Degeneration formulae and its applications to local GW and DT invariants

Jianxun Hu
Department of Mathematics, Sun Yat-sen University
stsjxhu@mail.sysu.edu.cn

§1 Motivations

Example: Consider the projective plane \mathbb{P}^{2}

- Fix two general points P, Q, there is only one line C passing through P and Q, with the homology class $\beta=[\ell]$.

$$
\begin{gathered}
\mathrm{C} . ~ \\
\mathrm{P}
\end{gathered} \mathrm{P}^{2}
$$

- Fix two general points P, Q, and a line ℓ, there is only one line C passing through P, Q and intersecting the line ℓ, with the homology class $\beta=[\ell]$.

Question:

Fix a homology class $A \in H_{2}(X, \mathbb{Z})$ and some cycles Z_{i} in a projective (or symplectic) manifold X, assuming the Z_{i} are in general position. The basic question is :

How many curves on X satisfy:
$C \subset X$ of genus g, homology class A, and $C \cap Z_{i} \neq \emptyset$ for all i.

Naively, Gromov-Witten invariant is defined as the number of curves (1).

Physical origin of Gromov-Witten invariant

The origins in physics of Gromov-Witten invariants is the topological sigma model coupled to gravity. In particular, the genus zero (sometimes called tree level) GromovWitten invariants originate from the topological sigma model, which is a topological quantum field theory. In fact, in topological quantum field theory, the Gromov-Witten invariants appear as correlation functions.

§2 Gromov-Witten invariant

Notations:

- (X, ω) : a compact symplectic (or projective) manifold of $\operatorname{dim} 2 n$, here ω is a nondegenerate closed 2 -form, i.e. $\omega^{n} \neq 0$.
- There exist almost complex structures $J: T X \rightarrow T X$ such that $J^{2}=-i d$.

Fact:The space of all tamed almost complex structures is contractible(This implies that symplectic geometry is much more flexible than complex geometry).

- Example: $\left(\mathbb{R}^{2 n}, \sum_{i=1}^{n} d x_{i} \wedge d y_{i}\right)$.

Stable map

An n-pointed stable map consists of a connected marked curve $\left(C, p_{1}, \cdots, p_{n}\right)$ and a morphism $f: C \longrightarrow X$ satisfying the following conditions:
(i) The only singularities of C are ordinary double points(nodal Riemann Surface).
(ii) p_{1}, \cdots, p_{n} are distinct ordered smooth points in C.
(iii) If C_{i} is a component of C such that $C_{i} \cong \mathbb{P}^{1}$ and $\left.f\right|_{C_{i}}$ is constant, then C_{i} contains at least 3 special points(nodal points and marked points).
(iv) If C has arithmetic genus one and $n=0$, then f is not constant.
(v) $\left.f\right|_{C_{i}}: C_{i} \longrightarrow X$ is holomorphic where C_{i} is a smooth component of C.

- Equivalence of stable map
$\left(C, p_{1}, \cdots, p_{n} ; f\right)$ is isomorphic to $\left(C^{\prime}, p_{1}^{\prime}, \cdots, p_{n}^{\prime} ; f^{\prime}\right)$ if there is an isomorphism $\tau: C \longrightarrow C^{\prime}$ such that $\tau\left(p_{i}\right)=p_{i}^{\prime}$ for all i and $f^{\prime} \circ \tau=f$.

$$
\begin{array}{rll}
\left(C, p_{1}, \cdots, p_{n}\right) & \xrightarrow{\exists \tau(\cong}) & \left(C^{\prime}, p_{1}^{\prime}, \cdots, p_{n}^{\prime}\right) \\
f \searrow & & \swarrow f^{\prime} \\
& X &
\end{array}
$$

Denote by $\left[\left(C, p_{1}, \cdots, P_{n} ; f\right)\right]$ the equivalence class.

Moduli space of stable maps

For $A \in H_{2}(X, \mathbb{Z})$, define the moduli space of stable maps as follows

$$
\overline{\mathcal{M}}_{g, n}(X, A):=
$$

$\left\{\left[\left(C, p_{1}, \cdots, p_{n} ; f\right)\right] \quad\left(C, p_{1}, \cdots, p_{n} ; f\right)\right.$ is a genus g stable map and $\left.f_{*}[C]=A\right\}$.

