# The Global Geometry of Stationary Surfaces in 4-dimensional Lorentz space 

Xiang Ma<br>(Joint with Zhiyu Liu, Changping Wang, Peng Wang)<br>Peking University<br>the 10th Pacific Rim Geometry Conference<br>3 December, 2011, Osaka

(1) Introduction

- What is a stationary surface
- Main results
- The Weierstrass representation
(2) Total curvature and singularities
- The failure of Osserman's theorem
- Singular ends
- Gauss-Bonnet type theorems
(3) Constructing embedded examples
- Generalized catenoid and k-noids
- Generalized helicoid and Enneper surface
(1) Introduction
- What is a stationary surface
- Main results
- The Weierstrass representation
(2) Total curvature and singularities
- The failure of Osserman's theorem
- Singular ends
- Gauss-Bonnet type theorems
(3) Constructing embedded examples
- Generalized catenoid and k-noids
- Generalized helicoid and Enneper surface

What is a stationary surface Main results
The Weierstrass representation


Z. Liu, X. Ma, C. Wang, P. Wang

Global Geometry of Stationary Surfaces in $\mathbb{R}_{1}^{4}$

Introduction

What is a stationary surface
Main results
The Weierstrass representation


Sharing soap films with kids

## Stationary surfaces $=$ spacelike surfaces with $H=0$

$$
\begin{aligned}
& \text { In } \mathbb{R}_{1}^{4}:\langle X, X\rangle:=X_{1}^{2}+X_{2}^{2}+X_{3}^{2}-X_{4}^{2} \\
& H=0 \Leftrightarrow X: M \rightarrow \mathbb{R}_{1}^{4} \text { is harmonic (for induced metric). }
\end{aligned}
$$

## Special cases:

- In $\mathbb{R}^{3}$ : Minimizer of the surface area.
- $\ln \mathbb{R}_{3}^{3}$. Maximizer of the surface area.

In $\mathbb{R}_{1}^{4}$ : Not local minimizer or maximizer.

## Stationary surfaces $=$ spacelike surfaces with $H=0$

$\ln \mathbb{R}_{1}^{4}:\langle X, X\rangle:=X_{1}^{2}+X_{2}^{2}+X_{3}^{2}-X_{4}^{2}$.
$H=0 \Leftrightarrow X: M \rightarrow \mathbb{R}_{1}^{4}$ is harmonic (for induced metric).
Special cases:

- In $\mathbb{R}^{3}$ : Minimizer of the surface area.
- $\ln \mathbb{R}_{1}^{3}$ : Maximizer of the surface area.

In $\mathbb{R}_{1}^{4}$ : Not local minimizer or maximizer.

## Motivation

Stationary surfaces in $\mathbb{R}_{1}^{4}$ are:

- special examples of Willmore surfaces
(critical points for $\left.\int\left(H^{2}-K\right) \mathrm{d} M\right)$.
- corresponding to Laguerre minimal surfaces



## Motivation

Stationary surfaces in $\mathbb{R}_{1}^{4}$ are:

- special examples of Willmore surfaces
(critical points for $\left.\int\left(H^{2}-K\right) \mathrm{d} M\right)$.
- corresponding to Laguerre minimal surfaces
(critical points for $\int \frac{H^{2}-K}{K} \mathrm{~d} M$ ).
A natural generalization of classical minimal
surfaces in $\mathbb{R}^{3}$, yet receiving little attention.


## Motivation

Stationary surfaces in $\mathbb{R}_{1}^{4}$ are:

- special examples of Willmore surfaces
(critical points for $\left.\int\left(H^{2}-K\right) \mathrm{d} M\right)$.
- corresponding to Laguerre minimal surfaces
(critical points for $\int \frac{H^{2}-K}{K} \mathrm{~d} M$ ).
- A natural generalization of classical minimal surfaces in $\mathbb{R}^{3}$, yet receiving little attention.


## Motivation

Stationary surfaces in $\mathbb{R}_{1}^{4}$ are:

- special examples of Willmore surfaces
(critical points for $\left.\int\left(H^{2}-K\right) \mathrm{d} M\right)$.
- corresponding to Laguerre minimal surfaces
(critical points for $\int \frac{H^{2}-K}{K} \mathrm{~d} M$ ).
- A natural generalization of classical minimal surfaces in $\mathbb{R}^{3}$, yet receiving little attention.


## Main Results

- Osserman's theorem fails.

We construct examples with $\int|K|<\infty$ whose Gauss maps could not extend to the ends.

- Singular ends.

We divide them into two types; define index for good type. Gauss-Bonnet tyne result

## Main Results

- Osserman's theorem fails.

We construct examples with $\int|K|<\infty$ whose Gauss maps could not extend to the ends.

- Singular ends.

We divide them into two types; define index for good type.

- Gauss-Bonnet type result:



## Main Results

- Osserman's theorem fails.

We construct examples with $\int|K|<\infty$ whose Gauss maps could not extend to the ends.

- Singular ends.

We divide them into two types; define index for good type.

- Gauss-Bonnet type result:

$$
\int_{M} K \mathrm{~d} M=2 \pi\left(2-2 g-m-\sum \widetilde{d}_{j}\right) .
$$

- We construct many embedded examples (in contrast to uniqueness results in $\mathbb{R}^{3}$ ).


## Main Results

- Osserman's theorem fails.

