The Global Geometry of Stationary Surfaces in 4-dimensional Lorentz space

Xiang Ma

(Joint with Zhiyu Liu, Changping Wang, Peng Wang)

Peking University

the 10th Pacific Rim Geometry Conference 3 December, 2011, Osaka

Introduction

- What is a stationary surface
- Main results
- The Weierstrass representation

2 Total curvature and singularities

- The failure of Osserman's theorem
- Singular ends
- Gauss-Bonnet type theorems

3 Constructing embedded examples

- Generalized catenoid and k-noids
- Generalized helicoid and Enneper surface

What is a stationary surface Main results The Weierstrass representation

1 Introduction

- What is a stationary surface
- Main results
- The Weierstrass representation

2 Total curvature and singularities

- The failure of Osserman's theorem
- Singular ends
- Gauss-Bonnet type theorems

3 Constructing embedded examples

- Generalized catenoid and k-noids
- Generalized helicoid and Enneper surface

Introduction

Total curvature and singularities Constructing embedded examples What is a stationary surface Main results The Weierstrass representation

Freshman attempting to break a soap film

Introduction

Total curvature and singularities Constructing embedded examples What is a stationary surface Main results The Weierstrass representation

Sharing soap films with kids

What is a stationary surface Main results The Weierstrass representation

Stationary surfaces = spacelike surfaces with H = 0

- $\ln \mathbb{R}_1^4 : \langle X, X \rangle := X_1^2 + X_2^2 + X_3^2 X_4^2.$
- $H=0 \Leftrightarrow X: M
 ightarrow \mathbb{R}^4_1$ is harmonic (for induced metric).

Special cases:

- In \mathbb{R}^3 : Minimizer of the surface area.
- In \mathbb{R}^3_1 : Maximizer of the surface area.
- In \mathbb{R}^4_1 : Not local minimizer or maximizer.

What is a stationary surface Main results The Weierstrass representation

Stationary surfaces = spacelike surfaces with H = 0

$$\ln \mathbb{R}_1^4 : \langle X, X \rangle := X_1^2 + X_2^2 + X_3^2 - X_4^2.$$

 $H=0 \Leftrightarrow X: M
ightarrow \mathbb{R}^4_1$ is harmonic (for induced metric).

Special cases:

- In \mathbb{R}^3 : Minimizer of the surface area.
- In \mathbb{R}^3_1 : Maximizer of the surface area.
- In \mathbb{R}^4_1 : Not local minimizer or maximizer.

Motivation

Stationary surfaces in \mathbb{R}^4_1 are:

- special examples of <u>Willmore surfaces</u> (critical points for $\int (H^2 - K) dM$).
- corresponding to Laguerre minimal surfaces (critical points for $\int \frac{H^2 - K}{K} dM$).
- A natural generalization of classical minimal surfaces in R³, yet receiving little attention.

Motivation

Stationary surfaces in \mathbb{R}^4_1 are:

- special examples of <u>Willmore surfaces</u> (critical points for $\int (H^2 - K) dM$).
- corresponding to Laguerre minimal surfaces (critical points for $\int \frac{H^2 - K}{K} dM$).
- A natural generalization of classical minimal surfaces in ℝ³, yet receiving little attention.

Motivation

- Stationary surfaces in \mathbb{R}^4_1 are:
 - special examples of <u>Willmore surfaces</u> (critical points for $\int (H^2 - K) dM$).
 - corresponding to Laguerre minimal surfaces (critical points for $\int \frac{H^2 - K}{K} dM$).
 - A natural generalization of classical minimal surfaces in ℝ³, yet receiving little attention.

What is a stationary surface Main results The Weierstrass representation

Motivation

- Stationary surfaces in \mathbb{R}^4_1 are:
 - special examples of <u>Willmore surfaces</u> (critical points for $\int (H^2 - K) dM$).
 - corresponding to Laguerre minimal surfaces (critical points for $\int \frac{H^2-K}{K} dM$).
 - A natural generalization of classical minimal surfaces in ℝ³, yet receiving little attention.

• Osserman's theorem fails.

We construct examples with $\int |{\cal K}| < \infty$ whose Gauss maps could not extend to the ends.

• Singular ends.

We divide them into two types; define index for good type.

• Gauss-Bonnet type result:

$$\int_{M} K \mathrm{d}M = 2\pi (2 - 2g - m - \sum \widetilde{d}_j).$$

• Osserman's theorem fails.

We construct examples with $\int |{\cal K}| < \infty$ whose Gauss maps could not extend to the ends.

• Singular ends.

We divide them into two types; define index for good type.

• Gauss-Bonnet type result:

$$\int_{\mathcal{M}} K \mathrm{d}M = 2\pi (2 - 2g - m - \sum \widetilde{d}_j).$$

• Osserman's theorem fails.

We construct examples with $\int |{\cal K}| < \infty$ whose Gauss maps could not extend to the ends.

• Singular ends.

We divide them into two types; define index for good type.

• Gauss-Bonnet type result:

$$\int_{M} K \mathrm{d}M = 2\pi (2 - 2g - m - \sum \widetilde{d}_j).$$

• Osserman's theorem fails.

We construct examples with $\int |{\cal K}| < \infty$ whose Gauss maps could not extend to the ends.

Singular ends.

We divide them into two types; define index for good type.

• Gauss-Bonnet type result:

$$\int_M K \mathrm{d}M = 2\pi (2 - 2g - m - \sum \widetilde{d}_j).$$

Introduction

Total curvature and singularities Constructing embedded examples What is a stationary surface Main results The Weierstrass representation

The Gauss Map in \mathbb{R}^3

Minimal $\Leftrightarrow N : M \to S^2$ anti-conformal. $\Leftrightarrow G = p \circ N$ meromorphic.