Remark: In general, $\overline{\mathcal{M}}_{g, n}(X, A)$ is very singular. In many case, different component has different dimension. For example, assume that $X=\mathbf{P}^{1}, g>0$, $A=d L$ with $d>2$ where L is the homology class of a line in \mathbf{P}^{1}. Then $\overline{\mathcal{M}}_{g, n}(X, A)$ has more than one components. The most interesting one consists (generically) of irreducible genus g curves. Call this one $\overline{\mathcal{M}}_{g, 0}\left(\mathbf{P}^{1}, A\right)^{o}$. The second consists (generically) of two intersecting components, one of genus g and mapping to a point, and the other rational and mapping to \mathbf{P}^{1} with degree d. The first one has dimension $2 d+2 g-2$, and the second has dimension $2 d+3 g-3$, so the second is not in the closure of the first.

Proposition:[Ruan1, LT, FO, S] $\overline{\mathcal{M}}_{g, n}(X, A)$ has a virtual fundamental class

$$
\left[\overline{\mathcal{M}}_{g, n}(X, A)\right]^{v i r}
$$

with the expected dimension

$$
C_{1}(A)+(\operatorname{dim} X-3)(1-g)+n
$$

Gromov-Witten invariant

Once we have the moduli space of stable maps, then we may define the following evaluation maps:

$$
\begin{aligned}
e v_{i}: & \overline{\mathcal{M}}_{g, n}(X, A) \longrightarrow X \\
& {\left[C, p_{1}, \cdots, p_{n}, f\right] \mapsto f\left(p_{i}\right), i=1,2, \cdots, n . }
\end{aligned}
$$

Definition: Given cohomology classes $\alpha_{i} \in H^{*}(X, \mathbf{R})$, roughly define the (primitive) Gromov-Witten invariant

$$
\Psi_{(A, g)}\left(\alpha_{1}, \cdots, \alpha_{n}\right)=\int_{\left[\overline{\mathcal{M}}_{g, n}(X, A)\right]^{v i r}} \prod_{i=1}^{n} e v_{i}^{*} \alpha_{i}
$$

if $\sum_{i=1}^{n} \operatorname{deg} \alpha_{i}=2 C_{1}(A)+2(\operatorname{dim} X-3)(1-g)+2 n$. Otherwise, we simply define the invariants to be zero.

Remark: (Enumerative meaning) If Z_{i} is a cycle in X dual to α_{i}, then the primitive Gromov-Witten invariant $\left\langle\alpha_{1}, \cdots, \alpha_{n}\right\rangle_{g, A}^{X}$ should count genus g curves (C, p_{1}, \cdots, p_{n}) for which we can find f such that

$$
\begin{gathered}
f:\left(C, p_{1}, \cdots, p_{n}\right) \longrightarrow X \text { is stable and } \\
f_{*}[C]=A, f\left(p_{i}\right) \in Z_{i} .
\end{gathered}
$$

Relative Gromov-Witten invariants

Let $Z \subset X$ be a real codimension 2 symplectic submanifold. Suppose that J is an ω-tamed almost complex structure on X preserving $T Z$, i.e. making Z an almost complex submanifold. The relative GW invariants are defined by counting stable J-holomorphic maps intersecting Z at finitely many points with prescribed tangency. More precisely, fix a k-tuple $T_{k}=\left(t_{1}, \cdots, t_{k}\right)$ of positive integers, consider a marked pre-stable curve

$$
\left(C, x_{1}, \cdots, x_{l}, y_{1}, \cdots, y_{k}\right)
$$

and stable J-holomorphic maps $f: C \longrightarrow X$ such that the divisor $f^{*} Z$ is

$$
f^{*} Z=\sum_{i} t_{i} y_{i}
$$

We consider the moduli space of such curves, $\mathcal{M}_{g, T_{k}}(X, Z, A)$. Unfortunately, this moduli space is not compact. Similar to the case of absolute Gromov-Witten invariant, we may compactify this moduli space by relative stable maps. Denote by $\left[\overline{\mathcal{M}}_{g, T_{k}}(X, Z, A)\right]^{\text {vir }}$ the virtual fundamental class. Then use the virtual technique to define the relative Gromov-Witten invariant.