We construct examples with $\int|K|<\infty$ whose Gauss maps could not extend to the ends.

- Singular ends.

We divide them into two types; define index for good type.

- Gauss-Bonnet type result:

$$
\int_{M} K \mathrm{~d} M=2 \pi\left(2-2 g-m-\sum \widetilde{d}_{j}\right) .
$$

- We construct many embedded examples (in contrast to uniqueness results in $\mathbb{R}^{3}$ ).


## The Gauss Map in $\mathbb{R}^{3}$



Minimal $\Leftrightarrow N: M \rightarrow S^{2}$ anti-conformal.
$\Leftrightarrow G=p \circ N$ meromorphic.

## The Gauss Maps in $\mathbb{R}_{1}^{4}$

## Space-like $X: M^{2} \rightarrow \mathbb{R}_{1}^{4}$ :

 normal plane $(T M)^{\perp}$ is a Lorentz plane; splits into light-like lines $(T M)^{\perp}=\operatorname{Span}\left\{Y, Y^{*}\right\}$.$$
\begin{aligned}
& \left(M^{2}, z\right) \xrightarrow{[Y]\left[Y^{*}\right]} Q^{2} \cong S^{2} \\
& \langle Y, Y\rangle=\left\langle Y^{*}, Y^{*}\right\rangle=0, \\
& \mid p \quad\left\langle Y, Y^{*}\right\rangle=1 \text {. } \\
& Q^{2}=\left\{[v] \in \mathbb{R} P^{3} \mid\langle v, v\rangle=0\right\} .
\end{aligned}
$$

Stationary $\Leftrightarrow[Y]$ conformal, $\left[Y^{*}\right]$ anti-conformal. $\Leftrightarrow \phi, \psi: M \rightarrow \mathbb{C}$ meromorphic.

## The Gauss Maps in $\mathbb{R}_{1}^{4}$

## Space-like $X: M^{2} \rightarrow \mathbb{R}_{1}^{4}$ :

 normal plane $(T M)^{\perp}$ is a Lorentz plane; splits into light-like lines $(T M)^{\perp}=\operatorname{Span}\left\{Y, Y^{*}\right\}$.$$
\begin{array}{cl}
\left(M^{2}, z\right) \xrightarrow{[Y],\left[Y^{*}\right]} Q^{2} \cong S^{2} & \langle Y, Y\rangle=\left\langle Y^{*}, Y^{*}\right\rangle=0, \\
\phi, \bar{\psi} \quad \mid p & \left\langle Y, Y^{*}\right\rangle=1 . \\
Q^{2}=\left\{[v] \in \mathbb{R} P^{3} \mid\langle v, v\rangle=0\right\} .
\end{array}
$$

Stationary $\Leftrightarrow[Y]$ conformal, $\left[Y^{*}\right]$ anti-conformal. $\Leftrightarrow \phi, \psi: M \rightarrow \mathbb{C}$ meromorphic.

## The W-representation for Minimal $X: M^{2} \hookrightarrow \mathbb{R}^{3}$

$X_{z} \mathrm{~d} z=\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ is a vector-valued holomorphic 1-form with $\left(\omega_{1}\right)^{2}+\left(\omega_{2}\right)^{2}+\left(\omega_{3}\right)^{2}=0$.

$$
X=\operatorname{Re} \int_{z_{0}}^{z}\left[G-\frac{1}{G},-\mathrm{i}\left(G+\frac{1}{G}\right), 2\right] \mathrm{d} h .
$$

- M: a Riemann surface (non-compact).
- $G$ : the Gauss map; meromorphic function on $M$;
- $\mathrm{d} h$ : height differential; holomorphic on $M$.


## The W-representation in $\mathbb{R}_{1}^{4}$

For stationary $X: M^{2} \rightarrow \mathbb{R}_{1}^{4}$ with $X_{z} \mathrm{~d} z=\left(\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right)$ one has: $\left(\omega_{1}\right)^{2}+\left(\omega_{2}\right)^{2}+\left(\omega_{3}\right)^{2}-\left(\omega_{4}\right)^{2}=0$.


$$
\phi, \psi, \mathrm{d} h \text { are Gauss maps and height differential, respectively. }
$$



## The W-representation in $\mathbb{R}_{1}^{4}$

For stationary $X: M^{2} \rightarrow \mathbb{R}_{1}^{4}$ with $X_{z} \mathrm{~d} z=\left(\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right)$ one has: $\left(\omega_{1}\right)^{2}+\left(\omega_{2}\right)^{2}+\left(\omega_{3}\right)^{2}-\left(\omega_{4}\right)^{2}=0$.
$X=\operatorname{Re} \int_{z_{0}}^{z}[\phi+\psi,-\mathrm{i}(\phi-\psi), 1-\phi \psi, 1+\phi \psi] \mathrm{d} h$.
$\phi, \psi, \mathrm{d} h$ are Gauss maps and height differential, respectively.


## The W-representation in $\mathbb{R}_{1}^{4}$

For stationary $X: M^{2} \rightarrow \mathbb{R}_{1}^{4}$ with $X_{z} \mathrm{~d} z=\left(\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right)$ one has: $\left(\omega_{1}\right)^{2}+\left(\omega_{2}\right)^{2}+\left(\omega_{3}\right)^{2}-\left(\omega_{4}\right)^{2}=0$.
$X=\operatorname{Re} \int_{z_{0}}^{z}[\phi+\psi,-\mathrm{i}(\phi-\psi), 1-\phi \psi, 1+\phi \psi] \mathrm{d} h$.
$\phi, \psi, \mathrm{d} h$ are Gauss maps and height differential, respectively.

