparametric hypersurfaces

Theorem 3.3 (M.-Ohnita).

g = 4, Nn homogeneous, L = G(Nn) :

1 L = SO(5)/T 2 · Z4 (m1 = m2 = 2, ΣL = 4) is strictly H-stable.

2 L = U(5)
(SU(2)×SU(2)×U(1))·Z4

(m1 = 4, m2 = 5, ΣL = 9) is strictly
H-stable.

3 L = SO(2)×SO(m)
(Z2×SO(m−2))·Z4

(m1 = 1, m2 = m− 2, m ≥ 3, ΣL = m− 1)
L is NOT H-stable ⇐⇒ m2 −m1 ≥ 3, i.e., m ≥ 6.

4 L = S(U(2)×U(m))
S(U(1)×U(1)×U(m−2))·Z4

(m1 = 2, m2 = 2m− 3, m ≥ 2, ΣL = 2m− 1)
L is NOT H-stable ⇐⇒ m2 −m1 ≥ 3, i.e., m ≥ 4.

5 L = Sp(2)×Sp(m)
(Sp(1)×Sp(1)×Sp(m−2))·Z4

(m1 = 4, m2 = 4m− 5, m ≥ 2, ΣL = 4m− 1)
L is NOT H-stable ⇐⇒ m2 −m1 ≥ 3, i.e., m ≥ 3.

6 L = U(1)·Spin(10)

(S1·Spin(6))·Z4
, (m1 = 6, m2 = 9, ΣL = 15) is strictly H-stable.
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Hamiltonian stability of the Gauss images of isoparametric hypersurfaces

Summarize,

Theorem 3.4 (M.- Ohnita).

Suppose that (U, K) is not of type EIII,
then L = G(N) is not Hamiltonian stable if and only if m2 −m1 ≥ 3.

Moreover, if (U, K) is of type EIII, that is, (U, K) = (E6, U(1) · Spin(10)),
then (m1, m2) = (6, 9) but L = G(N) is strictly Hamiltonian stable.
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Hamiltonian stability of the Gauss images of isoparametric hypersurfaces

Sketch of our proof

Nn ⊂ Sn+1(1) cpt. homog. isop. hypersurface

L = G(Nn) ∼= K/K[a] −→ (Qn(C), gstd
Qn(C)) cpt min. Lagr.

(Qn(C), gstd
Qn(C)) cpt sym sp, E-K, κ = n

In order to determine the Hamiltonian stability of L = G(Nn),
we need to determine λ1 of the Laplacian of L
w.r.t. the induced metric from (Qn(C), gstd

Qn(C))
based on the spherical function theory of compact homogeneous spaces
and fibrations on homogeneous isoparametric hypersurfaces.
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Hamiltonian stability of the Gauss images of isoparametric hypersurfaces

Homogeneous isoparametric hypersurfaces in Sn+1(1)

(U, K): cpt. Riem. sym. pair of rank 2

u = k + p, a ⊂ p: a maximal abelian subspace

〈 , 〉u: AdU -inv. inner product of u defined by the Killing-Cartan form
of u

For each regular element H of a ∩ Sn+1(1), we have a homog. isop.
hyp. in the unit sphere

Nn := (AdpK)H ⊂ Sn+1(1) ⊂ Rn+2 ∼= (p, 〈 , 〉u|p).

Its Gauss image is

G(Nn) = [(AdpK)a] ⊂ G̃r2(p) ∼= Qn(C).
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Hamiltonian stability of the Gauss images of isoparametric hypersurfaces

Homogeneous spaces expressions:

Nn ∼= K/K0

Ln = G(Nn) ∼= K/K[a]

where

K0 := {k ∈ K|Adp(k)H = H},
Ka := {k ∈ K|Adp(k)a = a},
K[a] := {k ∈ Ka|Adp(k) : a→ a preserves the orientation of a}.