Evaluation maps:

$$
\begin{array}{ccl}
e v_{i}: & \overline{\mathcal{M}}_{g, T_{k}}(X, Z, A) & \longrightarrow X \\
& \left(C, x_{1}, \cdots, x_{l} ; y_{1}, \cdots, y_{k} ; f\right) & \mapsto f\left(x_{i}\right), \quad 1 \leq i \leq l . \\
e v_{j}^{Z}: & \overline{\mathcal{M}}_{g, T_{k}}(X, Z, A) & \longrightarrow Z \\
& \left(C, x_{1}, \cdots, x_{l} ; y_{1}, \cdots, y_{k} ; f\right) & \mapsto f\left(y_{j}\right), \quad 1 \leq j \leq k .
\end{array}
$$

Definition: (relative Gromov-Witten invariant) Let $\alpha_{i} \in H^{*}(X, \mathbb{R}), 1 \leq i \leq l$, $\beta_{j} \in H^{*}(Z, \mathbb{R}), 1 \leq j \leq k$. Define the relative Gromov-Witten invariant

$$
\left\langle\Pi_{i} \tau_{d_{i}} \alpha_{i} \mid \Pi_{j} \beta_{j}\right\rangle_{g, A, T_{k}}^{X, Z}=\frac{1}{\left|\operatorname{Aut}\left(T_{k}\right)\right|} \int_{\left[\overline{\mathcal{M}}_{g, T_{k}}(X, Z, A)\right]^{v i r}} \Pi_{i} \psi^{d_{i}} \wedge e v_{i}^{*} \alpha_{i} \wedge\left(e v_{j}^{Z}\right)^{*} \beta_{j}
$$

§3 Degeneration formula for symplectic cutting

- Symplectic cutting

Suppose that $X_{0} \subset X$ is an open subset with a hamiltonian S^{1}-action such that $H: X_{0} \longrightarrow \mathbb{R}$ is a Hamiltonian function with 0 as a regular value and $H^{-1}(0)$ is a separating hypersurface in X.

Cut X along $H^{-1}(0)$, we obtain two connected manifolds $X^{ \pm}$with boundary $\partial X^{ \pm}=H^{-1}(0)$.

Denote by $Z=H^{-1}(0) / S^{1}$ the symplectic reduction.
Collapsing the S^{1}-action on $\partial X^{ \pm}=H^{-1}(0)$, we obtain closed smooth manifolds $\bar{X}^{ \pm}$.

Definition: Two symplectic manifolds ($\bar{X}^{ \pm}, \omega^{ \pm}$) are called the symplectic cuts of X along $H^{-1}(0)$.

Here is the geometric description of symplectic cut:

- Symplectic bow-up

Let $Y \subset X$ be a symplectic submanifold of X of codimension $2 k, N_{Y \mid X}$ the normal bundle of Y in X. Perform the symplectic cut along the sphere bundle of $N_{Y \mid X}$, we obtain two symplectic cuts $\bar{X}^{ \pm}$:

$$
\begin{aligned}
\bar{X}^{+} & :=\mathbb{P}_{Y}\left(N_{Y \mid X} \oplus \mathbb{C}\right) \\
\bar{X}^{-} & :=\tilde{X}, \text { symplectic blowup of } X \text { along } Y .
\end{aligned}
$$

- Example: $Y=p t$. Then $\bar{X}^{+}=\mathbb{P}^{n}, \bar{X}^{-}=\tilde{X}$.

Denote by $p: \tilde{X} \longrightarrow X$ the natural projection of the blow-up. $E=\mathbb{P}_{Y}\left(N_{Y \mid X}\right)$ the exceptional divisor.

- Symplectic blow-down: the opposite operation from \tilde{X} to X.

Degeneration formula

Denote the reduction map by

$$
\pi: X \longrightarrow \bar{X}^{+} \cup_{Z} \bar{X}^{-}
$$

So we have a map

$$
\pi_{*}: H_{2}(X, \mathbb{Z}) \longrightarrow H_{2}\left(\bar{X}^{+} \cup_{Z} \bar{X}^{-}, \mathbb{Z}\right)
$$

For $A \in H_{2}(X, \mathbb{Z})$, define $[A]=A+\operatorname{ker} \pi_{*}$ and define

$$
\left\langle\Pi_{i} \tau_{d_{i}} \alpha_{i}\right\rangle_{g,[A]}^{X}:=\sum_{B \in[A]}\left\langle\Pi_{i} \tau_{d_{i}} \alpha_{i}\right\rangle_{g, B}^{X} .
$$