Special cases $\left\{\begin{array}{lll}\psi=-1 / \phi & \Rightarrow & M \rightarrow \mathbb{R}^{3} \\ \psi=1 / \phi & \Rightarrow & M \rightarrow \mathbb{R}_{1}^{3} \\ \psi=0 & \Rightarrow & M \rightarrow \mathbb{R}_{0}^{3}\end{array}\right\}$ Unified in $\mathbb{R}_{1}^{4}$.


Induced metric $\mathrm{d} s^{2}=|\phi-\bar{\psi}|^{2}|\mathrm{~d} h|^{2}$.

- Regularity: $\phi \neq \bar{\psi}$ on $M$ (because $[Y] \neq\left[Y^{*}\right]$ ); poles of $\phi$ or $\psi \leftrightarrow$ zeros of $\mathrm{d} h$.
- Period Condition: meromorphic differentials $\omega_{j}$ have no real periods along any closed path.


Induced metric $\mathrm{ds}^{2}=|\phi-\bar{\psi}|^{2}|\mathrm{~d} h|^{2}$.

- Regularity: $\phi \neq \bar{\psi}$ on $M$ (because $[Y] \neq\left[Y^{*}\right]$ ); poles of $\phi$ or $\psi \leftrightarrow$ zeros of $\mathrm{d} h$.
- Period Condition: meromorphic differentials $\omega_{j}$ have no real periods along any closed path.

$$
\begin{aligned}
\left(-K+\mathrm{i} K^{\perp}\right) \mathrm{d} M & =2 \mathrm{i} \frac{\phi_{z} \bar{\psi}_{\bar{z}}}{(\phi-\bar{\psi})^{2}} \mathrm{~d} z \wedge \mathrm{~d} \bar{z} \\
& =2 \mathrm{i}[\log (\phi-\bar{\psi})]_{z \bar{z}} \mathrm{~d} z \wedge \mathrm{~d} \bar{z}
\end{aligned}
$$


(1) Introduction

- What is a stationary surface
- Main results
- The Weierstrass representation
(2) Total curvature and singularities
- The failure of Osserman's theorem
- Singular ends
- Gauss-Bonnet type theorems
(3) Constructing embedded examples
- Generalized catenoid and k-noids
- Generalized helicoid and Enneper surface


## Minimal Surfaces of Finite Toal Curvature

Thm [Osserman, Jorge-Meeks]
Complete minimal $X: M \rightarrow \mathbb{R}^{3}$, $\int_{M}-K \mathrm{~d} M<\infty . \Rightarrow$


## Minimal Surfaces of Finite Toal Curvature

Thm [Osserman, Jorge-Meeks]
Complete minimal $X: M \rightarrow \mathbb{R}^{3}$,
$\int_{M}-K \mathrm{~d} M<\infty . \Rightarrow$

- $M \cong \bar{M}-\left\{p_{1}, \cdots, p_{m}\right\}$. conformal equivalence [Huber]. $\bar{M}$ compact. $p_{j}$ Ends.
- $G$,dh extends analytica
be meromorphic obje
- $\int K d M=-4 \pi \operatorname{deg}(G)$ $=2 \pi\left(2-2 g-m-\sum{ }_{j=}^{m}\right.$

$\sigma:$ genus of $\bar{M}$,
$d_{j: ~}$ multiplicity of the $j-t h$ end


## Minimal Surfaces of Finite Toal Curvature

Thm [Osserman, Jorge-Meeks]
Complete minimal $X: M \rightarrow \mathbb{R}^{3}$,
$\int_{M}-K \mathrm{~d} M<\infty . \Rightarrow$

- $M \cong \bar{M}-\left\{p_{1}, \cdots, p_{m}\right\}$. conformal equivalence [Huber]. $\bar{M}$ compact. $p_{j}$ Ends.
- $G, \mathrm{~d} h$ extends analytically to $p_{j}$; be meromorphic objects on $\bar{M}$.
- $\int K \mathrm{~d} M=-4 \pi \operatorname{deg}(G)$



## Minimal Surfaces of Finite Toal Curvature

## Thm [Osserman, Jorge-Meeks]

Complete minimal $X: M \rightarrow \mathbb{R}^{3}$,
$\int_{M}-K \mathrm{~d} M<\infty . \Rightarrow$

- $M \cong \bar{M}-\left\{p_{1}, \cdots, p_{m}\right\}$. conformal equivalence [Huber]. $\bar{M}$ compact. $p_{j}$ Ends.
- $G, \mathrm{~d} h$ extends analytically to $p_{j}$; be meromorphic objects on $\bar{M}$.
- $\int K \mathrm{~d} M=-4 \pi \operatorname{deg}(G)$

$$
=2 \pi\left(2-2 g-m-\sum_{j=1}^{m} d_{j}\right)
$$

Catenoid.
$g$ : genus of $\bar{M}$;
$d_{j}$ : multiplicity of the $j$-th end.