What is a stationary surface Main results The Weierstrass representation

The Gauss Maps in \mathbb{R}^4_1

Space-like $X : M^2 \to \mathbb{R}^4_1$:

normal plane $(TM)^{\perp}$ is a Lorentz plane; splits into light-like lines $(TM)^{\perp} = \text{Span}\{Y, Y^*\}.$

Stationary \Leftrightarrow [Y] conformal, [Y*] anti-conformal. $\Leftrightarrow \phi, \psi : M \to \mathbb{C}$ meromorphic.

What is a stationary surface Main results The Weierstrass representation

The Gauss Maps in \mathbb{R}^4_1

Space-like $X : M^2 \to \mathbb{R}^4_1$:

normal plane $(TM)^{\perp}$ is a Lorentz plane; splits into light-like lines $(TM)^{\perp} = \text{Span}\{Y, Y^*\}.$

Stationary \Leftrightarrow [Y] conformal, [Y*] anti-conformal. $\Leftrightarrow \phi, \psi : M \to \mathbb{C}$ meromorphic.

What is a stationary surface Main results The Weierstrass representation

The W-representation for Minimal $X : M^2 \hookrightarrow \mathbb{R}^3$

 $X_z dz = (\omega_1, \omega_2, \omega_3)$ is a vector-valued holomorphic 1-form with $(\omega_1)^2 + (\omega_2)^2 + (\omega_3)^2 = 0$.

$$X = \operatorname{Re} \int_{z_0}^{z} \left[G - \frac{1}{G}, -i\left(G + \frac{1}{G}\right), 2 \right] \mathrm{d}h \; .$$

- *M*: a Riemann surface (non-compact).
- G: the Gauss map; meromorphic function on M;
- dh: height differential; holomorphic on M.

What is a stationary surface Main results The Weierstrass representation

The W-representation in \mathbb{R}^4_1

For stationary $X : M^2 \to \mathbb{R}^4_1$ with $X_z dz = (\omega_1, \omega_2, \omega_3, \omega_4)$ one has: $(\omega_1)^2 + (\omega_2)^2 + (\omega_3)^2 - (\omega_4)^2 = 0$.

$$X = \operatorname{Re} \int_{z_0}^{z} \left[\phi + \psi, -i(\phi - \psi), 1 - \phi \psi, 1 + \phi \psi \right] dh.$$

 $\phi,\psi,\mathrm{d}h$ are Gauss maps and height differential, respectively.

Special cases
$$\left\{ \begin{array}{ll} \psi = -1/\phi \quad \Rightarrow \quad M \to \mathbb{R}^3 \\ \psi = 1/\phi \quad \Rightarrow \quad M \to \mathbb{R}^3_1 \\ \psi = 0 \quad \Rightarrow \quad M \to \mathbb{R}^3_0 \end{array} \right\}$$
 Unified in \mathbb{R}^4_1 .

What is a stationary surface Main results The Weierstrass representation

The W-representation in \mathbb{R}^4_1

For stationary $X : M^2 \to \mathbb{R}^4_1$ with $X_z dz = (\omega_1, \omega_2, \omega_3, \omega_4)$ one has: $(\omega_1)^2 + (\omega_2)^2 + (\omega_3)^2 - (\omega_4)^2 = 0$.

$$X = \operatorname{Re} \int_{z_0}^{z} \left[\phi + \psi, -\mathrm{i} \left(\phi - \psi \right), 1 - \phi \psi, 1 + \phi \psi \right] \mathrm{d}h \; .$$

 $\phi,\psi,\mathrm{d}\textbf{\textit{h}}$ are Gauss maps and height differential, respectively.

Special cases
$$\left\{ \begin{array}{ll} \psi = -1/\phi \quad \Rightarrow \quad M \to \mathbb{R}^3 \\ \psi = 1/\phi \quad \Rightarrow \quad M \to \mathbb{R}^3_1 \\ \psi = 0 \qquad \Rightarrow \quad M \to \mathbb{R}^3_0 \end{array} \right\}$$
 Unified in \mathbb{R}^4_1 .

What is a stationary surface Main results The Weierstrass representation

The W-representation in \mathbb{R}^4_1

For stationary $X : M^2 \to \mathbb{R}^4_1$ with $X_z dz = (\omega_1, \omega_2, \omega_3, \omega_4)$ one has: $(\omega_1)^2 + (\omega_2)^2 + (\omega_3)^2 - (\omega_4)^2 = 0$.

$$X = \operatorname{Re} \int_{z_0}^{z} \left[\phi + \psi, -\mathrm{i} \left(\phi - \psi \right), 1 - \phi \psi, 1 + \phi \psi \right] \mathrm{d}h \; .$$

 $\phi,\psi,\mathrm{d}\textbf{\textit{h}}$ are Gauss maps and height differential, respectively.

$$\begin{array}{lll} \text{Special cases} \left\{ \begin{array}{ll} \psi = -1/\phi & \Rightarrow & M \to \mathbb{R}^3 \\ \psi = 1/\phi & \Rightarrow & M \to \mathbb{R}^3_1 \\ \psi = 0 & \Rightarrow & M \to \mathbb{R}^3_0 \end{array} \right\} \text{Unified in } \mathbb{R}^4_1. \end{array}$$

Induced metric $ds^2 = |\phi - \overline{\psi}|^2 |dh|^2$.

Regularity: φ ≠ ψ on M (because [Y] ≠ [Y*]);
 poles of φ or ψ ↔ zeros of dh.

