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§1 Motivations

Example: Consider the projective plane P?

e Fix two general points P, (), there is only one line C passing through P and
(), with the homology class g = [/].

(e T P

P Q



e Fix two general points P, (), and a line ¢, there is only one line C' passing
through P, @ and intersecting the line £, with the homology class g = [/].

Question:

Fix a homology class A € Hy(X,Z) and some cycles Z; in a projective (or
symplectic) manifold X, assuming the Z; are in general position. The basic

question Is :

How many curves on X satisfy:

C' C Xof genus g, homology class A, and C N Z; # () for all 1. (1)



Naively, Gromov-Witten invariant is defined as the number of curves (1).



Physical origin of Gromov-Witten invariant

The origins in physics of Gromov-Witten invariants is the topological sigma model
coupled to gravity. In particular, the genus zero (sometimes called tree level) Gromov-
Witten invariants originate from the topological sigma model, which is a topological
quantum field theory. In fact, in topological quantum field theory, the Gromov-Witten
invariants appear as correlation functions.



§2 Gromov-Witten invariant

Notations:

e (X,w): a compact symplectic (or projective) manifold of dim 2n, here w is a
nondegenerate closed 2-form, i.e. w” # 0.

e There exist almost complex structures J : TX — T'X such that J? = —id.

Fact:The space of all tamed almost complex structures is contractible( This implies
that symplectic geometry is much more flexible than complex geometry).

e Example: (R*™,>"" | dx; A dy;).



Stable map

An n-pointed stable map consists of a connected marked curve (C, p1,--- ,py,) and
a morphism f : C' — X satisfying the following conditions:

(i) The only singularities of C' are ordinary double points(nodal Riemann Surface).
(ii) p1,--- ,pn are distinct ordered smooth points in C.

(iii) If C; is a component of C such that C; = P! and f |¢, is constant, then C;
contains at least 3 special points(nodal points and marked points).

(iv) If C has arithmetic genus one and n = 0, then f is not constant.

(v) f|c,;: Ci — X is holomorphic where C; is a smooth component of C.



|

this component
is confracted by £




e Equivalence of stable map

(C,p1, -+ ,pn; f) is isomorphic to (C',p, -+ ,pl; f') if there is an isomorphism
7 :C — (' such that 7(p;) = p} for all ¢ and f'o7T = f.

dr (=
(C7p17"' 7pn) LQ (Claplla"' 7pf,n)
F\ i
X

Denote by [(C,p1,-- -, Py; f)] the equivalence class.



Moduli space of stable maps

For A € Hy(X,7Z), define the moduli space of stable maps as follows

Myn(X,A4) @ =

Copr, - pai )] | (Copro-++ ,pus f)is a genus g stable map and £.[C] = A}.

Remark: In general, M, (X, A) is very singular. In many case, different
component has different dimension. For example, assume that X = P!, ¢ > 0,
A = dL with d > 2 where L is the homology class of a line in P'. Then M, (X, A)
has more than one components. The most interesting one consists (generically)
of irreducible genus g curves. Call this one M, o(P! A)°. The second consists
(generically) of two intersecting components, one of genus g and mapping to a point,
and the other rational and mapping to P! with degree d. The first one has dimension
2d + 2g — 2, and the second has dimension 2d + 3g — 3, so the second is not in the
closure of the first.
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Proposition:[Ruanl, LT, FO, S] M, (X, A) has a virtual fundamental class

[(Mg,n(X, )
with the expected dimension

C1(A) + (dim X — 3)(1 — g) + n.
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Gromov-W.itten invariant

Once we have the moduli space of stable maps, then we may define the following
evaluation maps:

evi : Myn(X,A) — X
[Capla'”7pn7f]'_>f(pi)7i:]-727"'7n'

Definition:  Given cohomology classes «; € H*(X,R), roughly define the
(primitive) Gromov-Witten invariant

\P(A,g) (0417 T 7&?1) — /_ H e’U;-kOé@',

[ngn(X7A)]viT 1=1

if Yoo dega; = 2C1(A) + 2(dim X — 3)(1 — g) + 2n. Otherwise, we simply define
the invariants to be zero.
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Remark: (Enumerative meaning) If Z; is a cycle in X dual to «;, then the primitive
Gromov-Witten invariant (aq, - - - ,ozn>§fA should count genus g curves (C,p1, - ,pn)
for which we can find f such that

f:(C,p1,--+ ,pn) — X is stable and

f«Cl = A, f(pi) € Zi.
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Relative Gromov-W.itten invariants