## Basic Difficulties for $X: M \rightarrow \mathbb{R}_{1}^{4}$

$$
\left(-K+\mathrm{i} K^{\perp}\right) \mathrm{d} M=2 \mathrm{i} \frac{\phi_{z} \bar{\psi}_{\overline{\bar{z}}}}{(\phi-\bar{\psi})^{2}} \mathrm{~d} z \wedge \mathrm{~d} \bar{z} .
$$

## - There might be $\phi=\bar{\psi}$ at one end. Called a singular end.

- The sign of $K$ is not fixed in general
Z. Liu, X. Ma, C. Wang, P. Wang


## Basic Difficulties for $X: M \rightarrow \mathbb{R}_{1}^{4}$

$$
\left(-K+\mathrm{i} K^{\perp}\right) \mathrm{d} M=2 \mathrm{i} \frac{\phi_{z} \bar{\psi}_{\overline{\mathbf{z}}}}{(\phi-\bar{\psi})^{2}} \mathrm{~d} z \wedge \mathrm{~d} \bar{z} .
$$

- There might be $\phi=\bar{\psi}$ at one end. Called a singular end.

- The integral of Gauss curvature losses the old geometric meaning as the area of Gauss man image


## Basic Difficulties for $X: M \rightarrow \mathbb{R}_{1}^{4}$

$$
\left(-K+\mathrm{i} K^{\perp}\right) \mathrm{d} M=2 \mathrm{i} \frac{\phi_{z} \bar{\psi}_{\overline{\bar{z}}}}{(\phi-\bar{\psi})^{2}} \mathrm{~d} z \wedge \mathrm{~d} \bar{z} .
$$

- There might be $\phi=\bar{\psi}$ at one end. Called a singular end.
- The sign of $K$ is not fixed in general.
(Compare to $K \leq 0$ in $\mathbb{R}^{3}, K \geq 0$ in $\mathbb{R}_{1}^{3}, K \equiv 0$ in $\mathbb{R}_{0}^{3}$.)
- The integral of Gauss curvature losses the old geometric meaning as the area of Gauss map image.


## Basic Difficulties for $X: M \rightarrow \mathbb{R}_{1}^{4}$

$$
\left(-K+\mathrm{i} K^{\perp}\right) \mathrm{d} M=2 \mathrm{i} \frac{\phi_{z} \bar{\psi}_{\overline{\bar{z}}}}{(\phi-\bar{\psi})^{2}} \mathrm{~d} z \wedge \mathrm{~d} \bar{z} .
$$

- There might be $\phi=\bar{\psi}$ at one end. Called a singular end.
- The sign of $K$ is not fixed in general.
(Compare to $K \leq 0$ in $\mathbb{R}^{3}, K \geq 0$ in $\mathbb{R}_{1}^{3}, K \equiv 0$ in $\mathbb{R}_{0}^{3}$.)
- The integral of Gauss curvature losses the old geometric meaning as the area of Gauss map image.



## Basic Difficulties for $X: M \rightarrow \mathbb{R}_{1}^{4}$

$$
\left(-K+\mathrm{i} K^{\perp}\right) \mathrm{d} M=2 \mathrm{i} \frac{\phi_{z} \bar{\psi}_{\overline{\bar{z}}}}{(\phi-\bar{\psi})^{2}} \mathrm{~d} z \wedge \mathrm{~d} \bar{z} .
$$

- There might be $\phi=\bar{\psi}$ at one end. Called a singular end.
- The sign of $K$ is not fixed in general. (Compare to $K \leq 0$ in $\mathbb{R}^{3}, K \geq 0$ in $\mathbb{R}_{1}^{3}, K \equiv 0$ in $\mathbb{R}_{0}^{3}$.)
- The integral of Gauss curvature losses the old geometric meaning as the area of Gauss map image.
- Essential singularities of $\phi, \psi$ on $\bar{M}$. EXIST OR NOT? (Finiteness of $\int|K| \mathrm{d} M$ still implies $M \cong \bar{M}-\left\{p_{1}, \cdots, p_{m}\right\}$.)


## Osserman's Theorem NOT True in $\mathbb{R}_{1}^{4}$

Counter-example $X_{k}(k \geq 2)$ :

$$
M=\mathbb{C}-\{0\}, \phi(z)=\frac{-1}{z^{k}} e^{z}, \psi(z)=z^{k} e^{z}, \mathrm{~d} h=e^{-z} \mathrm{~d} z .
$$

- No singular points/ends. $\phi \neq \bar{\psi}$ on $\mathbb{C} \cup\{\infty\}$.
- $X_{k}$ is complete with two end $z=0, \infty$; no periods. - The absolute total curvature of $X_{k}$ is finite:


## Osserman's Theorem NOT True in $\mathbb{R}_{1}^{4}$

Counter-example $X_{k}(k \geq 2)$ :

$$
M=\mathbb{C}-\{0\}, \phi(z)=\frac{-1}{z^{k}} e^{z}, \psi(z)=z^{k} e^{z}, \mathrm{~d} h=e^{-z} \mathrm{~d} z .
$$

- No singular points/ends. $\phi \neq \bar{\psi}$ on $\mathbb{C} \cup\{\infty\}$.
- $X_{k}$ is complete with two end $z=0, \infty$; no periods.
- The absolute total curvature of $X_{k}$ is finite:



