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Theorem (Kneser,1912)

Any simple closed curve in R2 has (at least) four vertices (local
extrema of curvature)
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How about nonsimple curves?

In general they do not have 4 vertices:
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Theorem (Pinkall,1987)

Any closed curve in R2 which bounds an immersed surface has four
vertices.
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Theorem (Pinkall,1987)

Any closed curve in R2 which bounds an immersed surface has four
vertices.

The same result also holds in S2 and H2, because the
stereographic projection π : S2 − {0, 0, 1} → R2 and the inclusion
map i : H2 → R2 preserve vertices.
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Could Pinkall’s theorem be a hint of a purely intrinsic or
Riemannian version of the four vertex theorem?

More precisely:

Question
Let M be a compact surface with boundary and constant
curvature. Must the boundary of M have 4-vertices (in terms of
geodesic curvature)?

Mohammad Ghomi Vertices on (Other) Riemannian Surfaces



Could Pinkall’s theorem be a hint of a purely intrinsic or
Riemannian version of the four vertex theorem?

More precisely:

Question
Let M be a compact surface with boundary and constant
curvature. Must the boundary of M have 4-vertices (in terms of
geodesic curvature)?

Mohammad Ghomi Vertices on (Other) Riemannian Surfaces



A Riemannian 4 -Vertex Theorem for Surfaces with
Boundary

Theorem (MG)

Let M be a compact surface with boundary ∂M. Then every
metric of constant curvature induces four vertices on ∂M if and
only if M is simply connected.

Indeed, when M is not simply connected, there are elliptic,
parabolic and hyperbolic metrics of constant curvature on M which
induce only two vertices on ∂M.
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Flat metrics with fewest vertices

First we show that if M is not simply connected, it admits a flat
metric with only two vertices on each boundary component.
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Recall that M is homeomorphic to a closed surface M minus
k-disks. There are three special cases that we consider first:

I. M = S2 & k = 2

II. M = RP2 & k = 1
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III. g(M) = 1 & k = 1

κ(t) = 1− 3

4
cos(t),

where −π ≤ t ≤ π. More explicitly, γ(t) :=
∫ t
0 e iθ(s)ds, where

e iθ := (cos(θ), sin(θ)), and θ(t) :=
∫ t
0 κ(s)ds.
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In all the remaining cases we will show that M admits a flat metric
with exactly k conical singularities.

Then we remove these singularities by cutting M along simple
closed curves which have only two critical points of geodesic
curvature each.
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If M has k singularities of angles θi , then by Gauss-Bonnet
theorem,

k∑
i=1

(2π − θi ) = 2πχ(M).

Troyanov has shown that the above condition is also sufficient for
the existence of flat metrics with conical singularities of prescribed
angles. This quickly yields

Lemma
Suppose k(M) ≥ 3, 2, 2, 1, according to whether M = S2,
M = RP2, g(M) = 1, or g(M) ≥ 2 respectively. Then there exists
a flat metric on M with exactly k conical singularities.
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Lemma
Let C be a cone with angle φ 6= 2π and Γ be a circle centered at
the vertex of C . Then there exists a C∞ perturbation of Γ which
has only two critical points of curvature.

Proof.
If φ = 2nπ (where n ≥ 2), let

rλ(θ) := 1− λ cos

(
θ

n

)
.

If φ 6= 2nπ, we cut a segment of theses curves.
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Perturbations of Flat Metrics

Proposition

Let M be a compact surface with boundary and flat metric g0.
Then there exists a family gλ of Riemannian metrics on M,
λ ∈ (−ε, ε) for some ε > 0, such that gλ has constant curvature λ,
and λ 7→ gλ is continuous with respect to the C∞ topology.

This is easy when M is simply connected, for then it isometrically
immersed into the plane and we may perturb the whole plane(

gλ

)
ij

(x) :=
δij(

1 + λ
4‖x‖2

)2 .
But it requires more work in the general case:
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A four-vertex theorem for complete surfaces

By Pinkall’s theorem, and its extension to H2 and S2, any closed
curve bounding a compact surface in a simply connected space
form has four vertices.

Question
Are there any other complete Riemannian surfaces where Pinkall’s
theorem holds?

Theorem (MG)

No!
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I:The elliptic case (K = 1)
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II: The parabolic case (K = 0)

So how does one construct a closed curve with only two vertices
which bounds a compact immersed surface on a cylinder?
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It is not so hard to construct one on a torus:
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It is not so hard to construct one on a torus:

But for a cylinder this will be more complicated:
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III: The hyperbolic case (K = −1)
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Thanks!
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