Let Z C X be a real codimension 2 symplectic submanifold. Suppose that J is
an w—tamed almost complex structure on X preserving T'Z, i.e. making Z an almost
complex submanifold. The relative GW invariants are defined by counting stable
J—holomorphic maps intersecting Z at finitely many points with prescribed tangency.
More precisely, fix a k-tuple Ty, = (t1,--- ,t) of positive integers, consider a marked
pre-stable curve

(Caxla'” y LLy Y1, - 7yk3)
and stable J—holomorphic maps f : C' — X such that the divisor f*Z is

[z = thyz

We consider the moduli space of such curves, M, 1 (X,Z,A). Unfortunately,
this moduli space is not compact. Similar to the case of absolute Gromov-Witten
invariant, we may compactify this moduli space by relative stable maps. Denote by

(M1, (X, Z, A)]""" the virtual fundamental class. Then use the virtual technique to
define the relative Gromov-Witten invariant.
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Evaluation maps:

ev; My1.(X,Z,A) — X
(O7x177xl7y177yk7f) }_>f($’6)7 1§/L§l

ev? M,1.(X,Z,A) — 7
(Caxlaaxlaylaaykaf) |%f(yj)a ]—Sjgk

Definition: (relative Gromov-Witten invariant) Let «; € H*(X,R), 1 < ¢ <[,
B; € H*(Z,R), 1 < j < k. Define the relative Gromov-Witten invariant

(g, 00 | Hj5j>Xj4ZT / L% A evia; A (ev?)*B;.
2 g,A,1[ ’Aut ‘ ng(XZA) ’UZT J
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83 Degeneration formula for symplectic cutting

e Symplectic cutting

Suppose that Xy C X is an open subset with a hamiltonian S'-action such that
H : Xo — R is a Hamiltonian function with 0 as a regular value and H~1(0) is a
separating hypersurface in X.

Cut X along H~'(0), we obtain two connected manifolds X* with boundary
0X* = H1(0).

Denote by Z = H~1(0)/S* the symplectic reduction.

Collapsing the S!-action on OX* = H~1(0), we obtain closed smooth manifolds
X+,

Definition: Two symplectic manifolds (X, w™®) are called the symplectic cuts of
X along H~1(0).
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Here is the geometric description of symplectic cut:

X+
= ! e, ... collapse Q
Xo e Y e H () e
* s'-action 7= H-lu.%
-

e Symplectic bow-up

Let Y C X be a symplectic submanifold of X of codimension 2k, Ny |x the normal
bundle of Y in X. Perform the symplectic cut along the sphere bundle of Ny |x, we
obtain two symplectic cuts X *:

X+ = Py(Ny|X@C)

X~ := X, symplectic blowup of X along Y.

e Example: Y = pt. Then Xt =P, X~ = X.
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Denote by p : X — X the natural projection of the blow-up. E = Py (Ny | x)
the exceptional divisor.

e Symplectic blow-down: the opposite operation from X to X.
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Degeneration formula

Denote the reduction map by
7: X — XTUz X

So we have a map

T Ho(X,Z) — Hoy(XT Uz X7, 7).

For A € Hy(X,Z), define [A] = A + ker 7, and define

(Hdeioq);f[A] = Z <HdeiOéi>§(’B.
Be[A]
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Degeneration Formula:(gluing formula)

Xtz | A\X".Z
<H7;Tdiai>§f[f4] - Z<Hi€]17_d’ia7—3i_ | ﬁj>91,A1,TkA(Tk)<Hi€]27_diai | ﬁj>92,A2,Tk’

where the summation runs over all the splittings of g and A, all distribution of

the insertion o, all intermediate cohomology weighted partitions (T;,5;) and all

7 1

configurations of connected components yielding a connected total domain,
A(Tk) = Hjtj|A’LLt(Tk)|, ]1 U [2 = {1, 2, s ,l},

and Bj is dual to j3;.
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Local Gromov-W,itten invariants

Let S be a Fano surface and K its canonical bundle. For 3 € H3(S,Z), denote
by M, (S, 3) the moduli space of k-pointed stable maps of degree 3 to S. Then the
following diagram

Mg,l(Svﬁ) ﬂ) S
p

Mg,O(Sa 5)
defines the obstruction bundle R!p.ev* K whose fiber over a stable map f : C — S
is given by H'(C, f*Kg).

Chiang-Klemm-Yau-Zaslow defined the local Gromov-Witten invariants of Kg as
follows

K;:B :/ e(R'p.ev'Kg). (2)
[Mg,0(S,8)]"*"
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e Yang-Zhou(2009) generalize this definition to the case of toric non Fano surfaces.