## Osserman's Theorem NOT True in $\mathbb{R}_{1}^{4}$

Counter-example $X_{k}(k \geq 2)$ :

$$
M=\mathbb{C}-\{0\}, \phi(z)=\frac{-1}{z^{k}} e^{z}, \psi(z)=z^{k} e^{z}, \mathrm{~d} h=e^{-z} \mathrm{~d} z .
$$

- No singular points/ends. $\phi \neq \bar{\psi}$ on $\mathbb{C} \cup\{\infty\}$.
- $X_{k}$ is complete with two end $z=0, \infty$; no periods.
- The absolute total curvature of $X_{k}$ is finite:

$$
\int_{M}\left|-K+\mathrm{i} K^{\perp}\right| \mathrm{d} M<\infty .
$$

(Indeed $\int_{M} K \mathrm{~d} M=-4 k \pi, \quad \int_{M} K^{\perp} \mathrm{d} M=0$. )

## Osserman's Theorem NOT True in $\mathbb{R}_{1}^{4}$

Counter-example $X_{k}(k \geq 2)$ :

$$
M=\mathbb{C}-\{0\}, \phi(z)=\frac{-1}{z^{k}} e^{z}, \psi(z)=z^{k} e^{z}, \mathrm{~d} h=e^{-z} \mathrm{~d} z .
$$

- No singular points/ends. $\phi \neq \bar{\psi}$ on $\mathbb{C} \cup\{\infty\}$.
- $X_{k}$ is complete with two end $z=0, \infty$; no periods.
- The absolute total curvature of $X_{k}$ is finite:

$$
\int_{M}\left|-K+\mathrm{i} K^{\perp}\right| \mathrm{d} M<\infty
$$

(Indeed $\int_{M} K \mathrm{~d} M=-4 k \pi, \quad \int_{M} K^{\perp} \mathrm{d} M=0$.)

## Singular Ends - Good or Bad

Let $X: D-\{0\} \rightarrow \mathbb{R}_{1}^{4}$ be one end at $z=0$. Recall that

$$
\left(-K+\mathrm{i} K^{\perp}\right) \mathrm{d} M=2 \mathrm{i} \frac{\phi_{z} \bar{\psi}_{\overline{\bar{z}}}}{(\phi-\bar{\psi})^{2}} \mathrm{~d} z \wedge \mathrm{~d} \bar{z} .
$$

Definition $z=0$ is called a singular end if $\phi(0)=\bar{\psi}(0)$.
Definition It is called a BAD singular end if both $\phi$ and $\psi$ have the same multiplicity at 0 , or a GOOD singular end otherwise.

## Singular Ends - Good or Bad

Let $X: D-\{0\} \rightarrow \mathbb{R}_{1}^{4}$ be one end at $z=0$. Recall that

$$
\left(-K+\mathrm{i} K^{\perp}\right) \mathrm{d} M=2 \mathrm{i} \frac{\phi_{z} \bar{\psi}_{\overline{\bar{z}}}}{(\phi-\bar{\psi})^{2}} \mathrm{~d} z \wedge \mathrm{~d} \bar{z} .
$$

Definition $z=0$ is called a singular end if $\phi(0)=\bar{\psi}(0)$.
Definition It is called a BAD singular end if
both $\phi$ and $\psi$ have the same multiplicity at 0 , or a GOOD singular end otherwise.

## Index of a Good Singular End

Definition The index of a good singular end $p$ is

$$
\operatorname{ind}(\phi-\bar{\psi}):=\lim _{D_{\rho} \rightarrow\{p\}} \frac{1}{2 \pi \mathrm{i}} \oint_{\partial D_{p}} \mathrm{~d} \ln (\phi-\bar{\psi}) .
$$

## Lemma



## Index of a Good Singular End

Definition The index of a good singular end $p$ is

$$
\operatorname{ind}(\phi-\bar{\psi}):=\lim _{D_{p} \rightarrow\{p\}} \frac{1}{2 \pi \mathrm{i}} \oint_{\partial D_{p}} \mathrm{~d} \ln (\phi-\bar{\psi}) .
$$

## Lemma

$$
\lim _{D \rightarrow\{0\}} \frac{1}{2 \pi \mathrm{i}} \oint_{\partial D} \mathrm{~d} \ln \left(z^{m}-\bar{z}^{n}\right)= \begin{cases}m, & \text { if } m<n, \\ -n, & \text { if } m>n .\end{cases}
$$

When $m=n, \oint \frac{\phi_{z}}{\phi-\psi} \mathrm{d} z$ and $\oint \frac{\psi_{\bar{z}}}{\phi-\psi} \mathrm{d} \bar{z}$ won't converge!

## Index of a Good Singular End

Definition The index of a good singular end $p$ is

$$
\operatorname{ind}(\phi-\bar{\psi}):=\lim _{D_{p} \rightarrow\{p\}} \frac{1}{2 \pi \mathrm{i}} \oint_{\partial D_{p}} \mathrm{~d} \ln (\phi-\bar{\psi}) .
$$

Lemma

$$
\lim _{D \rightarrow\{0\}} \frac{1}{2 \pi \mathrm{i}} \oint_{\partial D} \mathrm{~d} \ln \left(z^{m}-\bar{z}^{n}\right)= \begin{cases}m, & \text { if } m<n, \\ -n, & \text { if } m>n .\end{cases}
$$

When $m=n, \oint \frac{\phi_{z}}{\phi-\bar{\psi}} \mathrm{d} z$ and $\oint \frac{\bar{\psi}_{\bar{z}}}{\phi-\bar{\psi}} \mathrm{d} \bar{z}$ won't converge!