Degeneration Formula:(gluing formula)

$$
\left\langle\Pi_{i} \tau_{d_{i}} \alpha_{i}\right\rangle_{g,[A]}^{X}=\sum\left\langle\Pi_{i \in I_{1}} \tau_{d_{i}} \alpha_{i}^{+} \mid \beta_{j}\right\rangle_{g_{1}, A_{1}, T_{k}}^{\bar{X}^{+}, Z} \Delta\left(T_{k}\right)\left\langle\Pi_{i \in I_{2}} \tau_{d_{i}} \alpha_{i}^{-} \mid \check{\beta}_{j}\right\rangle_{g_{2}, A_{2}, T_{k}}^{\bar{X}_{k}^{-}, Z}
$$

where the summation runs over all the splittings of g and A, all distribution of the insertion $\alpha_{i}^{ \pm}$, all intermediate cohomology weighted partitions $\left(T_{j}, \beta_{j}\right)$ and all configurations of connected components yielding a connected total domain,

$$
\Delta\left(T_{k}\right):=\Pi_{j} t_{j}\left|\operatorname{Aut}\left(T_{k}\right)\right|, \quad I_{1} \cup I_{2}=\{1,2, \cdots, l\}
$$

and $\check{\beta}_{j}$ is dual to β_{j}.

Local Gromov-Witten invariants

Let S be a Fano surface and K_{S} its canonical bundle. For $\beta \in H_{2}(S, \mathbb{Z})$, denote by $\overline{\mathcal{M}}_{g, k}(S, \beta)$ the moduli space of k-pointed stable maps of degree β to S. Then the following diagram

$$
\begin{array}{ll}
\overline{\mathcal{M}}_{g, 1}(S, \beta) & \xrightarrow{e v} S \\
\quad \rho \downarrow \\
\overline{\mathcal{M}}_{g, 0}(S, \beta) &
\end{array}
$$

defines the obstruction bundle $R^{1} \rho_{*} e v^{*} K_{S}$ whose fiber over a stable map $f: C \longrightarrow S$ is given by $H^{1}\left(C, f^{*} K_{S}\right)$.

Chiang-Klemm-Yau-Zaslow defined the local Gromov-Witten invariants of K_{S} as follows

$$
\begin{equation*}
K_{g, \beta}^{S}=\int_{\left[\overline{\mathcal{M}}_{g, 0}(S, \beta)\right]^{i r}} e\left(R^{1} \rho_{*} e v^{*} K_{S}\right) \tag{2}
\end{equation*}
$$

- Yang-Zhou(2009) generalize this definition to the case of toric non Fano surfaces.

Observation:

$$
\left[\overline{\mathcal{M}}_{g, 0}\left(Y_{S}, \beta\right)\right]^{v i r}=\left[\overline{\mathcal{M}}_{g, 0}(S: \beta)\right]^{v i r} \cap e\left(R^{1} \rho_{*} e v^{*} K_{S}\right) .
$$

- This implies that the local Gromov-Witten invariant of K_{S} of degree $\beta \in H_{2}(S, \mathbb{Z})$ equals the corresponding Gromov-Witten invariant of Y_{S}, i. e.,

$$
K_{g, \beta}^{S}=n_{g, \beta}^{Y_{S}}=\int_{\left[\overline{\mathcal{M}}_{g, 0}\left(Y_{S}, \beta\right)\right]^{v i r}} 1
$$

$$
\begin{aligned}
Y_{S} & =\mathbb{P}\left(K_{S} \oplus \mathcal{O}\right) \\
p & : \tilde{S} \longrightarrow S \\
\tilde{Y}_{S} & =p^{*} Y_{S} \\
D_{1} & \cong \mathbb{F}_{0} \\
D_{1} & =\mathbb{F}_{1}
\end{aligned}
$$

Results on local Gromov-Witten invariants

Lemma 1: Suppose that S and its blowup \tilde{S} are Fano surfaces. Let \tilde{Y}_{S} be the blowup of Y_{S} along the fiber over $p_{0} \in S$. Then for any $\beta \in H_{2}(S, \mathbb{Z})$, we have

$$
n_{g, \beta}^{Y_{S}}=\langle 1| \emptyset \emptyset_{g, p!(\beta)}^{\tilde{Y}_{S}, D_{1}}
$$

where $D_{1}=\mathbb{P}_{\mathbb{P}^{1}}(\mathcal{O} \oplus \mathcal{O}) \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ is the exceptional divisor in $\tilde{Y}_{S}, p!(\beta)=$ $P D p^{*} P D(\beta)$ and $p: \tilde{S} \longrightarrow S$ is the natural projection of the blowup.