• **Period Condition**: meromorphic differentials ω_j have no real periods along any closed path.

$$\begin{aligned} (-K + \mathrm{i}K^{\perp})\mathrm{d}M &= 2\mathrm{i}\frac{\phi_{z}\psi_{\bar{z}}}{(\phi - \overline{\psi})^{2}}\mathrm{d}z \wedge \mathrm{d}\bar{z} \\ &= 2\mathrm{i}\big[\log(\phi - \overline{\psi})\big]_{z\bar{z}}\mathrm{d}z \wedge \mathrm{d}\bar{z} \end{aligned}$$

Induced metric $ds^2 = |\phi - \overline{\psi}|^2 |dh|^2$.

- Regularity: φ ≠ ψ on M (because [Y] ≠ [Y*]);
 poles of φ or ψ ↔ zeros of dh.
- **Period Condition**: meromorphic differentials ω_j have no real periods along any closed path.

$$(-K + iK^{\perp})dM = 2i\frac{\phi_{z}\overline{\psi}_{\bar{z}}}{(\phi - \overline{\psi})^{2}}dz \wedge d\bar{z}$$
$$= 2i\left[\log(\phi - \overline{\psi})\right]_{z\bar{z}}dz \wedge d\bar{z}$$

1 Introduction

- What is a stationary surface
- Main results
- The Weierstrass representation

2 Total curvature and singularities

- The failure of Osserman's theorem
- Singular ends
- Gauss-Bonnet type theorems

3 Constructing embedded examples

- Generalized catenoid and k-noids
- Generalized helicoid and Enneper surface

The failure of Osserman's theorem Singular ends Gauss-Bonnet type theorems

Minimal Surfaces of Finite Toal Curvature

Thm [Osserman, Jorge-Meeks] Complete minimal $X : M \to \mathbb{R}^3$, $\int_M - K dM < \infty$.

- $M \cong \overline{M} \{p_1, \cdots, p_m\}$. conformal equivalence [Huber]. \overline{M} compact. p_j Ends.
- *G*, d*h* extends analytically to *p_j*; be meromorphic objects on *M*.

•
$$\int K dM = -4\pi \deg(G)$$

= $2\pi(2-2g-m-\sum_{j=1}^{m} d_j)$.
g: genus of \overline{M} ;
 d_j : multiplicity of the *j*-th end.

Catenoid

The failure of Osserman's theorem Singular ends Gauss-Bonnet type theorems

Minimal Surfaces of Finite Toal Curvature

- Thm [Osserman, Jorge-Meeks] Complete minimal $X : M \to \mathbb{R}^3$, $\int_M - K dM < \infty$.
 - $M \cong \overline{M} \{p_1, \cdots, p_m\}$. conformal equivalence [Huber]. \overline{M} compact. p_j Ends.
 - G, dh extends analytically to p_j; be meromorphic objects on M.

•
$$\int K dM = -4\pi \deg(G)$$

= $2\pi(2-2g-m-\sum_{j=1}^{m} d_j)$.
g: genus of \overline{M} ;
 d_j : multiplicity of the *j*-th end.

Catenoid

The failure of Osserman's theorem Singular ends Gauss-Bonnet type theorems

Minimal Surfaces of Finite Toal Curvature

- Thm [Osserman, Jorge-Meeks] Complete minimal $X : M \to \mathbb{R}^3$, $\int_M - K dM < \infty$.
 - $M \cong \overline{M} \{p_1, \cdots, p_m\}$. conformal equivalence [Huber]. \overline{M} compact. p_j Ends.
 - G, dh extends analytically to p_j; be meromorphic objects on M.

•
$$\int K dM = -4\pi \deg(G)$$

= $2\pi(2-2g-m-\sum_{j=1}^{m} d_j)$.
g: genus of \overline{M} ;
 d_j : multiplicity of the *j*-th end.

Catenoid

The failure of Osserman's theorem Singular ends Gauss-Bonnet type theorems

Minimal Surfaces of Finite Toal Curvature

- Thm [Osserman, Jorge-Meeks] Complete minimal $X : M \to \mathbb{R}^3$, $\int_M - K dM < \infty$.
 - $M \cong \overline{M} \{p_1, \cdots, p_m\}$. conformal equivalence [Huber]. \overline{M} compact. p_j Ends.
 - G, dh extends analytically to p_j; be meromorphic objects on M.

•
$$\int K dM = -4\pi \deg(G)$$

= $2\pi (2-2g - m - \sum_{j=1}^{m} d_j).$
g: genus of \overline{M} ;
 d_j : multiplicity of the *j*-th end.

Catenoid.

Basic Difficulties for $X : M \to \mathbb{R}^4_1$

$$(-\mathcal{K} + \mathrm{i}\mathcal{K}^{\perp})\mathrm{d}\mathcal{M} = 2\mathrm{i}\frac{\phi_{z}\overline{\psi_{\overline{z}}}}{(\phi - \overline{\psi})^{2}}\mathrm{d}z \wedge \mathrm{d}\overline{z}.$$

- The sign of K is not fixed in general. (Compare to K ≤ 0 in ℝ³, K ≥ 0 in ℝ³₁, K ≡ 0 in ℝ³₀.)
- The integral of Gauss curvature losses the old geometric meaning as the area of Gauss map image.
- Essential singularities of ϕ, ψ on \overline{M} . EXIST OR NOT? (Finiteness of $\int |K| dM$ still implies $M \cong \overline{M} - \{p_1, \dots, p_m\}$.)