## G-B Theorem for Algebraic Minimal Surfaces

Theorem Let complete stationary surface $X: M \rightarrow \mathbb{R}_{1}^{4}$ satisfy:


## G-B Theorem for Algebraic Minimal Surfaces

Theorem Let complete stationary surface $X: M \rightarrow \mathbb{R}_{1}^{4}$ satisfy:

1) $M \cong \bar{M}-\left\{p_{1}, \cdots, p_{m}\right\}$;
2) $\phi, \psi, \mathrm{d} h$ extends analytically to $\bar{M}$;

## G-B Theorem for Algebraic Minimal Surfaces

Theorem Let complete stationary surface $X: M \rightarrow \mathbb{R}_{1}^{4}$ satisfy:

1) $M \cong \bar{M}-\left\{p_{1}, \cdots, p_{m}\right\}$;
2) $\phi, \psi, \mathrm{d} h$ extends analytically to $\bar{M}$;
3) There are NO bad singular ends.

## G-B Theorem for Algebraic Minimal Surfaces

Theorem Let complete stationary surface $X: M \rightarrow \mathbb{R}_{1}^{4}$ satisfy:

1) $M \cong \bar{M}-\left\{p_{1}, \cdots, p_{m}\right\}$;
2) $\phi, \psi, \mathrm{d} h$ extends analytically to $\bar{M}$;
3) There are NO bad singular ends.

Then


Remark Here we modify $d_{j}:=d_{j}-\mid$ ind $\mid$ at $p_{j}$

Remark

## G-B Theorem for Algebraic Minimal Surfaces

Theorem Let complete stationary surface $X: M \rightarrow \mathbb{R}_{1}^{4}$ satisfy:

1) $M \cong \bar{M}-\left\{p_{1}, \cdots, p_{m}\right\}$;
2) $\phi, \psi, \mathrm{d} h$ extends analytically to $\bar{M}$;
3) There are NO bad singular ends.

Then

$$
\begin{aligned}
\int_{M} K \mathrm{~d} M & =-2 \pi\left[\operatorname{deg}(\phi)+\operatorname{deg}(\psi)-\sum \mid \text { ind } \mid\right] \\
& =2 \pi\left(2-2 g-m-\sum \widetilde{d}_{j}\right) \\
\int_{M} K^{\perp} \mathrm{d} M & =0
\end{aligned}
$$

Remark Here we modify $\widetilde{d}_{j}:=d_{j}-\mid$ ind $\mid$ at $p_{j}$.
Remarl
$\operatorname{deg}(\phi)-\operatorname{deg}(\psi)=\sum_{p_{j}}$ ind $(\phi-\bar{\tau})$.

## G-B Theorem for Algebraic Minimal Surfaces

Theorem Let complete stationary surface $X: M \rightarrow \mathbb{R}_{1}^{4}$ satisfy:

1) $M \cong \bar{M}-\left\{p_{1}, \cdots, p_{m}\right\}$;
2) $\phi, \psi, \mathrm{d} h$ extends analytically to $\bar{M}$;
3) There are NO bad singular ends.

Then

$$
\begin{aligned}
\int_{M} K \mathrm{~d} M & =-2 \pi\left[\operatorname{deg}(\phi)+\operatorname{deg}(\psi)-\sum|\mathrm{ind}|\right] \\
& =2 \pi\left(2-2 g-m-\sum \widetilde{d}_{j}\right) \\
\int_{M} K^{\perp} \mathrm{d} M & =0
\end{aligned}
$$

Remark Here we modify $\widetilde{d}_{j}:=d_{j}-\mid$ ind $\mid$ at $p_{j}$.
Remark $\operatorname{deg}(\phi)-\operatorname{deg}(\psi)=\sum_{p_{j}} \operatorname{ind}(\phi-\bar{\psi})$.

## Sketch of the Proof

1) Cut out small neighborhood $D_{j}$ for each end $p_{j}$.
2) Using Stokes theorem on $\bar{M}-\cup_{j=1}^{m} D_{j}$, we get

$$
\begin{aligned}
\int_{M}\left(-K+\mathrm{i} K^{\perp}\right) \mathrm{d} M & =2 \mathrm{i} \lim \int_{\bar{M}-\cup D_{j}} \frac{\phi_{z} \bar{\psi}_{\bar{z}}}{(\phi-\bar{\psi})^{2}} \mathrm{~d} z \wedge \mathrm{~d} \bar{z} \\
& =2 \mathrm{i} \sum_{j} \lim _{D_{j} \rightarrow\left\{p_{j}\right\}} \int_{\partial D_{j}} \frac{\phi_{z}}{\phi-\bar{\psi}} \mathrm{d} z \\
& =2 \mathrm{i} \cdot 2 \pi \mathrm{i}\left[-\sum \operatorname{poles}(\phi)+\sum_{\text {ind }>0} \mathrm{ind}\right] \\
& =4 \pi \operatorname{deg}(\phi)-2 \pi\left(\sum \mid \text { ind } \mid+\sum \text { ind }\right)
\end{aligned}
$$

3) Similarly, $L H S=4 \pi \operatorname{deg}(\psi)-2 \pi\left(\sum \mid\right.$ ind $\mid-\sum$ ind $)$.