Observation:

Myo(Ys, O] = [Myo(S : B M e(R poev” Ks).

e This implies that the local Gromov-Witten invariant of Kg of degree 5 € H»(S,7Z)
equals the corresponding Gromov-Witten invariant of Yg, i. e,

g?/B 7/8 _— .
! My.0(Ys,B)]U"
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Projective completion of Kg

P S— S
Ys = p*Ys
D, = Fy
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Results on local Gromov-Witten invariants

Lemma 1: Suppose that S and its blowup S are Fano surfaces. Let Yg be the
blowup of Yg along the fiber over pg € S. Then for any 5 € H5(S,Z), we have

YS _ ?SrDl
Mg = <1 | mg,p!(ﬁ)

where D = Pn(O & O) = P! x P! is the exceptional divisor in Ys, pl(8) =
PDp*PD(f) and p: S — S is the natural projection of the blowup.

Lemma 2: For any 8 € Hy(S,Z), we have

?S _ ?SaDl
Mgpl(B) — (1] mg,p!(ﬁ)‘
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Summarizing Lemma 1 and Lemma 2, we have

Theorem 3:

Yg Yg
n =n )
9,0 g,p!(B)

Next, we want to compare the Gromov-Witten invariants n;/%!(ﬁ) of Yg to the
Gromov-Witten invariants of Z. In fact, we have

Theorem 4:

?S L VA
Tgpl(8) = Tg,p!(8):
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Donaldson-Thomas invariants

Let X be a smooth projective 3-fold and Z be an ideal sheaf of rank 1 on X.

Fact: 7 determines a sub-scheme Y of dimension < 1.

Fact: There is an exact sequence

0—72 —>0x — Oy — 0.

o Fix 5 € Hy(X,Z). Let I,(X, 3) denote the moduli space of ideal sheaves Z of

rank 1 satisfying
X(OY) = n, [Y] = p.
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Fact: I,,(X, 3) is projective and a fine moduli space.

Fact: The virtual dimension of I,,(X, 3) equals fﬁ c1(Tx).

For v € H'(X,Z), one can introduce some descendent field (—1)*t1chs_o(7)
on the moduli space I,(X,3) by the Chern classes of the universal ideal sheaf

J — I(X,8) x X.

Definition: Suppose that X is a nonsingular,projective, Calabi-Yau 3-fold. Then
for v; € H*(X,R), 1 < ¢ < r, and integers ki,--- k., the Donaldson-Thomas
invariant is defined via integration against the virtual fundamental class,

r

(Fn)s - T ()= [ T~ 1)+ ey ya(0).

[In(X,B)]v ;4
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Donaldson-Thomas partition function

DT partition function:

Zpr(X,q | [ ] Fe,0))s =D (] ] x,(0))m.pd™

=1 neZ 1=1

Reduced DT partition function:

~ Zpr(X,q | TLizy Tk (7i)) s

Zpr(X,q | H%ki(%))ﬂ =

P Zpr(X;q)o
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Relative DT invariants and its partition function

Similar to Gromov-Witten invariants, If .S is a smooth surface in X, then for a
partition n = (11, -+ ,ns) of [Sone can define the relative Donaldson-Thomas invariant

(Ter (V1) 5 T (V) | M)

Relative DT partition function:

ZDT(X/Saq | H%ki(’yi))ﬁ,n c= Z<H %kzz'(’yi) | 77>n,ﬁqn-

1=1 nez 1=1

Reduced relative DT partition function:

_ Zpr(Xsq | Ty Tri(73) 8.

Zor(X/S,q | ] (i) g - 7 (X/S:q)o
DT )

1=1
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Degeneration formula for DT invariants

Let 7 : X — C be a semistable degeneration such that X; = 7= 1(¢) & X for
t # 0 and Aj is a union of two smooth e-folds X; and X5 intersecting transversely
along a smooth surface S, Write

itZX:Xt%X, ?:QZX()—>X, j12X1—>X0, j22X2—>XQ.
Then the degeneration formula take the following form

Zpr(Xisq | H%o(%(t))))ﬁ

= > Zpp(X1/Siq | [ [ F(557:(0))) 81

X Z1r(X2/S;q | H 70(J27:(0))) 820V

(—1)'”"“"”&(77)
q|77|

where the sum runs over the splittings 514+ (82 = 8 and cohomology weighted partitions
7.
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Donaldson-Thomas invariants of local surfaces

Let Ys = P(Kg ® Og) be the projective bundle over the surface S. Since Yg has

an anticanonical section, the Donaldson-Thomas theory of Yg is well-defined in every
rank.

Main result: Suppose that S is the blowup of S and p : S — S is the
projection. For 8 € H5(S,Z), we have

ZbT(Ys; Q)ﬁ — ZbT(Yg; Q)p!(ﬁ)a
where p!(8) = PDp*PD(05).
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Thank You!

33