The deck transformation group of the covering map G : Nn → G(N) equals
to

K[a]/K0 = W (U, K)/Z2
∼= Zg,

where W (U, K) = Ka/K0 is the Weyl group of (U, K).
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Hamiltonian stability of the Gauss images of isoparametric hypersurfaces

Fibrations on homogenous isoparametric hypersurfaces by homogeneous
isoparametric hypersurfaces

For g = 4, 6, (U, K) are of b2, bc2 or g2 type.
In the case when (U, K) is of b2 or g2, we have one fibration as follows:

Nn = K/K0

K1/K0

��
K/K1

When (U, K) is of type bc2, we have the following two fibrations:

Nn = K/K0
= //

K1/K0

��

K/K0

K2/K0

��
K/K1

K2/K1 // K/K2
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Hamiltonian stability of the Gauss images of isoparametric hypersurfaces

In case g = 6 and (U,K) = (G2, SO(4)), (m1,m2) = (1, 1)

N6 = K/K0 = SO(4)/Z2 + Z2 ⊂ S7

K1/K0=SO(3)/Z2+Z2⊂S4

��
K/K1 = SO(4)/SO(3) ∼= S3

U/K = G2/SO(4) ⊃ U1/K1 = SU(3)/SO(3)

K/K0 = SO(4)/(Z2 + Z2) : g = 6, m1 = m2 = 1,

K1/K0 = SO(3)/(Z2 + Z2) : g = 3, m1 = m2 = 1.
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Hamiltonian stability of the Gauss images of isoparametric hypersurfaces

In case g = 6 and (U,K) = (G2 ×G2, G2), (m1,m2) = (2, 2)

N12 = K/K0 = G2/T 2 ⊂ S13

K1/K0=SU(3)/T2⊂S7

��
K/K1 = G2/SU(3) ∼= S6

U/K = (G2 ×G2)/G2 ⊃ U1/K1 = (SU(3)× SU(3))/SO(3)

K/K0 = G2/T 2 : g = 6, m1 = m2 = 2,

K1/K0 = SU(3)/T 2 : g = 3, m1 = m2 = 2.
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Hamiltonian stability of the Gauss images of isoparametric hypersurfaces

In case g = 4 and (U,K) = (SO(10), U(5)), (m1,m2) = (4, 5)

N18 = U(5)
SU(2)×SU(2)×U(1)

= //

K1/K0=
U(2)×U(2)×U(1)

SU(2)×SU(2)×U(1)⊂S3

��

K/K0 = U(5)
SU(2)×SU(2)×U(1)

⊂ S19

K2/K0=
U(4)×U(1)

SU(2)×SU(2)×U(1)⊂S11

��
K/K1 = U(5)

U(2)×U(2)×U(1)

K2/K1=
U(4)×U(1)

U(2)×U(2)×U(1) // K/K2 = U(5)
U(4)×U(1)

U

K
=

SO(10)

U(5)
⊃max

U2

K2
=

SO(8)× SO(2)

U(4)× U(1)
∼= G̃r2(R

8) (DIII(4) = BDI)

⊃not max
U1

K1
=

SO(4)× SO(4)× SO(2)

U(2)× U(2)× U(1)
∼= S2 × S2 ∼= G̃r2(R

4).

(
SO(4)

U(2)
∼= S2)



On Lagrangian submanifolds in Qn(C)

Hamiltonian stability of the Gauss images of isoparametric hypersurfaces

For cpt. homog. hyp. N(∼= K/K0) ⊂ Sn+1(1) given by (U, K) and
L = G(N) ∼= K/K[a],

Restricted root systems Σ(U, K) are of a2, b2, bc2 and g2 types when
g = 3, 4 or 6.

The Casimir op. on L w.r.t. G∗gstd
Qn(C) can be split into 1, 2 or 3

Casimir operators on certain cpt. homog. spaces w.r.t. the
corresponding invariant metrics.

Compute the eigenvalues of Casimir op. (thus the Laplacian) by
Freudanthal’s formula and branching laws of irreducible
representations of compact Lie groups.

