Vertices on (Other) Riemannian Surfaces

Mohammad Ghomi

Georgia Institute of Technology
Atlanta, USA

Dec 4, 2011, Osaka

Theorem (Kneser, 1912)
Any simple closed curve in \mathbf{R}^{2} has (at least) four vertices (local extrema of curvature)

How about nonsimple curves?

In general they do not have 4 vertices:

How about nonsimple curves?
In general they do not have 4 vertices:

Theorem (Pinkall,1987)
Any closed curve in \mathbf{R}^{2} which bounds an immersed surface has four vertices.

Theorem (Pinkall,1987)
Any closed curve in \mathbf{R}^{2} which bounds an immersed surface has four vertices.

Theorem (Pinkall,1987)
Any closed curve in \mathbf{R}^{2} which bounds an immersed surface has four vertices.

The same result also holds in \mathbf{S}^{2} and \mathbf{H}^{2}, because the stereographic projection $\pi: \mathbf{S}^{2}-\{0,0,1\} \rightarrow \mathbf{R}^{2}$ and the inclusion map $i: \mathbf{H}^{2} \rightarrow \mathbf{R}^{2}$ preserve vertices.

Could Pinkall's theorem be a hint of a purely intrinsic or Riemannian version of the four vertex theorem?

More precisely:
Question
Let M be a compact surface with boundary and constant curvature. Must the boundary of M have 4 -vertices (in terms of geodesic curvature)?

Could Pinkall's theorem be a hint of a purely intrinsic or Riemannian version of the four vertex theorem?

More precisely:
Question
Let M be a compact surface with boundary and constant curvature. Must the boundary of M have 4-vertices (in terms of geodesic curvature)?

A Riemannian 4 -Vertex Theorem for Surfaces with Boundary

Theorem (MG)
Let M be a compact surface with boundary ∂M. Then every metric of constant curvature induces four vertices on ∂M if and only if M is simply connected.

Indeed, when M is not simply connected, there are elliptic, parabolic and hyperbolic metrics of constant curvature on M which induce only two vertices on $\partial \mathrm{M}$.

A Riemannian 4 -Vertex Theorem for Surfaces with Boundary

Theorem (MG)

Let M be a compact surface with boundary ∂M. Then every metric of constant curvature induces four vertices on ∂M if and only if M is simply connected.

Indeed, when M is not simply connected, there are elliptic, parabolic and hyperbolic metrics of constant curvature on M which induce only two vertices on ∂M.

Flat metrics with fewest vertices

First we show that if M is not simply connected, it admits a flat metric with only two vertices on each boundary component.

Recall that M is homeomorphic to a closed surface \bar{M} minus k-disks. There are three special cases that we consider first:
I. $\bar{M}=\mathbf{S}^{2} \& k=2$

II. $\bar{M}=\mathbf{R P}^{2} \& k=1$
III. $g(\bar{M})=1 \& k=1$

where $-\pi \leq t \leq \pi$. More explicitly, $\gamma(t):=\int_{0}^{t} e^{i \theta(s)} d s$, where $e^{i \theta}:=(\cos (\theta), \sin (\theta))$, and $\theta(t):=\int_{0}^{t} \kappa(s) d s$.

In all the remaining cases we will show that \bar{M} admits a flat metric with exactly k conical singularities.

Then we remove these singularities by cutting \bar{M} along simple closed curves which have only two critical points of geodesic curvature each.

If \bar{M} has k singularities of angles θ_{i}, then by Gauss-Bonnet theorem,

$$
\sum_{i=1}^{k}\left(2 \pi-\theta_{i}\right)=2 \pi \chi(\bar{M})
$$

Troyanov has shown that the above condition is also sufficient for the existence of flat metrics with conical singularities of prescribed angles. This quickly yields

Lemma

Suppose $k(\bar{M}) \geq 3,2,2,1$, according to whether $\bar{M}=\mathbf{S}^{2}$, $\bar{M}=\mathbf{R P}^{2}, g(\bar{M})=1$, or $g(\bar{M}) \geq 2$ respectively. Then there exists a flat metric on \bar{M} with exactly k conical singularities.

