Degeneration formulae and its applications to local GW and DT invariants

Jianxun Hu

Department of Mathematics, Sun Yat-sen University

stsjxhu@mail.sysu.edu.cn

Example: Consider the projective plane \mathbb{P}^2

• Fix two general points P, Q, there is only one line C passing through P and Q, with the homology class $\beta = [\ell]$.

• Fix two general points P, Q, and a line ℓ , there is only one line C passing through P, Q and intersecting the line ℓ , with the homology class $\beta = [\ell]$.

Question:

Fix a homology class $A \in H_2(X, \mathbb{Z})$ and some cycles Z_i in a projective (or symplectic) manifold X, assuming the Z_i are in general position. The basic question is :

How many curves on X satisfy:

 $C \subset X$ of genus g, homology class A, and $C \cap Z_i \neq \emptyset$ for all i. (1)

Naively, Gromov-Witten invariant is defined as the number of curves (1).

The origins in physics of Gromov-Witten invariants is the topological sigma model coupled to gravity. In particular, the genus zero (sometimes called tree level) Gromov-Witten invariants originate from the topological sigma model, which is a topological quantum field theory. In fact, in topological quantum field theory, the Gromov-Witten invariants appear as correlation functions.

Notations:

• (X, ω) : a compact symplectic (or projective) manifold of dim 2n, here ω is a nondegenerate closed 2-form, i.e. $\omega^n \neq 0$.

• There exist almost complex structures $J: TX \to TX$ such that $J^2 = -id$.

<u>Fact</u>: The space of all tamed almost complex structures is contractible(This implies that symplectic geometry is much more flexible than complex geometry).

• Example: $(\mathbb{R}^{2n}, \sum_{i=1}^n dx_i \wedge dy_i).$

An *n*-pointed stable map consists of a connected marked curve (C, p_1, \dots, p_n) and a morphism $f: C \longrightarrow X$ satisfying the following conditions:

(i) The only singularities of C are ordinary double points(nodal Riemann Surface).

(ii) p_1, \dots, p_n are distinct ordered smooth points in C.

(iii) If C_i is a component of C such that $C_i \cong \mathbb{P}^1$ and $f|_{C_i}$ is constant, then C_i contains at least 3 special points(nodal points and marked points).

(iv) If C has arithmetic genus one and n = 0, then f is not constant.

(v) $f \mid_{C_i} : C_i \longrightarrow X$ is holomorphic where C_i is a smooth component of C.

• Equivalence of stable map

 $(C, p_1, \cdots, p_n; f)$ is isomorphic to $(C', p'_1, \cdots, p'_n; f')$ if there is an isomorphism $\tau: C \longrightarrow C'$ such that $\tau(p_i) = p'_i$ for all i and $f' \circ \tau = f$.

$$\begin{array}{cccc} (C, p_1, \cdots, p_n) & \stackrel{\exists \tau (\cong)}{\longrightarrow} & (C', p'_1, \cdots, p'_n) \\ f \searrow & \swarrow & \swarrow & f' \\ & X \end{array}$$

Denote by $[(C, p_1, \cdots, P_n; f)]$ the equivalence class.

For $A \in H_2(X, \mathbb{Z})$, define the moduli space of stable maps as follows

$$\overline{\mathcal{M}}_{g,n}(X,A)$$
 : =

 $\{[(C, p_1, \cdots, p_n; f)] \mid (C, p_1, \cdots, p_n; f) \text{ is a genus } g \text{ stable map and } f_*[C] = A\}.$

<u>Remark</u>: In general, $\overline{\mathcal{M}}_{g,n}(X, A)$ is very singular. In many case, different component has different dimension. For example, assume that $X = \mathbf{P}^1$, g > 0, A = dL with d > 2 where L is the homology class of a line in \mathbf{P}^1 . Then $\overline{\mathcal{M}}_{g,n}(X, A)$ has more than one components. The most interesting one consists (generically) of irreducible genus g curves. Call this one $\overline{\mathcal{M}}_{g,0}(\mathbf{P}^1, A)^o$. The second consists (generically) of two intersecting components, one of genus g and mapping to a point, and the other rational and mapping to \mathbf{P}^1 with degree d. The first one has dimension 2d + 2g - 2, and the second has dimension 2d + 3g - 3, so the second is not in the closure of the first. **Proposition:**[Ruan1, LT, FO, S] $\overline{\mathcal{M}}_{g,n}(X, A)$ has a virtual fundamental class