Basic Difficulties for $X : M \to \mathbb{R}^4_1$

$$(-\mathcal{K} + \mathrm{i}\mathcal{K}^{\perp})\mathrm{d}\mathcal{M} = 2\mathrm{i}\frac{\phi_{z}\overline{\psi_{\overline{z}}}}{(\phi - \overline{\psi})^{2}}\mathrm{d}z \wedge \mathrm{d}\overline{z}.$$

- There might be $\phi = \overline{\psi}$ at one end. Called a singular end.
- The sign of K is not fixed in general. (Compare to K ≤ 0 in ℝ³, K ≥ 0 in ℝ³₁, K ≡ 0 in ℝ³₀.)
- The integral of Gauss curvature losses the old geometric meaning as the area of Gauss map image.
- Essential singularities of ϕ, ψ on \overline{M} . EXIST OR NOT? (Finiteness of $\int |K| dM$ still implies $M \cong \overline{M} - \{p_1, \dots, p_m\}$.)

Basic Difficulties for $X : M \to \mathbb{R}^4_1$

$$(-\mathcal{K} + \mathrm{i}\mathcal{K}^{\perp})\mathrm{d}\mathcal{M} = 2\mathrm{i}\frac{\phi_{z}\overline{\psi_{\bar{z}}}}{(\phi - \overline{\psi})^{2}}\mathrm{d}z \wedge \mathrm{d}\bar{z}.$$

- The sign of K is not fixed in general. (Compare to $K \leq 0$ in \mathbb{R}^3 , $K \geq 0$ in \mathbb{R}^3_1 , $K \equiv 0$ in \mathbb{R}^3_0 .)
- The integral of Gauss curvature losses the old geometric meaning as the area of Gauss map image.
- Essential singularities of ϕ, ψ on \overline{M} . EXIST OR NOT? (Finiteness of $\int |K| dM$ still implies $M \cong \overline{M} - \{p_1, \dots, p_m\}$.)

Basic Difficulties for $X : M \to \mathbb{R}^4_1$

$$(-\mathcal{K} + \mathrm{i}\mathcal{K}^{\perp})\mathrm{d}\mathcal{M} = 2\mathrm{i}\frac{\phi_{z}\overline{\psi_{\bar{z}}}}{(\phi - \overline{\psi})^{2}}\mathrm{d}z \wedge \mathrm{d}\bar{z}.$$

- The sign of K is not fixed in general. (Compare to $K \leq 0$ in \mathbb{R}^3 , $K \geq 0$ in \mathbb{R}^3_1 , $K \equiv 0$ in \mathbb{R}^3_0 .)
- The integral of Gauss curvature losses the old geometric meaning as the area of Gauss map image.
- Essential singularities of ϕ, ψ on \overline{M} . EXIST OR NOT? (Finiteness of $\int |K| dM$ still implies $M \cong \overline{M} - \{p_1, \dots, p_m\}$.)

Basic Difficulties for $X : M \to \mathbb{R}^4_1$

$$(-\kappa + \mathrm{i}\kappa^{\perp})\mathrm{d}M = 2\mathrm{i}rac{\phi_{z}\overline{\psi_{\overline{z}}}}{(\phi - \overline{\psi})^{2}}\mathrm{d}z\wedge\mathrm{d}\overline{z}.$$

- The sign of K is not fixed in general. (Compare to $K \leq 0$ in \mathbb{R}^3 , $K \geq 0$ in \mathbb{R}^3_1 , $K \equiv 0$ in \mathbb{R}^3_0 .)
- The integral of Gauss curvature losses the old geometric meaning as the area of Gauss map image.
- Essential singularities of ϕ, ψ on \overline{M} . EXIST OR NOT? (Finiteness of $\int |K| dM$ still implies $M \cong \overline{M} - \{p_1, \dots, p_m\}$.)

Counter-example X_k ($k \ge 2$):

$$M = \mathbb{C} - \{0\}, \ \phi(z) = \frac{-1}{z^k} e^z, \ \psi(z) = z^k e^z, \ \mathrm{d}h = e^{-z} \mathrm{d}z$$
.

- No singular points/ends. $\phi \neq \overline{\psi}$ on $\mathbb{C} \cup \{\infty\}$.
- X_k is complete with two end $z = 0, \infty$; no periods.
- The absolute total curvature of X_k is finite:

$$\int_{M} |-K + \mathrm{i}K^{\perp}| \mathrm{d}M < \infty.$$

(Indeed $\int_M K dM = -4k\pi$, $\int_M K^{\perp} dM = 0$.)

Counter-example X_k ($k \ge 2$):

$$M = \mathbb{C} - \{0\}, \ \phi(z) = rac{-1}{z^k} e^z, \ \psi(z) = z^k e^z, \ \mathrm{d}h = e^{-z} \mathrm{d}z \ .$$

- No singular points/ends. $\phi \neq \overline{\psi}$ on $\mathbb{C} \cup \{\infty\}$.
- X_k is complete with two end $z = 0, \infty$; no periods.
- The absolute total curvature of X_k is finite:

$$\int_{M} |-K + \mathrm{i}K^{\perp}| \mathrm{d}M < \infty.$$

(Indeed $\int_M K dM = -4k\pi$, $\int_M K^{\perp} dM = 0.$)

Counter-example X_k ($k \ge 2$):

$$M = \mathbb{C} - \{0\}, \ \phi(z) = rac{-1}{z^k} e^z, \ \psi(z) = z^k e^z, \ \mathrm{d}h = e^{-z} \mathrm{d}z \ .$$

- No singular points/ends. $\phi \neq \overline{\psi}$ on $\mathbb{C} \cup \{\infty\}$.
- X_k is complete with two end $z = 0, \infty$; no periods.
- The absolute total curvature of X_k is finite:

$$\int_{M} |-K + \mathrm{i}K^{\perp}| \mathrm{d}M < \infty.$$

(Indeed $\int_M K dM = -4k\pi$, $\int_M K^{\perp} dM = 0.$)