## (1) Introduction

- What is a stationary surface
- Main results
- The Weierstrass representation
(2) Total curvature and singularities
- The failure of Osserman's theorem
- Singular ends
- Gauss-Bonnet type theorems
(3) Constructing embedded examples
- Generalized catenoid and k-noids
- Generalized helicoid and Enneper surface


## Generalized Catenoid

## Classical catenoid:

$$
M=\mathbb{C}-\{0\}, \phi=-\frac{1}{\psi}=z, \mathrm{~d} h=\frac{\mathrm{d} z}{z} .
$$

## Lopez-Ros theorem:

A complete, genus zero, finite total curvature, embedded minimal surface in $\mathbb{R}^{3}$ is a plane or a catenoid


Generalized to $\mathbb{R}_{1}^{4}$

It has no real periods and no singular points/ends for $a \in(-1,1)$
$\qquad$
Z. Liu, X. Ma, C. Wang, P. Wang

Global Geometry of Stationary Surfaces in $\mathbb{R}_{1}^{4}$

## Generalized Catenoid

Classical catenoid:
$M=\mathbb{C}-\{0\}, \phi=-\frac{1}{\psi}=z, \mathrm{~d} h=\frac{\mathrm{d} z}{z}$.
Lopez-Ros theorem:
A complete, genus zero, finite total curvature, embedded minimal surface in $\mathbb{R}^{3}$ is a plane or a catenoid.


Generalized to $\mathbb{R}_{1}^{4}$


It has no real periods and no singular points/ends for $a \in(-1,1)$ This surface is embedded


## Generalized Catenoid

Classical catenoid:
$M=\mathbb{C}-\{0\}, \phi=-\frac{1}{\psi}=z, \mathrm{~d} h=\frac{\mathrm{d} z}{z}$.
Lopez-Ros theorem:
A complete, genus zero, finite total curvature, embedded minimal surface in $\mathbb{R}^{3}$ is a plane or a catenoid.


Generalized to $\mathbb{R}_{1}^{4}$ :

$$
M=\mathbb{C}-\{0\}, \phi=z+a, \psi=\frac{-1}{z-a}, \mathrm{~d} h=\frac{z-a}{z^{2}} \mathrm{~d} z
$$

It has no real periods and no singular points/ends for $a \in(-1,1)$.
This surface is embedded.

## Generalized k-noids

The Jorge-Meeks $k$-noids $(k \geq 3)$ in $\mathbb{R}^{3}$ :

$$
\begin{gathered}
M=\mathbb{C} P^{1} \backslash\left\{\epsilon^{j} \mid \epsilon^{k}=1\right\}, \\
G=z^{k-1}, \quad d h=\frac{z^{k-1}}{\left(z^{k}-1\right)^{2}} d z .
\end{gathered}
$$



One can deform it to an embedded stationary surface in $\mathbb{R}_{1}^{4}$


## Generalized k-noids

The Jorge-Meeks $k$-noids $(k \geq 3)$ in $\mathbb{R}^{3}$ :

$$
\begin{gathered}
M=\mathbb{C} P^{1} \backslash\left\{\epsilon^{j} \mid \epsilon^{k}=1\right\}, \\
G=z^{k-1}, \quad d h=\frac{z^{k-1}}{\left(z^{k}-1\right)^{2}} d z .
\end{gathered}
$$



One can deform it to an embedded stationary surface in $\mathbb{R}_{1}^{4}$ :

$$
X=\operatorname{Re} \int_{z_{0}}^{z}\left[G-\frac{1}{G},-\mathrm{i}\left(G+\frac{1}{G}\right), \sqrt{3}, i\right] \mathrm{d} h .
$$

## Generalized Helicoid

Classical helicoid:
$M=\mathbb{C}-\{0\}, \phi=-\frac{1}{\psi}=z, \mathrm{~d} h=i \frac{\mathrm{~d} z}{z}$.
Meeks-Rosenberg theorem:
A complete, simply connected, embedded minimal surface in $\mathbb{R}^{3}$ is a plane or a helicoid.


Generalized to $\mathbb{R}_{1}^{4}$


It is embedded without singular points/ends for $a \in(-1,1)$.

## Generalized Helicoid

Classical helicoid:
$M=\mathbb{C}-\{0\}, \phi=-\frac{1}{\psi}=z, \mathrm{~d} h=i \frac{\mathrm{~d} z}{z}$.
Meeks-Rosenberg theorem:
A complete, simply connected, embedded minimal surface in $\mathbb{R}^{3}$ is a plane or a helicoid.


Generalized to $\mathbb{R}_{1}^{4}$ :

$$
M=\mathbb{C}-\{0\}, \phi=z+a, \psi=\frac{-1}{z-a}, \mathrm{~d} h=i \frac{z-a}{z^{2}} \mathrm{~d} z
$$

It is embedded without singular points/ends for $a \in(-1,1)$.

## Stationary Graph

In $\mathbb{R}^{3}$, a complete graph is a plane (Bernstein theorem).
In $\mathbb{R}^{3}$, an embedded end must have multiplicity 1 , and be either a catenoid end or a planar end.