 $[\overline{\mathcal{M}}_{g,n}(X,A)]^{vir}$

with the expected dimension

 $C_1(A) + (\dim X - 3)(1 - g) + n.$

Once we have the moduli space of stable maps, then we may define the following evaluation maps:

$$ev_i : \overline{\mathcal{M}}_{g,n}(X, A) \longrightarrow X$$

 $[C, p_1, \cdots, p_n, f] \mapsto f(p_i), i = 1, 2, \cdots, n.$

<u>Definition</u>: Given cohomology classes $\alpha_i \in H^*(X, \mathbb{R})$, roughly define the **(primitive) Gromov-Witten** invariant

$$\Psi_{(A,g)}(\alpha_1,\cdots,\alpha_n) = \int_{[\overline{\mathcal{M}}_{g,n}(X,A)]^{vir}} \prod_{i=1}^n ev_i^*\alpha_i,$$

if $\sum_{i=1}^{n} \deg \alpha_i = 2C_1(A) + 2(\dim X - 3)(1 - g) + 2n$. Otherwise, we simply define the invariants to be zero.

<u>Remark</u>: (Enumerative meaning) If Z_i is a cycle in X dual to α_i , then the primitive Gromov-Witten invariant $\langle \alpha_1, \cdots, \alpha_n \rangle_{g,A}^X$ should count genus g curves (C, p_1, \cdots, p_n) for which we can find f such that

$$f: (C, p_1, \cdots, p_n) \longrightarrow X$$
 is stable and

 $f_*[C] = A, f(p_i) \in Z_i.$

Let $Z \subset X$ be a real codimension 2 symplectic submanifold. Suppose that J is an ω -tamed almost complex structure on X preserving TZ, i.e. making Z an almost complex submanifold. The relative GW invariants are defined by counting stable J-holomorphic maps intersecting Z at finitely many points with prescribed tangency. More precisely, fix a k-tuple $T_k = (t_1, \cdots, t_k)$ of positive integers, consider a marked pre-stable curve

$$(C, x_1, \cdots, x_l, y_1, \cdots, y_k)$$

and stable J-holomorphic maps $f: C \longrightarrow X$ such that the divisor f^*Z is

$$f^*Z = \sum_i t_i y_i$$

We consider the moduli space of such curves, $\mathcal{M}_{g,T_k}(X,Z,A)$. Unfortunately, this moduli space is not compact. Similar to the case of absolute Gromov-Witten invariant, we may compactify this moduli space by relative stable maps. Denote by $[\overline{\mathcal{M}}_{g,T_k}(X,Z,A)]^{vir}$ the virtual fundamental class. Then use the virtual technique to define the relative Gromov-Witten invariant.

Evaluation maps:

$$ev_i: \qquad \overline{\mathcal{M}}_{g,T_k}(X,Z,A) \qquad \longrightarrow X$$
$$(C,x_1,\cdots,x_l;y_1,\cdots,y_k;f) \qquad \mapsto f(x_i), \quad 1 \le i \le l.$$

$$ev_j^Z: \qquad \overline{\mathcal{M}}_{g,T_k}(X,Z,A) \qquad \longrightarrow Z$$
$$(C,x_1,\cdots,x_l;y_1,\cdots,y_k;f) \qquad \mapsto f(y_j), \quad 1 \le j \le k.$$

Definition: (relative Gromov-Witten invariant) Let $\alpha_i \in H^*(X, \mathbb{R})$, $1 \leq i \leq l$, $\beta_j \in H^*(Z, \mathbb{R})$, $1 \leq j \leq k$. Define the relative Gromov-Witten invariant

$$\langle \Pi_i \tau_{d_i} \alpha_i \mid \Pi_j \beta_j \rangle_{g,A,T_k}^{X,Z} = \frac{1}{|Aut(T_k)|} \int_{[\overline{\mathcal{M}}_{g,T_k}(X,Z,A)]^{vir}} \Pi_i \psi^{d_i} \wedge ev_i^* \alpha_i \wedge (ev_j^Z)^* \beta_j.$$

• Symplectic cutting

Suppose that $X_0 \subset X$ is an open subset with a hamiltonian S^1 -action such that $H: X_0 \longrightarrow \mathbb{R}$ is a Hamiltonian function with 0 as a regular value and $H^{-1}(0)$ is a separating hypersurface in X.