Counter-example X_k ($k \ge 2$):

$$M = \mathbb{C} - \{0\}, \ \phi(z) = rac{-1}{z^k} e^z, \ \psi(z) = z^k e^z, \ \mathrm{d}h = e^{-z} \mathrm{d}z \ .$$

- No singular points/ends. $\phi \neq \overline{\psi}$ on $\mathbb{C} \cup \{\infty\}$.
- X_k is complete with two end $z = 0, \infty$; no periods.
- The absolute total curvature of X_k is finite:

$$\int_{M} |-K + \mathrm{i} K^{\perp} | \mathrm{d} M < \infty.$$

(Indeed
$$\int_M K \mathrm{d}M = -4k\pi, \quad \int_M K^\perp \mathrm{d}M = 0.$$
)

Singular Ends — Good or Bad

Let $X: D - \{0\} \to \mathbb{R}^4_1$ be one end at z = 0. Recall that

$$(-K + \mathrm{i}K^{\perp})\mathrm{d}M = 2\mathrm{i}rac{\phi_{z}\overline{\psi}_{\overline{z}}}{(\phi - \overline{\psi})^{2}}\mathrm{d}z\wedge\mathrm{d}\overline{z}.$$

Definition z = 0 is called a singular end if $\phi(0) = \overline{\psi}(0)$.

Definition It is called a <u>BAD singular end</u> if both ϕ and ψ have the same multiplicity at 0, or a GOOD singular end otherwise.

Singular Ends — Good or Bad

Let $X: D - \{0\} \to \mathbb{R}^4_1$ be one end at z = 0. Recall that

$$(-K + \mathrm{i}K^{\perp})\mathrm{d}M = 2\mathrm{i}rac{\phi_{z}\overline{\psi}_{\overline{z}}}{(\phi - \overline{\psi})^{2}}\mathrm{d}z\wedge\mathrm{d}\overline{z}.$$

Definition z = 0 is called a singular end if $\phi(0) = \overline{\psi}(0)$.

Definition It is called a BAD singular end if both ϕ and ψ have the same multiplicity at 0, or a GOOD singular end otherwise.

Index of a Good Singular End

Definition The index of a good singular end p is

$$\operatorname{ind}(\phi - \overline{\psi}) := \lim_{D_{\rho} \to \{p\}} \frac{1}{2\pi \mathrm{i}} \oint_{\partial D_{\rho}} \mathrm{d} \ln(\phi - \overline{\psi}).$$

Lemma

$$\lim_{D \to \{0\}} \frac{1}{2\pi i} \oint_{\partial D} d\ln(z^m - \bar{z}^n) = \begin{cases} m, & \text{if } m < n, \\ -n, & \text{if } m > n. \end{cases}$$

when $m = n, \oint \frac{\phi_z}{\phi - \bar{\psi}} dz$ and $\oint \frac{\bar{\psi}_{\bar{z}}}{\phi - \bar{\psi}} d\bar{z}$ won't onverge!

Index of a Good Singular End

Definition The index of a good singular end p is

$$\operatorname{ind}(\phi - \overline{\psi}) := \lim_{D_{\rho} \to \{p\}} \frac{1}{2\pi \mathrm{i}} \oint_{\partial D_{\rho}} \mathrm{d} \ln(\phi - \overline{\psi}).$$

Lemma

$$\lim_{D \to \{0\}} \frac{1}{2\pi i} \oint_{\partial D} d\ln(z^m - \bar{z}^n) = \begin{cases} m, & \text{if } m < n, \\ -n, & \text{if } m > n. \end{cases}$$
When $m = n, \oint \frac{\phi_z}{\phi - \bar{\psi}} dz$ and $\oint \frac{\bar{\psi}_z}{\phi - \bar{\psi}} d\bar{z}$ won't converge!

Index of a Good Singular End

Definition The index of a good singular end p is

$$\operatorname{ind}(\phi - \overline{\psi}) := \lim_{D_{\rho} \to \{\rho\}} \frac{1}{2\pi \mathrm{i}} \oint_{\partial D_{\rho}} \mathrm{d} \ln(\phi - \overline{\psi}).$$

Lemma

$$\lim_{D \to \{0\}} \frac{1}{2\pi i} \oint_{\partial D} d \ln(z^m - \bar{z}^n) = \begin{cases} m, & \text{if } m < n, \\ -n, & \text{if } m > n. \end{cases}$$

When $m = n$, $\oint \frac{\phi_z}{\phi - \bar{\psi}} dz$ and $\oint \frac{\bar{\psi}_{\bar{z}}}{\phi - \bar{\psi}} d\bar{z}$ won't converge!

G-B Theorem for Algebraic Minimal Surfaces

Theorem Let complete stationary surface $X : M \to \mathbb{R}^4_1$ satisfy:

1)
$$M \cong \overline{M} - \{p_1, \cdots, p_m\};$$

2) $\phi, \psi, \mathrm{d}h$ extends analytically to \overline{M} ;

3) There are NO bad singular ends.

