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§1 Motivations

Example: Consider the projective plane P2

• Fix two general points P , Q, there is only one line C passing through P and
Q, with the homology class β = [ℓ].
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• Fix two general points P , Q, and a line ℓ, there is only one line C passing
through P , Q and intersecting the line ℓ, with the homology class β = [ℓ].

Question:

Fix a homology class A ∈ H2(X,Z) and some cycles Zi in a projective (or
symplectic) manifold X, assuming the Zi are in general position. The basic
question is :

How many curves on X satisfy:

C ⊂ Xof genus g, homology class A, and C ∩ Zi ̸= ∅ for all i. (1)
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Naively, Gromov-Witten invariant is defined as the number of curves (1).
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Physical origin of Gromov-Witten invariant

The origins in physics of Gromov-Witten invariants is the topological sigma model
coupled to gravity. In particular, the genus zero (sometimes called tree level) Gromov-
Witten invariants originate from the topological sigma model, which is a topological
quantum field theory. In fact, in topological quantum field theory, the Gromov-Witten
invariants appear as correlation functions.

5



§2 Gromov-Witten invariant

Notations:

• (X,ω): a compact symplectic (or projective) manifold of dim 2n, here ω is a
nondegenerate closed 2-form, i.e. ωn ̸= 0.

• There exist almost complex structures J : TX → TX such that J2 = −id.

Fact:The space of all tamed almost complex structures is contractible( This implies
that symplectic geometry is much more flexible than complex geometry).

• Example: (R2n,
∑n

i=1 dxi ∧ dyi).
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Stable map

An n-pointed stable map consists of a connected marked curve (C, p1, · · · , pn) and
a morphism f : C −→ X satisfying the following conditions:

(i) The only singularities of C are ordinary double points(nodal Riemann Surface).

(ii) p1, · · · , pn are distinct ordered smooth points in C.

(iii) If Ci is a component of C such that Ci
∼= P1 and f |Ci

is constant, then Ci

contains at least 3 special points(nodal points and marked points).

(iv) If C has arithmetic genus one and n = 0, then f is not constant.

(v) f |Ci
: Ci −→ X is holomorphic where Ci is a smooth component of C.
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• Equivalence of stable map

(C, p1, · · · , pn; f) is isomorphic to (C ′, p′1, · · · , p′n; f ′) if there is an isomorphism
τ : C −→ C ′ such that τ(pi) = p′i for all i and f

′ ◦ τ = f .

(C, p1, · · · , pn)
∃τ(∼=)−→ (C ′, p′1, · · · , p′n)

f ↘ ↙ f ′

X

Denote by [(C, p1, · · · , Pn; f)] the equivalence class.
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Moduli space of stable maps

For A ∈ H2(X,Z), define the moduli space of stable maps as follows

Mg,n(X,A) : =

{[(C, p1, · · · , pn; f)] | (C, p1, · · · , pn; f)is a genus g stable map and f∗[C] = A}.

Remark: In general, Mg,n(X,A) is very singular. In many case, different
component has different dimension. For example, assume that X = P1, g > 0,
A = dL with d > 2 where L is the homology class of a line in P1. Then Mg,n(X,A)
has more than one components. The most interesting one consists (generically)
of irreducible genus g curves. Call this one Mg,0(P

1, A)o. The second consists
(generically) of two intersecting components, one of genus g and mapping to a point,
and the other rational and mapping to P1 with degree d. The first one has dimension
2d + 2g − 2, and the second has dimension 2d + 3g − 3, so the second is not in the
closure of the first.
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Proposition:[Ruan1, LT, FO, S] Mg,n(X,A) has a virtual fundamental class

[Mg,n(X,A)]
vir

with the expected dimension

C1(A) + (dimX − 3)(1− g) + n.
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Gromov-Witten invariant

Once we have the moduli space of stable maps, then we may define the following
evaluation maps:

evi : Mg,n(X,A) −→ X

[C, p1, · · · , pn, f ] 7→ f(pi), i = 1, 2, · · · , n.