Cut X along $H^{-1}(0)$, we obtain two connected manifolds X^{\pm} with boundary $\partial X^{\pm} = H^{-1}(0)$.

Denote by $Z = H^{-1}(0)/S^1$ the symplectic reduction.

Collapsing the S^1 -action on $\partial X^{\pm} = H^{-1}(0)$, we obtain closed smooth manifolds \bar{X}^{\pm} .

<u>Definition</u>: Two symplectic manifolds $(\bar{X}^{\pm}, \omega^{\pm})$ are called the symplectic cuts of X along $H^{-1}(0)$.

Here is the geometric description of symplectic cut:

• Symplectic bow-up

Let $Y \subset X$ be a symplectic submanifold of X of codimension 2k, $N_{Y|X}$ the normal bundle of Y in X. Perform the symplectic cut along the sphere bundle of $N_{Y|X}$, we obtain two symplectic cuts \bar{X}^{\pm} :

$$\overline{X}^+ := \mathbb{P}_Y(N_{Y|X} \oplus \mathbb{C})$$

 $\overline{X}^- := \widetilde{X}$, symplectic blowup of X along Y.

• Example: Y = pt. Then $\bar{X}^+ = \mathbb{P}^n$, $\bar{X}^- = \tilde{X}$.

Denote by $p: \tilde{X} \longrightarrow X$ the natural projection of the blow-up. $E = \mathbb{P}_Y(N_{Y|X})$ the exceptional divisor.

• Symplectic blow-down: the opposite operation from \tilde{X} to X.

Denote the reduction map by

$$\pi: X \longrightarrow \bar{X}^+ \cup_Z \bar{X}^-.$$

So we have a map

$$\pi_*: H_2(X,\mathbb{Z}) \longrightarrow H_2(\bar{X}^+ \cup_Z \bar{X}^-,\mathbb{Z}).$$

For $A \in H_2(X, \mathbb{Z})$, define $[A] = A + \ker \pi_*$ and define

$$\langle \Pi_i \tau_{d_i} \alpha_i \rangle_{g,[A]}^X := \sum_{B \in [A]} \langle \Pi_i \tau_{d_i} \alpha_i \rangle_{g,B}^X.$$

Degeneration Formula:(gluing formula)

$$\langle \Pi_i \tau_{d_i} \alpha_i \rangle_{g,[A]}^X = \sum \langle \Pi_{i \in I_1} \tau_{d_i} \alpha_i^+ \mid \beta_j \rangle_{g_1,A_1,T_k}^{\bar{X}^+,Z} \Delta(T_k) \langle \Pi_{i \in I_2} \tau_{d_i} \alpha_i^- \mid \check{\beta}_j \rangle_{g_2,A_2,T_k}^{\bar{X}^-,Z},$$

where the summation runs over all the splittings of g and A, all distribution of the insertion α_i^{\pm} , all intermediate cohomology weighted partitions (T_j, β_j) and all configurations of connected components yielding a connected total domain,

$$\Delta(T_k) := \prod_j t_j |Aut(T_k)|, \quad I_1 \cup I_2 = \{1, 2, \cdots, l\},\$$

and $\check{\beta}_j$ is dual to β_j .

Let S be a Fano surface and K_S its canonical bundle. For $\beta \in H_2(S,\mathbb{Z})$, denote by $\overline{\mathcal{M}}_{g,k}(S,\beta)$ the moduli space of k-pointed stable maps of degree β to S. Then the following diagram

$$\overline{\mathcal{M}}_{g,1}(S,\beta) \xrightarrow{ev} S$$

 $\rho \downarrow$ $\overline{\mathcal{M}}_{q,0}(S,\beta)$

defines the obstruction bundle $R^1 \rho_* ev^* K_S$ whose fiber over a stable map $f : C \longrightarrow S$ is given by $H^1(C, f^* K_S)$.