Compute E := {Λ ∈ D(K, K[a])| − c(Λ) ≤ n}.
L = G(Nn)→ Qn(C) is H-stable ⇐⇒ min E = n.
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Classification of Homogeneous Lagrangian submanifolds in complex hyperquadrics

Classification of Homogeneous Lagr. submfds. in CP n

(Bedulli and Gori

16 examples of minimal Lagr. orbits in CP n

= [5 examples with ∇S = 0] +[11 examples with ∇S 6= 0]

K ⊂ SU(n + 1) : cpt. simple subgroup

L = K · [v] ⊂ CP n Lagr. submfd.

m

complexified orbit (Zariski open)

KC · [v] ⊂ CP n is Stein

⇑
Classification Theory of “Prehomogeneous vector spaces”(Mikio Sato and
Tatsuo Kimura)
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Classification of Homogeneous Lagr. submfds. in CP n
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16 examples of minimal Lagr. orbits in CP n

= [5 examples with ∇S = 0] +[11 examples with ∇S 6= 0]

K ⊂ SU(n + 1) : cpt. simple subgroup

L = K · [v] ⊂ CP n Lagr. submfd.

m

complexified orbit (Zariski open)

KC · [v] ⊂ CP n is Stein

⇑
Classification Theory of “Prehomogeneous vector spaces”(Mikio Sato and
Tatsuo Kimura)
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Classification of Homogeneous Lagrangian submanifolds in complex hyperquadrics

Classification of Homogeneous Lagr. submfds. in CP n

(Bedulli and Gori)

16 examples of minimal Lagr. orbits in CP n

= [5 examples with ∇S = 0] +[11 examples with ∇S 6= 0]

K ⊂ SU(n + 1) : cpt. simple subgroup

L = K · [v] ⊂ CP n Lagr. submfd.

m

complexified orbit (Zariski open)

KC · [v] ⊂ CP n is Stein

⇑
Classification Theory of “Prehomogeneous vector spaces”(Mikio Sato and
Tatsuo Kimura)
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Classification of Homogeneous Lagrangian submanifolds in complex hyperquadrics

Classification of Homogeneous Lagrangian submanifolds in complex
hyperquadrics Qn(C) (M. and Ohnita)

Suppose
G ⊂ SO(n + 2) : cpt. subgroup ,

L = G · [W ] ⊂ Qn(C) Lagr. submfd.

⇓

There exists

Nn ⊂ Sn+1(1) ⊂ Rn+2 : cpt. homog. isop. hypersurf.

such that

1 L = G(N) and L is a cpt. minimal Lagr. submfd., or

2 L is a Lagrangian deformation of G(N).
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Classification of Homogeneous Lagrangian submanifolds in complex hyperquadrics

Classification of Homogeneous Lagrangian submanifolds in complex
hyperquadrics Qn(C) (M. and Ohnita)

Suppose
G ⊂ SO(n + 2) : cpt. subgroup ,

L = G · [W ] ⊂ Qn(C) Lagr. submfd.

⇓

There exists

Nn ⊂ Sn+1(1) ⊂ Rn+2 : cpt. homog. isop. hypersurf.

such that

1 L = G(N) and L is a cpt. minimal Lagr. submfd., or

2 L is a Lagrangian deformation of G(N).
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Classification of Homogeneous Lagrangian submanifolds in complex hyperquadrics

W.Y.Hsiang-H.B.Lawson’s theorem (1971)

There is a compact Riemannian symmetric pair (U, K) of rank 2 such that

N = Ad(K)v ⊂ Sn+1(1) ⊂ Rn+2 = p,

where u = k + p is the canonical decomposition of (U, K).

The second case happens only when (U, K) is one of

1 (S1 × SO(3), SO(2)),

2 (SO(3)× SO(3), SO(2)× SO(2)),

3 (SO(3)× SO(n + 1), SO(2)× SO(n)) (n ≥ 3),

4 (SO(m + 2), SO(2)× SO(m)) (n = 2m− 2, m ≥ 3).
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Classification of Homogeneous Lagrangian submanifolds in complex hyperquadrics

If (U, K) is (S1 × SO(3), SO(2)),

then L is a small or great circle in Q1(C) ∼= S2.