Then
$$\int_{M} K dM = -2\pi \left[\deg(\phi) + \deg(\psi) - \sum |ind| \right]$$
$$= 2\pi (2 - 2g - m - \sum \widetilde{d}_{j}),$$
$$\int_{M} K^{\perp} dM = 0.$$

Remark Here we modify $\widetilde{d}_j := d_j - |\text{ind}|$ at p_j . **Remark** $\deg(\phi) - \deg(\psi) = \sum_{p_i} \operatorname{ind}(\phi - \overline{\psi}).$

G-B Theorem for Algebraic Minimal Surfaces

Theorem Let complete stationary surface $X : M \to \mathbb{R}^4_1$ satisfy: 1) $M \cong \overline{M} - \{p_1, \cdots, p_m\};$

2) $\phi, \psi, \mathrm{d} h$ extends analytically to \overline{M} ;

There are NO bad singular ends.

Then
$$\int_{M} K dM = -2\pi \left[\deg(\phi) + \deg(\psi) - \sum |ind| \right]$$
$$= 2\pi (2 - 2g - m - \sum \widetilde{d}_{j}),$$
$$\int_{M} K^{\perp} dM = 0.$$

Remark Here we modify $\widetilde{d}_j := d_j - |\text{ind}|$ at p_j . **Remark** $\deg(\phi) - \deg(\psi) = \sum_{p_j} \operatorname{ind}(\phi - \overline{\psi})$.

G-B Theorem for Algebraic Minimal Surfaces

Theorem Let complete stationary surface $X : M \to \mathbb{R}^4_1$ satisfy: 1) $M \cong \overline{M} - \{p_1, \cdots, p_m\};$

2) ϕ, ψ, dh extends analytically to \overline{M} ;

There are NO bad singular ends.

Then
$$\int_{M} K dM = -2\pi \left[\deg(\phi) + \deg(\psi) - \sum |ind| \right]$$
$$= 2\pi (2 - 2g - m - \sum \widetilde{d}_{j}),$$
$$\int_{M} K^{\perp} dM = 0.$$

Remark Here we modify $\tilde{d}_j := d_j - |\operatorname{ind}|$ at p_j . **Remark** $\deg(\phi) - \deg(\psi) = \sum_{p_j} \operatorname{ind}(\phi - \overline{\psi})$.

G-B Theorem for Algebraic Minimal Surfaces

Theorem Let complete stationary surface $X : M \to \mathbb{R}^4_1$ satisfy: 1) $M \cong \overline{M} - \{p_1, \dots, p_m\};$

2) ϕ, ψ, dh extends analytically to \overline{M} ;

3) There are NO bad singular ends.

Then
$$\int_{M} K dM = -2\pi \left[\deg(\phi) + \deg(\psi) - \sum |ind| \right]$$
$$= 2\pi (2 - 2g - m - \sum \widetilde{d}_{j}),$$
$$\int_{M} K^{\perp} dM = 0.$$

Remark Here we modify $\widetilde{d}_j := d_j - |\operatorname{ind}|$ at p_j . **Remark** $\operatorname{deg}(\phi) - \operatorname{deg}(\psi) = \sum_{p_j} \operatorname{ind}(\phi - \overline{\psi})$.

G-B Theorem for Algebraic Minimal Surfaces

Theorem Let complete stationary surface $X : M \to \mathbb{R}^4_1$ satisfy: 1) $M \cong \overline{M} - \{p_1, \cdots, p_m\};$

2) ϕ, ψ, dh extends analytically to \overline{M} ;

3) There are NO bad singular ends.

Then
$$\int_{M} \mathcal{K} dM = -2\pi \left[\deg(\phi) + \deg(\psi) - \sum |\operatorname{ind}| \right]$$
$$= 2\pi (2 - 2g - m - \sum \widetilde{d}_{j}),$$
$$\int_{M} \mathcal{K}^{\perp} dM = 0.$$

Remark Here we modify $\widetilde{d}_j := d_j - |\operatorname{ind}|$ at p_j .

Remark deg (ϕ) - deg (ψ) = \sum_{p_i} ind $(\phi - \overline{\psi})$.

G-B Theorem for Algebraic Minimal Surfaces

Theorem Let complete stationary surface $X : M \to \mathbb{R}^4_1$ satisfy: 1) $M \cong \overline{M} - \{p_1, \cdots, p_m\};$

2) ϕ, ψ, dh extends analytically to \overline{M} ;

3) There are NO bad singular ends.

Then
$$\int_{M} \mathcal{K} dM = -2\pi \left[\deg(\phi) + \deg(\psi) - \sum |\operatorname{ind}| \right]$$
$$= 2\pi (2 - 2g - m - \sum \widetilde{d}_{j}),$$
$$\int_{M} \mathcal{K}^{\perp} dM = 0.$$

Remark Here we modify $\widetilde{d}_j := d_j - |\operatorname{ind}|$ at p_j .

Remark deg(ϕ) - deg(ψ) = \sum_{p_j} ind($\phi - \overline{\psi}$).

Sketch of the Proof

- 1) Cut out small neighborhood D_j for each end p_j .
- 2) Using Stokes theorem on $\overline{M} \cup_{j=1}^m D_j$, we get

$$\int_{M} (-K + iK^{\perp}) dM = 2i \lim_{j \to 0} \int_{\overline{M} - \bigcup_{j}} \frac{\phi_{z} \overline{\psi}_{\overline{z}}}{(\phi - \overline{\psi})^{2}} dz \wedge d\overline{z}$$
$$= 2i \sum_{j} \lim_{D_{j} \to \{\rho_{j}\}} \int_{\partial D_{j}} \frac{\phi_{z}}{\phi - \overline{\psi}} dz$$
$$= 2i \cdot 2\pi i \left[-\sum_{j} \text{poles}(\phi) + \sum_{ind>0} ind \right]$$
$$= 4\pi \text{deg}(\phi) - 2\pi \left(\sum_{j} |ind| + \sum_{j} ind \right)$$

3) Similarly, $LHS = 4\pi \operatorname{deg}(\psi) - 2\pi \left(\sum |\operatorname{ind}| - \sum \operatorname{ind}\right).$

1 Introduction

- What is a stationary surface
- Main results
- The Weierstrass representation

2 Total curvature and singularities

- The failure of Osserman's theorem
- Singular ends
- Gauss-Bonnet type theorems

3 Constructing embedded examples

- Generalized catenoid and k-noids
- Generalized helicoid and Enneper surface

Generalized Catenoid

Classical catenoid:

$$M = \mathbb{C} - \{0\}, \phi = -\frac{1}{\psi} = z, \mathrm{d}h = \frac{\mathrm{d}z}{z}.$$

Lopez-Ros theorem:

A complete, genus zero, finite total curvature, embedded minimal surface in \mathbb{R}^3 is a plane or a catenoid.