In $\mathbb{R}_{1}^{4}$, stationary surfaces as graph over a 2-plane (hence embedded) could has one planar end of arbitrary multiplicity


## Stationary Graph

In $\mathbb{R}^{3}$, a complete graph is a plane (Bernstein theorem).
In $\mathbb{R}^{3}$, an embedded end must have multiplicity 1 , and be either a catenoid end or a planar end.

In $\mathbb{R}_{1}^{4}$, stationary surfaces as graph over a 2-plane (hence embedded) could has one planar end of arbitrary multiplicity $n$ :

$$
\begin{aligned}
& X_{z}=\left[\left(\frac{1}{z^{n}}-\frac{z^{n}}{2}\right), i\left(\frac{1}{z^{n}}+\frac{z^{n}}{2}\right), 1, i\right] . \\
& \phi=-\frac{z^{n}}{1+i}, \psi=\frac{1-i}{z^{n}}, \mathrm{~d} h=\frac{1+i}{2} \mathrm{~d} z .
\end{aligned}
$$

## Generalized Enneper Surfaces

Classical Enneper surface:

$$
M=\mathbb{C}, \phi=-\frac{1}{\psi}=z, \mathrm{~d} h=z \mathrm{~d} z
$$

- Simply connected.
- Total curvature $-4 \pi$.
- One end of multiplicity 3; with self intersection.


Generalized to $\mathbb{R}_{1}^{4}$


This deformation preserves completeness, regularity, period condition... (choose $c, s \in \mathbb{C} \backslash\{0\}$ appropriately).
$\qquad$

## Generalized Enneper Surfaces

Classical Enneper surface:

$$
M=\mathbb{C}, \phi=-\frac{1}{\psi}=z, \mathrm{~d} h=z \mathrm{~d} z
$$

- Simply connected.
- Total curvature $-4 \pi$.
- One end of multiplicity 3 ; with self intersection.


Generalized to $\mathbb{R}_{1}^{4}$ :

$$
M=\mathbb{C}, \phi=z+1, \psi=\frac{c}{z}, \mathrm{~d} h=s \cdot z \mathrm{~d} z
$$

This deformation preserves completeness, regularity, period condition... (choose $c, s \in \mathbb{C} \backslash\{0\}$ appropriately).

It could be EMBEDDED in $\mathbb{R}_{1}^{4}$ (when $c<-\frac{1}{4}$, $s \notin \mathbb{R}$ ).

## Other Results

- Classification of algebraic minimal surfaces in $\mathbb{R}_{1}^{4}$ with total curvature $-4 \pi$.
(We have to show that $\bar{z}(\bar{z}+\bar{a})=\frac{z^{2}}{z+b}$ has only trivial solutions $z=0, \infty$ for any parameters $a, b \in \mathbb{C}$ satisfying $a+b=1$.)
- Number of exceptional values for the Gauss $\operatorname{maps} \phi, \psi(\overline{\text { for algebraic type })} \leq 4$


## Other Results

- Classification of algebraic minimal surfaces in $\mathbb{R}_{1}^{4}$ with total curvature $-4 \pi$.
(We have to show that $\bar{z}(\bar{z}+\bar{a})=\frac{z^{2}}{z+b}$ has only trivial solutions $z=0, \infty$ for any parameters $a, b \in \mathbb{C}$ satisfying $a+b=1$.)
- Number of exceptional values for the Gauss maps $\phi, \psi(\overline{\text { for algebraic type }}) \leq 4$.


## Open Problems

- For essential singularities with finite total curvature, define indices and establish G-B type theorem. In particular we conjecture that

$$
\int_{M} K \mathrm{~d} M=-4 \pi n
$$

when the total curvature is finite.
Is it possible to obtain some kind of uniqueness results under the assumption of embeddedness? Obtain unper bound of the excentional values for the Gauss maps $\phi, \psi$ for complete minimal surfaces in $\mathbb{R}_{1}^{4}$


## Open Problems

- For essential singularities with finite total curvature, define indices and establish G-B type theorem. In particular we conjecture that

$$
\int_{M} K \mathrm{~d} M=-4 \pi n
$$

when the total curvature is finite.

- Is it possible to obtain some kind of uniqueness results under the assumption of embeddedness?
- Obtain upper bound of the exceptional values for the Gauss maps $\phi, \psi$ for complete minimal surfaces in $\mathbb{R}_{1}^{4}$


## Open Problems

- For essential singularities with finite total curvature, define indices and establish G-B type theorem. In particular we conjecture that

$$
\int_{M} K \mathrm{~d} M=-4 \pi n
$$

when the total curvature is finite.

- Is it possible to obtain some kind of uniqueness results under the assumption of embeddedness?
- Obtain upper bound of the exceptional values for the Gauss maps $\phi, \psi$ for complete minimal surfaces in $\mathbb{R}_{1}^{4}$.


## THANK YOU!

## Reference

Estudillo, Romero, On maximal surfaces in the n-dimensional Lorentz-Minkowski space, Geometriae Dedicata 38 (1991), 167-174.

Alias, Palmer, Curvature properties of zero mean curvature surfaces in four-dimensional Lorentzian space forms, Math. Proc. Camb. Phil. Soc. 124(1998), 315-327.

Zhiyu Liu, Xiang Ma, Changping Wang, Peng Wang, Global geometry and topology of spacelike stationary surfaces in $\mathbb{R}_{1}^{4}$, arXiv:1103.4700v4