If (U, K) is (SO(3)× SO(3), SO(2)× SO(2)),

then L is a product of small or great circles of S2 in Q2(C) ∼= S2 × S2.
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Classification of Homogeneous Lagrangian submanifolds in complex hyperquadrics

If (U, K) is (SO(3)× SO(n + 1), SO(2)× SO(n)) (n ≥ 2) ,

then
L = K · [Wλ] ⊂ Qn(C) for some λ ∈ S1 \ {±

√
−1},

where K · [Wλ] (λ ∈ S1) is the S1-family of Lagr. or isotropic K-orbits
satisfying

1 K · [W1] = K · [W−1] = G(Nn) is a tot. geod. Lagr. submfd. in Qn(C).

2 For each λ ∈ S1 \ {±
√
−1},

K · [Wλ] ∼= (S1 × Sn−1)/Z2
∼= Q2,n(R)

is a Lagr. orbit in Qn(C) with ∇S = 0.

3 K · [W±
√
−1] are isotropic orbits in Qn(C) with dim K · [W±

√
−1] = 0.
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Classification of Homogeneous Lagrangian submanifolds in complex hyperquadrics

If (U, K) is (SO(m + 2), SO(2)× SO(m)) (n = 2m− 2),

then
L = K · [Wλ] ⊂ Qn(C) for some λ ∈ S1 \ {±

√
−1},

where K · [Wλ] (λ ∈ S1) is the S1-family of Lagr. or isotropic orbits
satisfying

1 K · [W1] = K · [W−1] = G(Nn) is a minimal (NOT tot. geod.) Lagr.
submfd. in Qn(C).

2 For each λ ∈ S1 \ {±
√
−1},

K · [Wλ] ∼= (SO(2)× SO(m))/(Z2 × Z4 × SO(m− 2))

is a Lagr. orbit in Qn(C) with ∇S 6= 0.

3 K · [W±
√
−1] ∼= SO(m)/S(O(1)×O(m− 1)) ∼= RP m−1 are isotropic

orbits in Qn(C) with dim K · [W±
√
−1] = m− 1.
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Further questions

Further questions

1 Investigate the Hamiltonian stability of the Gauss images of compact
non-homogenous isoparametric hypersurfaces (OT-FKM type,
embedded in spheres with g = 4).

2 Study other properties of the Gauss images in complex hyperquadrics.

3 Investigate the relation between our Gauss image construction and
Karigiannis-Min-Oo’s results.

4 Investigate further relations between hypersurfaces in M and
Lagrangian submanifolds in Geod+(M).
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Further questions

Nm ⊂ Rn+1 submanifold

ν∗N
Lag. //

��

T ∗Rn+1

��
Uν∗N

Leg. //

Lag. imm.

%%LLLLLLLLLLL U(T ∗Rn+1)

/R

��
Geod+(Rn+1)

(Harvey-Lawson)

ν∗N ⊂ T ∗Rn+1 is Special Lagrangian with phase im ⇔ Nm ⊂ Rn+1

austere.
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Further questions

Nn ⊂ Sn+1(1) oriented hypersurface

ν∗N
min.Lag. //

��

T ∗Sn+1(1)

��
Uν∗N

min.Leg. //

min. Lag. imm.

))TTTTTTTTTTTTTTTTTTTT U(T ∗Sn+1(1)) ∼= V2(Rn+2)

/S1

��
Geod+(Sn+1(1)) ∼= Qn(C) ⊂ CP n+1

(Karigiannis-Min-Oo)

ν∗N ⊂ (T ∗Sn+1, gStenzel) is Special Lagrangian ⇔ Nm ⊂ Sn+1 austere.
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Further questions

M : a complete Riemannian manifold which is a Hadamard mfd or a
mfd with closed geodesics with the same length

U(T ∗(M)): the unit cotangent bundle of M

Geod+(M): the space of oriented geodesics of M

U(T ∗M)

p2

&&MMMMMMMMMM
p1

{{wwwwwwwww

M Geod+(M)

Geod+(Sn+1(1)) ∼= G̃r2(Rn+2) ∼= Qn(C).
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Thanks for your attention!
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