Generalized to \mathbb{R}^4_1 :

$$M = \mathbb{C} - \{0\}, \ \phi = z + a, \ \psi = \frac{-1}{z - a}, \ \mathrm{d}h = \frac{z - a}{z^2} \mathrm{d}z$$

It has no real periods and no singular points/ends for $a \in (-1, 1)$.

This surface is embedded.

Generalized Catenoid

Classical catenoid:

$$M = \mathbb{C} - \{0\}, \phi = -\frac{1}{\psi} = z, \mathrm{d}h = \frac{\mathrm{d}z}{z}.$$

Lopez-Ros theorem:

A complete, genus zero, finite total curvature, embedded minimal surface in \mathbb{R}^3 is a plane or a catenoid.

Generalized to \mathbb{R}^4_1 :

$$M = \mathbb{C} - \{0\}, \ \phi = z + a, \ \psi = \frac{-1}{z - a}, \ \mathrm{d}h = \frac{z - a}{z^2} \mathrm{d}z$$

It has no real periods and no singular points/ends for $a \in (-1,1)$.

This surface is embedded.

Generalized Catenoid

Classical catenoid:

$$M = \mathbb{C} - \{0\}, \phi = -\frac{1}{\psi} = z, \mathrm{d}h = \frac{\mathrm{d}z}{z}.$$

Lopez-Ros theorem:

A complete, genus zero, finite total curvature, embedded minimal surface in \mathbb{R}^3 is a plane or a catenoid.

Generalized to \mathbb{R}^4_1 :

$$M = \mathbb{C} - \{0\}, \ \phi = z + a, \ \psi = \frac{-1}{z - a}, \ \mathrm{d}h = \frac{z - a}{z^2} \mathrm{d}z$$

It has no real periods and no singular points/ends for $a \in (-1, 1)$.

This surface is embedded.

Generalized k-noids

The Jorge-Meeks k-noids ($k \ge 3$) in \mathbb{R}^3 :

$$egin{aligned} M &= \mathbb{C}P^1 ackslash \{ \epsilon^j | \epsilon^k = 1 \}, \ G &= z^{k-1}, \ dh &= rac{z^{k-1}}{(z^k-1)^2} dz \ . \end{aligned}$$

One can deform it to an embedded stationary surface in \mathbb{R}^4_1 :

$$X = \operatorname{Re} \int_{z_0}^{z} \left[G - \frac{1}{G}, -i\left(G + \frac{1}{G}\right), \sqrt{3}, i \right] \mathrm{d}h$$

Generalized k-noids

The Jorge-Meeks k-noids ($k \ge 3$) in \mathbb{R}^3 :

$$egin{aligned} M &= \mathbb{C}P^1 ackslash \{ \epsilon^j | \epsilon^k = 1 \}, \ G &= z^{k-1}, \ dh &= rac{z^{k-1}}{(z^k-1)^2} dz \ . \end{aligned}$$

One can deform it to an embedded stationary surface in \mathbb{R}^4_1 :

$$X = \operatorname{Re} \int_{z_0}^{z} \left[G - rac{1}{G}, -\mathrm{i} \left(G + rac{1}{G} \right), \sqrt{3}, i
ight] \mathrm{d}h \; .$$

Generalized Helicoid

Classical helicoid:

$$M = \mathbb{C} - \{0\}, \phi = -\frac{1}{\psi} = z, \mathrm{d}h = i\frac{\mathrm{d}z}{z}.$$

Meeks-Rosenberg theorem:

A complete, simply connected, embedded minimal surface in \mathbb{R}^3 is a plane or a helicoid.

Generalized to \mathbb{R}^4_1 :

$$M = \mathbb{C} - \{0\}, \ \phi = z + a, \ \psi = \frac{-1}{z - a}, \ \mathrm{d}h = i \frac{z - a}{z^2} \mathrm{d}z$$

It is embedded without singular points/ends for $a \in (-1, 1)$.

Generalized Helicoid

Classical helicoid:

$$M = \mathbb{C} - \{0\}, \phi = -\frac{1}{\psi} = z, \mathrm{d}h = i\frac{\mathrm{d}z}{z}.$$

Meeks-Rosenberg theorem:

A complete, simply connected, embedded minimal surface in \mathbb{R}^3 is a plane or a helicoid.

Generalized to \mathbb{R}^4_1 :

$$M = \mathbb{C} - \{0\}, \ \phi = z + a, \ \psi = \frac{-1}{z - a}, \ \mathrm{d}h = i \frac{z - a}{z^2} \mathrm{d}z$$

It is embedded without singular points/ends for $a \in (-1, 1)$.

Stationary Graph

In \mathbb{R}^3 , a complete graph is a plane (Bernstein theorem).

In $\mathbb{R}^3,$ an embedded end must have multiplicity 1, and be either a catenoid end or a planar end.