Lemma 2: For any $\beta \in H_{2}(S, \mathbb{Z})$, we have

$$
n_{g, p!(\beta)}^{\tilde{Y}_{S}}=\langle 1 \mid \emptyset\rangle_{g, p!(\beta)}^{\tilde{Y}_{S}, D_{1}} .
$$

Summarizing Lemma 1 and Lemma 2, we have
Theorem 3:

$$
n_{g, \beta}^{Y_{S}}=n_{g, p!(\beta)}^{\tilde{Y}_{S}}
$$

Next, we want to compare the Gromov-Witten invariants $n_{g, p!(\beta)}^{\tilde{Y}_{S}}$ of \tilde{Y}_{S} to the Gromov-Witten invariants of Z. In fact, we have

Theorem 4:

$$
n_{g, p!(\beta)}^{\tilde{Y}_{S}}=n_{g, p!(\beta)}^{Z}
$$

Donaldson-Thomas invariants

Let X be a smooth projective 3 -fold and \mathcal{I} be an ideal sheaf of rank 1 on X.
Fact: \mathcal{I} determines a sub-scheme Y of dimension ≤ 1.
Fact: There is an exact sequence

$$
0 \longrightarrow \mathcal{I} \longrightarrow \mathcal{O}_{X} \longrightarrow \mathcal{O}_{Y} \longrightarrow 0
$$

- Fix $\beta \in H_{2}(X, \mathbb{Z})$. Let $I_{n}(X, \beta)$ denote the moduli space of ideal sheaves \mathcal{I} of rank 1 satisfying

$$
\chi\left(\mathcal{O}_{Y}\right)=n, \quad[Y]=\beta
$$

Fact: $I_{n}(X, \beta)$ is projective and a fine moduli space.
Fact: The virtual dimension of $I_{n}(X, \beta)$ equals $\int_{\beta} c_{1}\left(T_{X}\right)$.

For $\gamma \in H^{l}(X, \mathbb{Z})$, one can introduce some descendent field $(-1)^{k+1} c h_{k+2}(\gamma)$ on the moduli space $I_{n}(X, \beta)$ by the Chern classes of the universal ideal sheaf $\mathcal{J} \longrightarrow I_{n}(X, \beta) \times X$.

Definition: Suppose that X is a nonsingular, projective, Calabi-Yau 3-fold. Then for $\gamma_{i} \in H^{*}(X, \mathbb{R}), 1 \leq i \leq r$, and integers k_{1}, \cdots, k_{r}, the Donaldson-Thomas invariant is defined via integration against the virtual fundamental class,

$$
\left\langle\tilde{\tau}_{k_{1}}\left(\gamma_{1}\right), \cdots, \tilde{\tau}_{k_{r}}\left(\gamma_{r}\right)\right\rangle_{n, \beta}:=\int_{\left[I_{n}(X, \beta)\right]^{v i r}} \prod_{i=1}^{r}(-1)^{k_{i}+1} \operatorname{ch}_{k_{i}+2}\left(\gamma_{i}\right)
$$

Donaldson-Thomas partition function

DT partition function:

$$
Z_{D T}\left(X, q \mid \prod_{i=1}^{r} \tilde{\tau}_{k_{i}}\left(\gamma_{i}\right)\right)_{\beta}:=\sum_{n \in \mathbb{Z}}\left\langle\prod_{i=1}^{r} \tilde{\tau}_{k_{i}}\left(\gamma_{i}\right)\right\rangle_{n, \beta} q^{n} .
$$

Reduced DT partition function:

$$
Z_{D T}^{\prime}\left(X, q \mid \prod_{i=1}^{r} \tilde{\tau}_{k_{i}}\left(\gamma_{i}\right)\right)_{\beta}:=\frac{Z_{D T}\left(X, q \mid \prod_{i=1}^{r} \tilde{\tau}_{k_{i}}\left(\gamma_{i}\right)\right)_{\beta}}{Z_{D T}(X ; q)_{0}} .
$$