Lemma

Let C be a cone with angle $\phi \neq 2 \pi$ and Γ be a circle centered at the vertex of C. Then there exists a C^{∞} perturbation of Γ which has only two critical points of curvature.

Proof.
If $\phi=2 n \pi$ (where $n \geq 2$), let

$$
r_{\lambda}(\theta):=1-\lambda \cos \left(\frac{\theta}{n}\right) .
$$

If $\phi \neq 2 n \pi$, we cut a segment of theses curves.

Perturbations of Flat Metrics

Proposition

Let M be a compact surface with boundary and flat metric g_{0}. Then there exists a family g_{λ} of Riemannian metrics on M, $\lambda \in(-\epsilon, \epsilon)$ for some $\epsilon>0$, such that g_{λ} has constant curvature λ, and $\lambda \mapsto g_{\lambda}$ is continuous with respect to the C^{∞} topology.

This is easy when M is simply connected, for then it isometrically immersed into the plane and we may perturb the whole plane

But it requires more work in the general case:

Perturbations of Flat Metrics

Proposition

Let M be a compact surface with boundary and flat metric g_{0}. Then there exists a family g_{λ} of Riemannian metrics on M, $\lambda \in(-\epsilon, \epsilon)$ for some $\epsilon>0$, such that g_{λ} has constant curvature λ, and $\lambda \mapsto g_{\lambda}$ is continuous with respect to the C^{∞} topology.

This is easy when M is simply connected, for then it isometrically immersed into the plane and we may perturb the whole plane

$$
\left(g_{\lambda}\right)_{i j}(x):=\frac{\delta_{i j}}{\left(1+\frac{\lambda}{4}\|x\|^{2}\right)^{2}}
$$

But it requires more work in the general case:

Perturbations of Flat Metrics

Proposition

Let M be a compact surface with boundary and flat metric g_{0}. Then there exists a family g_{λ} of Riemannian metrics on M, $\lambda \in(-\epsilon, \epsilon)$ for some $\epsilon>0$, such that g_{λ} has constant curvature λ, and $\lambda \mapsto g_{\lambda}$ is continuous with respect to the C^{∞} topology.

This is easy when M is simply connected, for then it isometrically immersed into the plane and we may perturb the whole plane

$$
\left(g_{\lambda}\right)_{i j}(x):=\frac{\delta_{i j}}{\left(1+\frac{\lambda}{4}\|x\|^{2}\right)^{2}}
$$

But it requires more work in the general case:

A four-vertex theorem for complete surfaces

By Pinkall's theorem, and its extension to \mathbf{H}^{2} and \mathbf{S}^{2}, any closed curve bounding a compact surface in a simply connected space form has four vertices.

Question
Are there any other complete Riemannian surfaces where Pinkall's theorem holds?

Theorem (MG)

A four-vertex theorem for complete surfaces

By Pinkall's theorem, and its extension to \mathbf{H}^{2} and \mathbf{S}^{2}, any closed curve bounding a compact surface in a simply connected space form has four vertices.

Question
Are there any other complete Riemannian surfaces where Pinkall's theorem holds?

Theorem (MG)

A four-vertex theorem for complete surfaces

By Pinkall's theorem, and its extension to \mathbf{H}^{2} and \mathbf{S}^{2}, any closed curve bounding a compact surface in a simply connected space form has four vertices.

Question
Are there any other complete Riemannian surfaces where Pinkall's theorem holds?

Theorem (MG)
No!

$\mathrm{I}:$ The elliptic case $(K=1)$

II: The parabolic case $(K=0)$
So how does one construct a closed curve with only two vertices which bounds a compact immersed surface on a cylinder?

It is not so hard to construct one on a torus:

It is not so hard to construct one on a torus:

It is not so hard to construct one on a torus:

It is not so hard to construct one on a torus:

It is not so hard to construct one on a torus:

It is not so hard to construct one on a torus:

But for a cylinder this will be more complicated:

$$
\frac{1}{a^{2}+2 a \cos \left(\frac{t}{5}\right) \cos (t)+\cos \left(\frac{t}{5}\right)^{2}}\left(a+\cos \left(\frac{t}{5}\right) \cos (t), \cos \left(\frac{t}{5}\right) \sin (t)\right)
$$

III: The hyperbolic case $(K=-1)$

Thanks!