In \mathbb{R}^4_1 , stationary surfaces as graph over a 2-plane (hence embedded) could has one planar end of arbitrary multiplicity *n*:

$$X_z = \left[\left(\frac{1}{z^n} - \frac{z^n}{2} \right), i \left(\frac{1}{z^n} + \frac{z^n}{2} \right), 1, i \right].$$

$$\phi = -\frac{z^n}{1+i}, \ \psi = \frac{1-i}{z^n}, \ \mathrm{d}h = \frac{1+i}{2} \mathrm{d}z.$$

Stationary Graph

In \mathbb{R}^3 , a complete graph is a plane (Bernstein theorem).

In $\mathbb{R}^3,$ an embedded end must have multiplicity 1, and be either a catenoid end or a planar end.

In \mathbb{R}_1^4 , stationary surfaces as graph over a 2-plane (hence embedded) could has one planar end of arbitrary multiplicity *n*:

$$X_z = \left[\left(\frac{1}{z^n} - \frac{z^n}{2} \right), i \left(\frac{1}{z^n} + \frac{z^n}{2} \right), 1, i \right].$$

$$\phi = -\frac{z^n}{1+i}, \ \psi = \frac{1-i}{z^n}, \ \mathrm{d}h = \frac{1+i}{2} \mathrm{d}z.$$

Generalized Enneper Surfaces

Classical Enneper surface: $M = \mathbb{C}, \phi = -\frac{1}{\psi} = z, dh = zdz.$

- Simply connected.
- Total curvature -4π .
- One end of multiplicity 3; with self intersection.

Generalized to \mathbb{R}^4_1 :

$$M = \mathbb{C}, \ \phi = z + 1, \ \psi = \frac{c}{z}, \ \mathrm{d}h = s \cdot z \mathrm{d}z.$$

This deformation preserves completeness, regularity, period condition... (choose $c, s \in \mathbb{C} \setminus \{0\}$ appropriately).

It could be EMBEDDED in \mathbb{R}^4_1 (when $c < -rac{1}{4}, s
otin \mathbb{R}$).

Generalized Enneper Surfaces

Classical Enneper surface: $M = \mathbb{C}, \phi = -\frac{1}{\psi} = z, dh = zdz.$

- Simply connected.
- Total curvature -4π .
- One end of multiplicity 3; with self intersection.

Generalized to \mathbb{R}^4_1 :

$$M = \mathbb{C}, \ \phi = z + 1, \ \psi = \frac{c}{z}, \ \mathrm{d}h = s \cdot z \mathrm{d}z.$$

This deformation preserves completeness, regularity, period condition... (choose $c, s \in \mathbb{C} \setminus \{0\}$ appropriately).

It could be EMBEDDED in \mathbb{R}^4_1 (when $c < -\frac{1}{4}, s \notin \mathbb{R}$).

Other Results

• Classification of algebraic minimal surfaces in \mathbb{R}^4_1 with total curvature -4π .

(We have to show that $\overline{z}(\overline{z} + \overline{a}) = \frac{z^2}{z+b}$ has only trivial solutions $z = 0, \infty$ for any parameters $a, b \in \mathbb{C}$ satisfying a + b = 1.)

• Number of exceptional values for the Gauss maps ϕ, ψ (for algebraic type) \leq 4.

Other Results

• Classification of algebraic minimal surfaces in \mathbb{R}^4_1 with total curvature -4π .

(We have to show that $\overline{z}(\overline{z} + \overline{a}) = \frac{z^2}{z+b}$ has only trivial solutions $z = 0, \infty$ for any parameters $a, b \in \mathbb{C}$ satisfying a + b = 1.)

• Number of exceptional values for the Gauss maps ϕ, ψ (for algebraic type) \leq 4.

Open Problems

• For essential singularities with finite total curvature, define indices and establish G-B type theorem. In particular we conjecture that

$$\int_M K \mathrm{d}M = -4\pi n$$

when the total curvature is finite.

•

- Is it possible to obtain some kind of uniqueness results under the assumption of embeddedness?
- Obtain upper bound of the exceptional values for the Gauss maps φ, ψ for complete minimal surfaces in R⁴₁.

Open Problems

• For essential singularities with finite total curvature, define indices and establish G-B type theorem. In particular we conjecture that

$$\int_M K \mathrm{d}M = -4\pi n$$

when the total curvature is finite.

٠

- Is it possible to obtain some kind of uniqueness results under the assumption of embeddedness?
- Obtain upper bound of the exceptional values for the Gauss maps φ, ψ for complete minimal surfaces in R⁴₁.

Open Problems

• For essential singularities with finite total curvature, define indices and establish G-B type theorem. In particular we conjecture that

$$\int_M K \mathrm{d}M = -4\pi n$$

when the total curvature is finite.

- Is it possible to obtain some kind of uniqueness results under the assumption of embeddedness?
- Obtain upper bound of the exceptional values for the Gauss maps φ, ψ for complete minimal surfaces in R⁴₁.

Generalized catenoid and k-noids Generalized helicoid and Enneper surface

THANK YOU !

Reference

Estudillo, Romero, *On maximal surfaces in the n-dimensional Lorentz-Minkowski space*, Geometriae Dedicata 38 (1991), 167-174.

Alias, Palmer, *Curvature properties of zero mean curvature surfaces in four-dimensional Lorentzian space forms*, Math. Proc. Camb. Phil. Soc. 124(1998), 315-327.

Zhiyu Liu, Xiang Ma, Changping Wang, Peng Wang, Global geometry and topology of spacelike stationary surfaces in \mathbb{R}^4_1 , arXiv:1103.4700v4