Chiang-Klemm-Yau-Zaslow defined the local Gromov-Witten invariants of K_S as follows

$$K_{g,\beta}^{S} = \int_{[\overline{\mathcal{M}}_{g,0}(S,\beta)]^{vir}} e(R^{1}\rho_{*}ev^{*}K_{S}).$$
⁽²⁾

Yang-Zhou(2009) generalize this definition to the case of toric non Fano surfaces.
 Observation:

$$[\overline{\mathcal{M}}_{g,0}(Y_S,\beta)]^{vir} = [\overline{\mathcal{M}}_{g,0}(S:\beta)]^{vir} \cap e(R^1\rho_*ev^*K_S).$$

• This implies that the local Gromov-Witten invariant of K_S of degree $\beta \in H_2(S, \mathbb{Z})$ equals the corresponding Gromov-Witten invariant of Y_S , i. e.,

$$K_{g,\beta}^S = n_{g,\beta}^{Y_S} = \int_{[\overline{\mathcal{M}}_{g,0}(Y_S,\beta)]^{vir}} 1.$$

$$Y_S = \mathbb{P}(K_S \oplus \mathcal{O})$$

$$p : \tilde{S} \longrightarrow S$$

$$\tilde{Y}_S = p^* Y_S$$

$$D_1 \cong \mathbb{F}_0$$

$$D_1 = \mathbb{F}_1.$$

Lemma 1: Suppose that S and its blowup \tilde{S} are Fano surfaces. Let \tilde{Y}_S be the blowup of Y_S along the fiber over $p_0 \in S$. Then for any $\beta \in H_2(S, \mathbb{Z})$, we have

$$n_{g,\beta}^{Y_S} = \langle 1 \mid \emptyset \rangle_{g,p!(\beta)}^{Y_S,D_1}$$

where $D_1 = \mathbb{P}_{\mathbb{P}^1}(\mathcal{O} \oplus \mathcal{O}) \cong \mathbb{P}^1 \times \mathbb{P}^1$ is the exceptional divisor in \tilde{Y}_S , $p!(\beta) = PDp^*PD(\beta)$ and $p: \tilde{S} \longrightarrow S$ is the natural projection of the blowup.

Lemma 2: For any $\beta \in H_2(S, \mathbb{Z})$, we have

$$n_{g,p!(\beta)}^{\tilde{Y}_S} = \langle 1 \mid \emptyset \rangle_{g,p!(\beta)}^{\tilde{Y}_S,D_1}$$

Summarizing Lemma 1 and Lemma 2, we have

Theorem 3:

$$n_{g,\beta}^{Y_S} = n_{g,p!(\beta)}^{\tilde{Y}_S}.$$

Next, we want to compare the Gromov-Witten invariants $n_{g,p!(\beta)}^{\tilde{Y}_S}$ of \tilde{Y}_S to the Gromov-Witten invariants of Z. In fact, we have

Theorem 4:

$$n_{g,p!(\beta)}^{\tilde{Y}_S} = n_{g,p!(\beta)}^Z.$$

Let X be a smooth projective 3-fold and \mathcal{I} be an ideal sheaf of rank 1 on X.

Fact: \mathcal{I} determines a sub-scheme Y of dimension ≤ 1 .

Fact: There is an exact sequence

$$0 \longrightarrow \mathcal{I} \longrightarrow \mathcal{O}_X \longrightarrow \mathcal{O}_Y \longrightarrow 0.$$

• Fix $\beta \in H_2(X,\mathbb{Z})$. Let $I_n(X,\beta)$ denote the moduli space of ideal sheaves \mathcal{I} of rank 1 satisfying

 $\chi(\mathcal{O}_Y) = n, \ [Y] = \beta.$

<u>Fact</u>: $I_n(X,\beta)$ is projective and a fine moduli space.

Fact: The virtual dimension of $I_n(X,\beta)$ equals $\int_{\beta} c_1(T_X)$.

For $\gamma \in H^l(X,\mathbb{Z})$, one can introduce some descendent field $(-1)^{k+1}ch_{k+2}(\gamma)$ on the moduli space $I_n(X,\beta)$ by the Chern classes of the universal ideal sheaf $\mathcal{J} \longrightarrow I_n(X,\beta) \times X$.