Definition: Given cohomology classes αi ∈ H∗(X,R), roughly define the
(primitive) Gromov-Witten invariant

Ψ(A,g)(α1, · · · , αn) =

∫
[Mg,n(X,A)]vir

n∏
i=1

ev∗iαi,

if
∑n

i=1 degαi = 2C1(A) + 2(dimX − 3)(1 − g) + 2n. Otherwise, we simply define
the invariants to be zero.
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Remark: (Enumerative meaning) If Zi is a cycle in X dual to αi, then the primitive
Gromov-Witten invariant ⟨α1, · · · , αn⟩Xg,A should count genus g curves (C, p1, · · · , pn)
for which we can find f such that

f : (C, p1, · · · , pn) −→ X is stable and

f∗[C] = A, f(pi) ∈ Zi.
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Relative Gromov-Witten invariants

Let Z ⊂ X be a real codimension 2 symplectic submanifold. Suppose that J is
an ω−tamed almost complex structure on X preserving TZ, i.e. making Z an almost
complex submanifold. The relative GW invariants are defined by counting stable
J−holomorphic maps intersecting Z at finitely many points with prescribed tangency.
More precisely, fix a k-tuple Tk = (t1, · · · , tk) of positive integers, consider a marked
pre-stable curve

(C, x1, · · · , xl, y1, · · · , yk)
and stable J−holomorphic maps f : C −→ X such that the divisor f∗Z is

f∗Z =
∑
i

tiyi.

We consider the moduli space of such curves, Mg,Tk
(X,Z,A). Unfortunately,

this moduli space is not compact. Similar to the case of absolute Gromov-Witten
invariant, we may compactify this moduli space by relative stable maps. Denote by
[Mg,Tk

(X,Z,A)]vir the virtual fundamental class. Then use the virtual technique to
define the relative Gromov-Witten invariant.
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Evaluation maps:

evi : Mg,Tk
(X,Z,A) −→ X

(C, x1, · · · , xl; y1, · · · , yk; f) 7→ f(xi), 1 ≤ i ≤ l.

evZj : Mg,Tk
(X,Z,A) −→ Z

(C, x1, · · · , xl; y1, · · · , yk; f) 7→ f(yj), 1 ≤ j ≤ k.

Definition: (relative Gromov-Witten invariant) Let αi ∈ H∗(X,R), 1 ≤ i ≤ l,
βj ∈ H∗(Z,R), 1 ≤ j ≤ k. Define the relative Gromov-Witten invariant

⟨Πiτdiαi | Πjβj⟩X,Z
g,A,Tk

=
1

|Aut(Tk)|

∫
[Mg,Tk

(X,Z,A)]vir
Πiψ

di ∧ ev∗iαi ∧ (evZj )
∗βj.
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§3 Degeneration formula for symplectic cutting

• Symplectic cutting

Suppose that X0 ⊂ X is an open subset with a hamiltonian S1-action such that
H : X0 −→ R is a Hamiltonian function with 0 as a regular value and H−1(0) is a
separating hypersurface in X.

Cut X along H−1(0), we obtain two connected manifolds X± with boundary
∂X± = H−1(0).

Denote by Z = H−1(0)/S1 the symplectic reduction.

Collapsing the S1-action on ∂X± = H−1(0), we obtain closed smooth manifolds
X̄±.

Definition: Two symplectic manifolds (X̄±, ω±) are called the symplectic cuts of
X along H−1(0).
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Here is the geometric description of symplectic cut:

• Symplectic bow-up

Let Y ⊂ X be a symplectic submanifold of X of codimension 2k, NY |X the normal
bundle of Y in X. Perform the symplectic cut along the sphere bundle of NY |X, we
obtain two symplectic cuts X̄±:

X̄+ := PY (NY |X ⊕ C)

X̄− := X̃, symplectic blowup of X along Y .