Relative DT invariants and its partition function

Similar to Gromov-Witten invariants, If S is a smooth surface in X, then for a partition $\eta=\left(\eta_{1}, \cdots, \eta_{s}\right)$ of [Sone can define the relative Donaldson-Thomas invariant

$$
\left\langle\tilde{\tau}_{k_{1}}\left(\gamma_{1}\right), \cdots, \tilde{\tau}_{k_{r}}\left(\gamma_{r}\right) \mid \eta\right\rangle_{n, \beta}
$$

Relative DT partition function:

$$
Z_{D T}\left(X / S, q \mid \prod_{i=1}^{r} \tilde{\tau}_{k_{i}}\left(\gamma_{i}\right)\right)_{\beta, \eta}:=\sum_{n \in \mathbb{Z}}\left\langle\prod_{i=1}^{r} \tilde{\tau}_{k_{i}}\left(\gamma_{i}\right) \mid \eta\right\rangle_{n, \beta} q^{n}
$$

Reduced relative DT partition function:

$$
Z_{D T}^{\prime}\left(X / S, q \mid \prod_{i=1}^{r} \tilde{\tau}_{k_{i}}\left(\gamma_{i}\right)\right)_{\beta, \eta}:=\frac{Z_{D T}^{\prime}\left(X, q \mid \prod_{i=1}^{r} \tilde{\tau}_{k_{i}}\left(\gamma_{i}\right)\right)_{\beta, \eta}}{Z_{D T}^{\prime}(X / S ; q)_{0}}
$$

Degeneration formula for DT invariants

Let $\pi: \mathcal{X} \longrightarrow \mathbb{C}$ be a semistable degeneration such that $\mathcal{X}_{t}=\pi^{-1}(t) \cong X$ for $t \neq 0$ and \mathcal{X}_{0} is a union of two smooth e-folds X_{1} and X_{2} intersecting transversely along a smooth surface S, Write

$$
i_{t}: X=\mathcal{X}_{t} \rightarrow \mathcal{X}, i_{0}: \mathcal{X}_{0} \rightarrow \mathcal{X}, j_{1}: X_{1} \rightarrow \mathcal{X}_{0}, j_{2}: X_{2} \longrightarrow \mathcal{X}_{0}
$$

Then the degeneration formula take the following form

$$
\begin{aligned}
& \left.Z_{D T}^{\prime}\left(\mathcal{X}_{t} ; q \mid \prod_{i=1}^{r} \tilde{\tau}_{0}\left(\gamma_{i}(t)\right)\right)\right)_{\beta} \\
= & \sum Z_{D T}^{\prime}\left(X_{1} / S ; q \mid \prod \tilde{\tau}_{0}\left(j_{1}^{*} \gamma_{i}(0)\right)\right)_{\beta_{1}, \eta} \frac{(-1)^{|\eta|-\ell(\eta)} \triangle(\eta)}{q^{|\eta|}} \\
& \times Z_{D T}^{\prime}\left(X_{2} / S ; q \mid \prod \tilde{\tau}_{0}\left(j_{2}^{*} \gamma_{i}(0)\right)\right)_{\beta_{2}, \eta^{\vee}},
\end{aligned}
$$

where the sum runs over the splittings $\beta_{1}+\beta_{2}=\beta$ and cohomology weighted partitions η.

Donaldson-Thomas invariants of local surfaces

Let $Y_{S}=\mathbb{P}\left(K_{S} \oplus \mathcal{O}_{S}\right)$ be the projective bundle over the surface S. Since Y_{S} has an anticanonical section, the Donaldson-Thomas theory of Y_{S} is well-defined in every rank.

Main result: Suppose that \tilde{S} is the blowup of S and $p: \tilde{S} \longrightarrow S$ is the projection. For $\beta \in H_{2}(S, \mathbb{Z})$, we have

$$
Z_{D T}^{\prime}\left(Y_{S} ; q\right)_{\beta}=Z_{D T}^{\prime}\left(Y_{\tilde{S}} ; q\right)_{p!(\beta)},
$$

where $p!(\beta)=P D p^{*} P D(\beta)$.

Thank You!