Definition: Suppose that X is a nonsingular, projective, Calabi-Yau 3-fold. Then for $\gamma_i \in H^*(X, \mathbb{R})$, $1 \leq i \leq r$, and integers k_1, \dots, k_r , the Donaldson-Thomas invariant is defined via integration against the virtual fundamental class,

$$\langle \tilde{\tau}_{k_1}(\gamma_1), \cdots, \tilde{\tau}_{k_r}(\gamma_r) \rangle_{n,\beta} := \int_{[I_n(X,\beta)]^{vir}} \prod_{i=1}^r (-1)^{k_i+1} ch_{k_i+2}(\gamma_i).$$

DT partition function:

$$Z_{DT}(X,q \mid \prod_{i=1}^r \tilde{\tau}_{k_i}(\gamma_i))_{\beta} := \sum_{n \in \mathbb{Z}} \langle \prod_{i=1}^r \tilde{\tau}_{k_i}(\gamma_i) \rangle_{n,\beta} q^n.$$

Reduced DT partition function:

$$Z'_{DT}(X,q \mid \prod_{i=1}^{r} \tilde{\tau}_{k_{i}}(\gamma_{i}))_{\beta} := \frac{Z_{DT}(X,q \mid \prod_{i=1}^{r} \tilde{\tau}_{k_{i}}(\gamma_{i}))_{\beta}}{Z_{DT}(X;q)_{0}}.$$

Relative DT invariants and its partition function

Similar to Gromov-Witten invariants, If S is a smooth surface in X, then for a partition $\eta = (\eta_1, \dots, \eta_s)$ of [Sone can define the relative Donaldson-Thomas invariant

 $\langle \tilde{\tau}_{k_1}(\gamma_1), \cdots, \tilde{\tau}_{k_r}(\gamma_r) \mid \eta \rangle_{n,\beta}$

Relative DT partition function:

$$Z_{DT}(X/S,q \mid \prod_{i=1}^r \tilde{\tau}_{k_i}(\gamma_i))_{\beta,\eta} := \sum_{n \in \mathbb{Z}} \langle \prod_{i=1}^r \tilde{\tau}_{k_i}(\gamma_i) \mid \eta \rangle_{n,\beta} q^n$$

Reduced relative DT partition function:

$$Z'_{DT}(X/S, q \mid \prod_{i=1}^{r} \tilde{\tau}_{k_{i}}(\gamma_{i}))_{\beta,\eta} := \frac{Z'_{DT}(X, q \mid \prod_{i=1}^{r} \tilde{\tau}_{k_{i}}(\gamma_{i}))_{\beta,\eta}}{Z'_{DT}(X/S; q)_{0}}$$

Degeneration formula for DT invariants

Let $\pi : \mathcal{X} \longrightarrow \mathbb{C}$ be a semistable degeneration such that $\mathcal{X}_t = \pi^{-1}(t) \cong X$ for $t \neq 0$ and \mathcal{X}_0 is a union of two smooth e-folds X_1 and X_2 intersecting transversely along a smooth surface S, Write

$$i_t: X = \mathcal{X}_t \to \mathcal{X}, \ i_0: \mathcal{X}_0 \to \mathcal{X}, \ j_1: X_1 \to \mathcal{X}_0, \ j_2: X_2 \longrightarrow \mathcal{X}_0,$$

Then the degeneration formula take the following form

$$Z'_{DT}(\mathcal{X}_{t};q \mid \prod_{i=1}^{r} \tilde{\tau}_{0}(\gamma_{i}(t))))_{\beta}$$

= $\sum Z'_{DT}(X_{1}/S;q \mid \prod \tilde{\tau}_{0}(j_{1}^{*}\gamma_{i}(0)))_{\beta_{1},\eta} \frac{(-1)^{|\eta|-\ell(\eta)} \Delta(\eta)}{q^{|\eta|}}$
 $\times Z'_{DT}(X_{2}/S;q \mid \prod \tilde{\tau}_{0}(j_{2}^{*}\gamma_{i}(0)))_{\beta_{2},\eta^{\vee}},$

where the sum runs over the splittings $\beta_1 + \beta_2 = \beta$ and cohomology weighted partitions η .

Donaldson-Thomas invariants of local surfaces

Let $Y_S = \mathbb{P}(K_S \oplus \mathcal{O}_S)$ be the projective bundle over the surface S. Since Y_S has an anticanonical section, the Donaldson-Thomas theory of Y_S is well-defined in every rank.

Main result: Suppose that \tilde{S} is the blowup of S and $p : \tilde{S} \longrightarrow S$ is the projection. For $\beta \in H_2(S, \mathbb{Z})$, we have

$$Z'_{DT}(Y_S;q)_{\beta} = Z'_{DT}(Y_{\tilde{S}};q)_{p!(\beta)},$$

where $p!(\beta) = PDp^*PD(\beta)$.

Thank You!