• Example: Y = pt. Then X̄+ = Pn, X̄− = X̃.
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Denote by p : X̃ −→ X the natural projection of the blow-up. E = PY (NY |X)
the exceptional divisor.

• Symplectic blow-down: the opposite operation from X̃ to X.
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Degeneration formula

Denote the reduction map by

π : X −→ X̄+ ∪Z X̄
−.

So we have a map
π∗ : H2(X,Z) −→ H2(X̄

+ ∪Z X̄
−,Z).

For A ∈ H2(X,Z), define [A] = A+ kerπ∗ and define

⟨Πiτdiαi⟩Xg,[A] :=
∑

B∈[A]

⟨Πiτdiαi⟩Xg,B.
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Degeneration Formula:(gluing formula)

⟨Πiτdiαi⟩Xg,[A] =
∑

⟨Πi∈I1τdiα
+
i | βj⟩X̄

+,Z
g1,A1,Tk

∆(Tk)⟨Πi∈I2τdiα
−
i | β̌j⟩X̄

−,Z
g2,A2,Tk

,

where the summation runs over all the splittings of g and A, all distribution of
the insertion α±

i , all intermediate cohomology weighted partitions (Tj, βj) and all
configurations of connected components yielding a connected total domain,

∆(Tk) := Πjtj|Aut(Tk)|, I1 ∪ I2 = {1, 2, · · · , l},

and β̌j is dual to βj.
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Local Gromov-Witten invariants

Let S be a Fano surface and KS its canonical bundle. For β ∈ H2(S,Z), denote
by Mg,k(S, β) the moduli space of k-pointed stable maps of degree β to S. Then the
following diagram

Mg,1(S, β)
ev−→ S

ρ ↓

Mg,0(S, β)

defines the obstruction bundle R1ρ∗ev
∗KS whose fiber over a stable map f : C −→ S

is given by H1(C, f∗KS).

Chiang-Klemm-Yau-Zaslow defined the local Gromov-Witten invariants of KS as
follows

KS
g,β =

∫
[Mg,0(S,β)]vir

e(R1ρ∗ev
∗KS). (2)
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• Yang-Zhou(2009) generalize this definition to the case of toric non Fano surfaces.

Observation:

[Mg,0(YS, β)]
vir = [Mg,0(S : β)]vir ∩ e(R1ρ∗ev

∗KS).

• This implies that the local Gromov-Witten invariant ofKS of degree β ∈ H2(S,Z)
equals the corresponding Gromov-Witten invariant of YS, i. e.,

KS
g,β = n

YS
g,β =

∫
[Mg,0(YS,β)]

vir
1.
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Projective completion of KS

YS = P(KS ⊕O)

p : S̃ −→ S

ỸS = p∗YS

D1
∼= F0

D1 = F1.
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Results on local Gromov-Witten invariants

Lemma 1: Suppose that S and its blowup S̃ are Fano surfaces. Let ỸS be the
blowup of YS along the fiber over p0 ∈ S. Then for any β ∈ H2(S,Z), we have

n
YS
g,β = ⟨1 | ∅⟩ỸS,D1

g,p!(β)

where D1 = PP1(O ⊕ O) ∼= P1 × P1 is the exceptional divisor in ỸS, p!(β) =
PDp∗PD(β) and p : S̃ −→ S is the natural projection of the blowup.

Lemma 2: For any β ∈ H2(S,Z), we have

n
ỸS
g,p!(β) = ⟨1 | ∅⟩ỸS,D1

g,p!(β).
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Summarizing Lemma 1 and Lemma 2, we have

Theorem 3:
n
YS
g,β = n

ỸS
g,p!(β).

Next, we want to compare the Gromov-Witten invariants nỸS
g,p!(β) of ỸS to the

Gromov-Witten invariants of Z. In fact, we have

Theorem 4:
n
ỸS
g,p!(β) = nZ

g,p!(β).
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Donaldson-Thomas invariants

Let X be a smooth projective 3-fold and I be an ideal sheaf of rank 1 on X.

