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Stationary surfaces = spacelike surfaces with H = 0

In R4
1 : 〈X ,X 〉 := X 2

1 + X 2
2 + X 2

3 − X 2
4 .

H = 0 ⇔ X : M → R4
1 is harmonic (for induced metric).

Special cases:

In R3: Minimizer of the surface area.

In R3
1: Maximizer of the surface area.

In R4
1: Not local minimizer or maximizer.
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Motivation

Stationary surfaces in R4
1 are:

special examples of Willmore surfaces

(critical points for
∫

(H2 − K )dM).

corresponding to Laguerre minimal surfaces

(critical points for
∫

H2−K
K dM).

A natural generalization of classical minimal
surfaces in R3, yet receiving little attention.
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Main Results

Osserman’s theorem fails.

We construct examples with
∫
|K | <∞ whose Gauss maps

could not extend to the ends.

Singular ends.

We divide them into two types; define index for good type.

Gauss-Bonnet type result:∫
M

KdM = 2π(2− 2g −m −
∑

d̃j).

We construct many embedded examples
(in contrast to uniqueness results in R3).
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The Gauss Map in R3

Minimal ⇔ N : M → S2 anti-conformal.

⇔ G = p ◦ N meromorphic.
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The Gauss Maps in R4
1

Space-like X : M2 → R4
1:

normal plane (TM)⊥ is a Lorentz plane;

splits into light-like lines (TM)⊥ = Span{Y ,Y ∗}.

(M2, z)
[Y ],[Y ∗]

//

φ,ψ $$HHH
HHH

HHH
H

Q2

p
��

∼= S2

C

〈Y ,Y 〉 = 〈Y ∗,Y ∗〉 = 0,

〈Y ,Y ∗〉 = 1.

Q2 = {[v ] ∈ RP3|〈v , v〉 = 0}.

Stationary ⇔ [Y ] conformal, [Y ∗] anti-conformal.

⇔ φ, ψ : M → C meromorphic.
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The W-representation for Minimal X : M2 ↪→ R3

Xzdz = (ω1, ω2, ω3) is a vector-valued holomorphic
1-form with (ω1)

2 + (ω2)
2 + (ω3)

2 = 0.

X = Re

∫ z

z0

[
G − 1

G
,−i

(
G +

1

G

)
, 2

]
dh .

M : a Riemann surface (non-compact).

G : the Gauss map; meromorphic function on M ;

dh: height differential; holomorphic on M .
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The W-representation in R4
1

For stationary X : M2 → R4
1 with Xzdz = (ω1, ω2, ω3, ω4) one

has: (ω1)
2 + (ω2)

2 + (ω3)
2 − (ω4)

2 = 0.

X = Re

∫ z

z0

[
φ+ψ,−i (φ− ψ) , 1−φψ, 1+φψ

]
dh .

φ, ψ, dh are Gauss maps and height differential, respectively.

Special cases


ψ = −1/φ ⇒ M → R3

ψ = 1/φ ⇒ M → R3
1

ψ = 0 ⇒ M → R3
0

 Unified in R4
1.
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Induced metric ds2 = |φ− ψ|2|dh|2.

Regularity: φ 6= ψ on M (because [Y ] 6= [Y ∗]);

poles of φ or ψ ↔ zeros of dh.

Period Condition: meromorphic differentials
ωj have no real periods along any closed path.

(−K + iK⊥)dM = 2i
φzψz̄

(φ− ψ)2
dz ∧ dz̄

= 2i
[
log(φ− ψ̄)

]
zz̄

dz ∧ dz̄ .
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Minimal Surfaces of Finite Toal Curvature

Thm [Osserman, Jorge-Meeks]
Complete minimal X : M → R3,∫
M −KdM <∞. ⇒

M ∼= M − {p1, · · · , pm}.
conformal equivalence [Huber].
M compact. pj Ends.

G ,dh extends analytically to pj ;
be meromorphic objects on M.∫
KdM = −4πdeg(G )

= 2π(2−2g−m−
∑m

j=1 dj).

g : genus of M;

dj : multiplicity of the j-th end.

Catenoid.
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Basic Difficulties for X : M → R4
1

(−K + iK⊥)dM = 2i
φzψz̄

(φ− ψ)2
dz ∧ dz̄ .

There might be φ = ψ at one end. Called a singular end.

The sign of K is not fixed in general.
(Compare to K ≤ 0 in R3, K ≥ 0 in R3

1, K ≡ 0 in R3
0.)

The integral of Gauss curvature losses the old geometric
meaning as the area of Gauss map image.

Essential singularities of φ, ψ on M. EXIST OR NOT?

(Finiteness of
∫
|K |dM still implies M ∼= M − {p1, · · · , pm}.)
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Osserman’s Theorem NOT True in R4
1

Counter-example Xk (k ≥ 2):

M = C− {0}, φ(z) =
−1

zk
ez , ψ(z) = zkez , dh = e−zdz .

No singular points/ends. φ 6= ψ on C ∪ {∞}.
Xk is complete with two end z = 0,∞; no periods.

The absolute total curvature of Xk is finite:∫
M

| − K + iK⊥|dM <∞.

(Indeed
∫

M
KdM = −4kπ,

∫
M

K⊥dM = 0.)
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Singular Ends — Good or Bad

Let X : D − {0} → R4
1 be one end at z = 0. Recall that

(−K + iK⊥)dM = 2i
φzψz̄

(φ− ψ)2
dz ∧ dz̄ .