Fact: I determines a sub-scheme Y of dimension ≤ 1.

Fact: There is an exact sequence

0 −→ I −→ OX −→ OY −→ 0.

• Fix β ∈ H2(X,Z). Let In(X,β) denote the moduli space of ideal sheaves I of
rank 1 satisfying

χ(OY ) = n, [Y ] = β.
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Fact: In(X,β) is projective and a fine moduli space.

Fact: The virtual dimension of In(X,β) equals
∫
β
c1(TX).

For γ ∈ H l(X,Z), one can introduce some descendent field (−1)k+1chk+2(γ)
on the moduli space In(X,β) by the Chern classes of the universal ideal sheaf
J −→ In(X,β)×X.

Definition: Suppose that X is a nonsingular,projective, Calabi-Yau 3-fold. Then
for γi ∈ H∗(X,R), 1 ≤ i ≤ r, and integers k1, · · · , kr, the Donaldson-Thomas
invariant is defined via integration against the virtual fundamental class,

⟨τ̃k1(γ1), · · · , τ̃kr(γr)⟩n,β :=

∫
[In(X,β)]vir

r∏
i=1

(−1)ki+1chki+2(γi).
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Donaldson-Thomas partition function

DT partition function:

ZDT (X, q |
r∏

i=1

τ̃ki(γi))β :=
∑
n∈Z

⟨
r∏

i=1

τ̃ki(γi)⟩n,βq
n.

Reduced DT partition function:

Z ′
DT (X, q |

r∏
i=1

τ̃ki(γi))β :=
ZDT (X, q |

∏r
i=1 τ̃ki(γi))β

ZDT (X; q)0
.
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Relative DT invariants and its partition function

Similar to Gromov-Witten invariants, If S is a smooth surface in X, then for a
partition η = (η1, · · · , ηs) of [Sone can define the relative Donaldson-Thomas invariant

⟨τ̃k1(γ1), · · · , τ̃kr(γr) | η⟩n,β

Relative DT partition function:

ZDT (X/S, q |
r∏

i=1

τ̃ki(γi))β,η :=
∑
n∈Z

⟨
r∏

i=1

τ̃ki(γi) | η⟩n,βq
n.

Reduced relative DT partition function:

Z ′
DT (X/S, q |

r∏
i=1

τ̃ki(γi))β,η :=
Z ′
DT (X, q |

∏r
i=1 τ̃ki(γi))β,η

Z ′
DT (X/S; q)0

.
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Degeneration formula for DT invariants

Let π : X −→ C be a semistable degeneration such that Xt = π−1(t) ∼= X for
t ̸= 0 and X0 is a union of two smooth e-folds X1 and X2 intersecting transversely
along a smooth surface S, Write

it : X = Xt → X , i0 : X0 → X , j1 : X1 → X0, j2 : X2 −→ X0.

Then the degeneration formula take the following form

Z ′
DT (Xt; q |

r∏
i=1

τ̃0(γi(t))))β

=
∑

Z ′
DT (X1/S; q |

∏
τ̃0(j

∗
1γi(0)))β1,η

(−1)|η|−ℓ(η)△(η)

q|η|

×Z ′
DT (X2/S; q |

∏
τ̃0(j

∗
2γi(0)))β2,η∨,

where the sum runs over the splittings β1+β2 = β and cohomology weighted partitions
η.
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Donaldson-Thomas invariants of local surfaces

Let YS = P(KS ⊕OS) be the projective bundle over the surface S. Since YS has
an anticanonical section, the Donaldson-Thomas theory of YS is well-defined in every
rank.

Main result: Suppose that S̃ is the blowup of S and p : S̃ −→ S is the
projection. For β ∈ H2(S,Z), we have

Z ′
DT (YS; q)β = Z ′

DT (YS̃; q)p!(β),

where p!(β) = PDp∗PD(β).
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Thank You!
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