Definition z = 0 is called a singular end if φ(0) = ψ(0).

Definition It is called a BAD singular end if

both φ and ψ have the same multiplicity at 0,

or a GOOD singular end otherwise.
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or a GOOD singular end otherwise.
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Index of a Good Singular End

Definition The index of a good singular end p is

ind(φ− ψ) := lim
Dp→{p}

1

2πi

∮
∂Dp

d ln(φ− ψ).

Lemma

lim
D→{0}

1

2πi

∮
∂D

d ln(zm − z̄n) =

{
m, if m < n,
−n, if m > n.

When m = n,
∮

φz

φ−ψ̄dz and
∮

ψ̄z̄

φ−ψ̄dz̄ won’t

converge!
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G-B Theorem for Algebraic Minimal Surfaces

Theorem Let complete stationary surface X : M → R4
1 satisfy:

1) M ∼= M − {p1, · · · , pm};
2) φ, ψ,dh extends analytically to M;

3) There are NO bad singular ends.

Then
∫

M
KdM = −2π

[
deg(φ) + deg(ψ)−

∑
|ind|

]
= 2π(2− 2g −m −

∑
d̃j),∫

M
K⊥dM = 0 .

Remark Here we modify d̃j := dj − |ind| at pj .

Remark deg(φ)− deg(ψ) =
∑

pj
ind(φ− ψ).
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Sketch of the Proof

1) Cut out small neighborhood Dj for each end pj .

2) Using Stokes theorem on M − ∪m
j=1Dj , we get∫

M
(−K + iK⊥)dM = 2i lim

∫
M−∪Dj

φzψz̄

(φ− ψ)2
dz ∧ dz̄

= 2i
∑

j

lim
Dj→{pj}

∫
∂Dj

φz

φ− ψ
dz

= 2i · 2πi

[
−

∑
poles(φ) +

∑
ind>0

ind

]
= 4πdeg(φ)− 2π

(∑
|ind|+

∑
ind

)
.

3) Similarly, LHS = 4πdeg(ψ)− 2π (
∑
|ind| −

∑
ind).
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Generalized Catenoid

Classical catenoid:

M = C− {0}, φ = − 1
ψ = z ,dh = dz

z .

Lopez-Ros theorem:

A complete, genus zero, finite total
curvature, embedded minimal surface in
R3 is a plane or a catenoid.

Generalized to R4
1:

M = C− {0}, φ = z + a, ψ =
−1

z − a
, dh =

z − a

z2
dz .

It has no real periods and no singular points/ends for a ∈ (−1, 1).

This surface is embedded.
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Generalized k-noids

The Jorge-Meeks k-noids (k ≥ 3) in R3:

M = CP1\{εj |εk = 1},

G = zk−1, dh =
zk−1

(zk − 1)2
dz .

One can deform it to an embedded stationary surface in R4
1:

X = Re
∫ z

z0

[
G − 1

G
,−i

(
G +

1

G

)
,
√

3, i

]
dh .
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Generalized Helicoid

Classical helicoid:

M = C− {0}, φ = − 1
ψ = z ,dh = i dz

z .

Meeks-Rosenberg theorem:

A complete, simply connected,
embedded minimal surface in R3 is a
plane or a helicoid.

Generalized to R4
1:

M = C− {0}, φ = z + a, ψ =
−1

z − a
, dh = i

z − a

z2
dz .

It is embedded without singular points/ends for a ∈ (−1, 1).
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Stationary Graph

In R3, a complete graph is a plane (Bernstein theorem).

In R3, an embedded end must have multiplicity 1, and be
either a catenoid end or a planar end.

In R4
1, stationary surfaces as graph over a 2-plane (hence

embedded) could has one planar end of arbitrary multiplicity n:

Xz =

[(
1

zn
− zn

2

)
, i

(
1

zn
+

zn

2

)
, 1, i

]
.

φ = − zn

1 + i
, ψ =

1− i

zn
, dh =

1 + i

2
dz .
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Generalized Enneper Surfaces

Classical Enneper surface:
M = C, φ = − 1

ψ = z ,dh = zdz .

Simply connected.

Total curvature −4π.

One end of multiplicity 3;
with self intersection.

Generalized to R4
1:

M = C, φ = z + 1, ψ =
c

z
, dh = s · zdz .

This deformation preserves completeness, regularity, period
condition... (choose c , s ∈ C \ {0} appropriately).

It could be EMBEDDED in R4
1 (when c < −1

4 , s /∈ R ).
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Other Results

Classification of algebraic minimal surfaces in R4
1

with total curvature −4π.

(We have to show that z̄(z̄ + ā) = z2

z+b has only trivial
solutions z = 0,∞ for any parameters a, b ∈ C satisfying
a + b = 1 .)

Number of exceptional values for the Gauss
maps φ, ψ (for algebraic type) ≤ 4.
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Open Problems

For essential singularities with finite total curvature, define
indices and establish G-B type theorem. In particular we
conjecture that ∫

M
KdM = −4πn

when the total curvature is finite.

Is it possible to obtain some kind of uniqueness results under
the assumption of embeddedness?

Obtain upper bound of the exceptional values for the Gauss
maps φ, ψ for complete minimal surfaces in R4

1.
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THANK YOU !
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